
The D-Loop Pattern

A technique for optimizing loops containing
conditional branches

Jean-François Maquiné
d-loop@onversity.com

Version 1.10
March 09, 2004

(latest revision : March 27, 2004)

Forewords (for the 1.1 revision) :

It seems that some readers of the 1.0x revision are a little bit confused about the
main goal of that White-paper. So let me clear some point. The present document is not
trying to tell the readers that D-loop is far more better than any other optimizations
technics, but try to give a global view of the method. This explains the important
mathematical chapter. D-loop is an optimization among others, In some cases it could
be better in other cases not. The givens examples are only here to show how to use D-
loop, not to suggest there is no other optimization that could be faster.

The revision 1.1 adds a chapter about the practical use of D-loop with several compilers,
processors, languages and knows restrictions.

1 Introduction 4

2 The first steps leading to the D-Loop pattern 6
2.1 Typical conditional problem... 6

2.2 Analyzing and improving ... 6

2.3 Efficiency ... 7

2.4 Comparison table and analysis ... 8

3 Theoretical analysis 10
3.1 First consideration about D-loop ..10

3.2 Having two sets is the Key ...10

3.3 D-loop K value ...11

3.3.1 What if K tends to infinity ? .. 11

3.3.2 What if K tends to 1 ? .. 11

3.3.3 What if K tends to 0 ? .. 12

3.4 Further relationship between K and efficiency... 12

3.4.1 Efficiency of a typical D-loop function .. 12

3.4.2 Deciding whether to use the D-loop pattern 13

3.5 Performance analysis on real hardware .. 14

4 D-Loop combined to a mask technique 16
4.1 The widely used strstr() function.. 16

4.2 Enabling 2 subset through the use of a mask.. 17

4.3 Efficiency of the D-loop using a mask ... 18

5 Applying D-Loop using a sentinel value 21
5.1 Big numbers addition ...21

5.2 The sentinel value... 22

6 Applying D-Loop to single loops 23
6.1 Another widely used function, strlen() ... 23

6.2 Working around the simple loop ..23

6.3 Stronger requirements ...24

6.4 Efficiency ...25

7 Optimizing the D-Loop pattern 25
7.1 Removing the explicit security test... 25

8 D-loop and multi-threading 28

9 D-Loop : Practical us and restrictions 28

10 Last words and conclusion 29

11 Acknowledgments 30

12 References 30

The AMD Athlon 64 has 12 stages pipeline, the Intel Pentium 4 Northwood 20 1

stages and the Intel Pentium 4 Prescott 31 stages

1 Introduction

Modern processors can achieve high execution speeds on ALU instructions, and that’s
particularity true when using loops. But to reach such speeds, you need to reduce the
number of conditional branches and increase the parallelism between instructions.

About conditional branches: One of the most important bottlenecks that may appear
in an algorithm is an excessive amount of conditional tests. To understand this, you have
to realize how modern processors handle conditional tests. When a modern processor
encounters a conditional test, it tries to guess its outcome and execute the rest of the
program accordingly; all this before actually knowing the results of the aforementioned
test. This mechanism is called branch prediction. It enables the processor to execute the
program as if there were actually no test, and virtually eliminate any pipeline stall that
can occur when the processor waits for the result of a test.

But that’s in theory. In practice, the processor can guess wrong, in which case it has to
undo everything executed after the test and that shouldn’t have been. To achieve this, the
processor removes all the instructions and intermediate results from its pipeline and
jumps back to the concerned test before resuming the execution. This process, called
“pipeline flush” is extremely expensive in CPU time, especially considering the fact that
processors tend to have longer and longer pipeline.1

About parallelism: Achieving more instructions per cycle (IPC) is what parallelism
mean. Apart from increasing the frequency, it’s one of the best ways to speed up
execution. But it’s not an easy task. Neither for processor engineers who try to find new
architectures that offer more parallelism capabilities, neither for the programmers who
search for algorithms that allow better parallelisms, nor for compilers that ought to
schedule instructions in the right order.

In practice, there are lots of reasons why perfect parallelism can’t always be
achieved and one of them is the occurrence of conditional branches. Conditional
branches, even when the prediction mechanism works at its best, will reduce the
processors capacity to execute several instructions per cycle.

The technique I describe in this paper allows reducing the average number of
tests. It mainly applies to loops doing conditional processing on a sequential
structure. This technique, which is called Double Loop or D-Loop, not only reduces
the average number of conditional branches per element, but also rise the parallelism
of code.

The first part explains the D-Loop technique, analyses it and tries to find out
when this method is advantageous and when it’s not. Using various examples, the
second part explores D-Loop in different situations. All examples are in ANSI C89
but the technique itself can be applied in mostly any language.

Note : You'll find in this white paper two kinds of D-Loop algorithm: a standard and
an optimized version. I'll use the former for all examples because it may be simpler to
understand, but in practice the latter should be used.

French readers should read Onversity’s article about D-loop :

http://www.onversity.com/cgi-bin/progarti/art_aff.cgi?Eudo=bgteob&M=informat&
O=touslesmots&P=a0404

2 The first steps leading to the D-Loop pattern

This section explains the rational behind the D-Loop pattern via a concrete
example.

2.1 Typical conditional problem

To document the concept of the D-Loop pattern let’s begin with a simple procedure
that counts the occurrence of a specific char in a string. This method would typically
be implemented via a simple loop containing a single conditional assignment, as
shown by the following code

2.2 Analyzing and improving

While this implementation is considered as the fastest you can write, it contains
a serious bottleneck. In fact, for each character in the string it’s doing two conditional
tests. During each iteration, a first test, the loop condition, is executed to know whether
the end of the string has been reached. Right after this, a second test is performed within
the loop to check whether the current character is to be count. Knowing that the null
character indicating the end of the string is unlikely to be encountered during most
iterations, the first test appears superfluous in most cases. Even on most modern CPU,
this operation costs a significant amount of time.

In order to improve this situation, the count_char() function was re-
implemented, but this time using the D-Loop pattern.

int count_char(char *val, char ch)

{

int i = 0;

while((unsigned char)*val != '\0')

{

 i f((unsigned char)*val == (unsigned char)ch)

 i++;

val++;

}

return(i);

}

Listing 1 : typical implementation of count_char()

As you can see, the single loop from the previous implementation has been split
in two parts : a global loop and an inner loop. The global loop is only responsible for
handling the end of the string, removing this burden from the rest of the code. This
design can be detailed in four specific steps.

1. The global loop checks whether the end of the string was reached, either at the
beginning of the function, or when the inner loop has stopped.

2. The inner loop sequentially runs through the string, discarding most of the
characters, and stops whenever a character may be important. In this case,
either the character contain in ‘ch’ and the null characters.

3. Right after the inner loop, there is a security test checking whether the current
character indicates the end of the string. If it happens to be true, we bail out
from the global loop.

4. Finally, the specific operation, which in the count_char function is to
increment a counter, is executed and the program goes back to step one.

The idea is that most characters will be skipped in the inner loop using only one
conditional test instead of two.

int new_count_char(char *val, char ch)

{

unsigned char char_mask[256];

 int i=0;

memset(char_mask,0,256);

char_mask[(unsigned char)ch] = 1;

char_mask[0] = 1;

while((unsigned char) *val != 0)

{

while(char_mask[(unsigned char) *val] == 0)

{

val++;

}

 i f((unsigned char)*val == 0)

break;

else

i++;

val++;

}

return(i);

}

Listing 2 : implementation of count_char() using the D-Loop pattern

2.3 Efficiency

Notes : All tests have been done using the latest Intel C compiler (version 8.0) on a
Pentium 4 Northwood 3.2 GHz. I used the optimized D-loop version (see chapter 7) with
the mask technique (see chapter 4). To evaluate the performance of the algorithm,
I have used a long string (79000000 characters), effectively making everything outside
of the function negligible.

2.4 Comparison table and analysis

Standard D-loop faster
(x)char occurrences

space 12000000 3.953s 3.703s 1.06

e 7000000 3.172s 2.859s 1.11

d 2700000 2.032s 1.547s 1.31

f 700000 1.828s 1.297s 1.41

W 0 1.693s 1.141s 1.48

In the worst case, when the function counts the number of space characters, the
D-Loop version is 1.06 time faster. But what’s more interesting is that, in the best case,
the difference in speed rises to 1.48 as the number of occurrences decreases. This means
that the difference in speed between standard and D-Loop version is not constant.

Also the D-Loop version can be significantly faster for such functions if you
know the size of the string. This allows you to use the point break technique (see chapter
5), or if you’re already using the mask technique, to reduce the number of conditions.
The latter, for example, can happen with a filter function where you have to know
whether a string has unauthorized characters.

Standard
(with length)

D-loop
(with length)

faster
(x)char occurrences

space 12000000 4.078s 3.140s 1.29

e 7000000 3.266s 2.438s 1.33

d 2700000 2.078s 1.250s 1.66

f 700000 1.813s 1.000s 1.81

W 0 1.674s 0.843s 1.98

When using the D-Loop pattern instead of a standard algorithm, but having to resort to
a complementary technique (e.g. the mask), your function can be up to twice faster. This
best case scenario corresponds to the reduction of conditional branches as a consequence
of the D-Loop pattern as we will see in the chapter 3.

Note : All the count_char examples are here to show how works D-loop, it doesn’t
mean that you couldn’t find a faster function.

int new_count_char_with_length(char *val, char ch, int len)

{

int i = 0,

j = 0;

*(val+len-1) = ch;

while((unsigned char)val[j] != (unsigned char)ch)

j++;

while(j++ < len)

{

i++;

 while((unsigned char)val[j] != (unsigned char)ch)

j++;

}

*(val+len) = '\0';

return(i);

}

Listing 3 : implementation of count_char_with_length() using the D-Loop pattern

The count_char() function is using the C type unsigned char. The range of integers covered
2

by this type is typically [0, 255] on most implementations.

In the case of count_char(), no real operation is done in the inner loop. The inner loop
3

 simply discards elements belonging to the subset B.

3 Theoretical analysis

In this section we are going to present the theory behind the improvements
achieved through the use of the D-loop technique. We are also going to show how this
can be generalized and used in other codes.

3.1 First consideration about D-loop

The new_count_char() function is faster because the inner loop is able to skip most
characters with only one test. Looking at this we can split the domain in two subsets.2

· The subset A, whose elements cannot be quickly processed by the inner loop. In
our example, this is the null and a specific character.

· The subset B, whose elements can be quickly processed by the inner loop, which3

is also the complementary set of A.

3.2 Having two sets is the Key

The D-Loop technique primarily considers the subset B; using the inner loops it
sequentially runs through characters that belong to this subset, leaving the handling of
characters from the subset A to the global loop.

Being able to split the domain into two complementary subsets is the core of the
D-Loop method. Once these subsets defined, it’s only a matter of handling elements
belonging to one in the inner loop, and handling elements belonging to the other outside
the inner loop but inside the global loop.

Note: The D-Loop pattern inherits its name, Double Loop, from its particular design
composed of two loops dividing the domain in two subsets.

3.3 D-loop K value

Depending on the situation, applying the D-Loop technique isn’t always possible
or simply not such a bright idea. The K value will enable us to decide whether or not the
D-Loop pattern should be used.

If S represents the ordered set of data that has to be processed and si the pair (value,
position) of the ith element in S, then :

 and

This means that K represents the ratio between the number of elements of S that
appears in the subset B and the number of elements of S that appears in the subset A. SB
and SA contain all the elements from S, respectively belonging to the subset B and A;
M and N are respectively the cardinality of SB and SA.

Thus K gives the ratio of the number of elements that will be handled
respectively by the inner loop or by the global loop. The more can be done in the inner
loop, the best.

3.3.1 What if K tends to infinity ?

If K -> inf, it means that the inner loop will be able to make big leaps in the given
set of data S. Large chunks of S will be quickly processed by the inner loop using only
one conditional test. In this case the efficiency of the whole function will tend to be the
sole efficiency of the inner loop.

3.3.2 What if K tends to 1 ?

If K -> 1, it means that the number of elements from S belonging to A is the same
as the number of elements from S belonging to B. Depending on how these elements are
regrouped, the efficiency of the whole function will go from average to worse. In the

worst case, the inner loop is roughly processing one element, then stops, leaving the next
element for the global loop which in turn processes another element to go back into the
inner loop; which leads to a ping-pong effect between the inner loop and the global loop.

3.3.3 What if K tends to 0 ?

If K -> 0, it means that the inner loop is mostly useless and may seriously impair
the efficiency of the whole function. In that case, the two subsets A and B should be
reconsidered, and one should wonder whether instead it’s possible to simply swap both
sets and process the other subset in the inner loop, which would lead to K > 1.

3.4 Further relationship between K and efficiency

The K value gives a way to analyze some properties of the input data. These
properties can be analyzed deeper to find out when it may be interesting to use the D-
Loop technique.

3.4.1 Efficiency of a typical D-loop function

Based on these properties, we can compute the overall cost of a function using
the D-Loop pattern. This cost will be measured in number of conditional branches. In the
case of a regular function using one loop containing only one inner condition, the cost
per element Ce equals 2 conditional branches: there is the terminal condition of the loop,
plus the inner test. If n represents the number of elements to be processed, then the
overall cost Co of the function is 2n, which is Ce × n.

In the case of a typical D-Loop pattern, an element will face a different number
of tests depending on whether it’s processed only within the inner loop. If it’s the case,
the terminal condition of the inner loop is the only condition that will be executed for
this element; otherwise four conditional branches will be done (the inner loop terminal
condition, the security test, the value test and the global loop terminal condition). So, in
the former case the cost for one element (Wb) equals one conditional branch, and in the
latter the cost for one element (Wa) equals four conditional branches. Based on this, we
can say that the average cost for one element is :

PK is the probability that an element does not trigger the condition of the inner
loop, that is the probability that an element, randomly taken from the input data, belongs

to the subset B. PK and K are related to each other and actually express the same
properties but in different ways.

Let’s take, for example, the function count_char() and say that a ‘space’ symbol
appears once every 6 characters. Based on this we can conclude that:

Thus, the average cost for this function following the D-Loop pattern is of 1.5
conditional branches per element. This means that this version executes about 25% less
conditional branches than the regular implementation. Further in this document, you’ll
even see that the D-Loop pattern can be optimized so that W1 equals 3 (in our previous
example, this would mean that Ce = 8/6 ~= 1.33).

3.4.2 Deciding whether to use the D-loop pattern

If the cost of a function using the D-Loop technique is greater or equal than the
cost of its regular implementation, then it’s obvious that the D-Loop pattern should not
be followed. Thus, Ce for the D-Loop version should be less than 2.

K = 5/1 Wb = 1
PK = 5/6 Wa = 4

Ce = (5/6 + 1/6 * 4)
 = 9/6
 = 1.5

Using Wb = 1 and Wa = 4

Using the relation that exists between K et PK, we can also express the minimal K value.

So if PK has to be greater than two thirds, the K value should be greater than 2.
All this means that the size of the subset SB should be at least two thirds the size of the
input data. So, if more than 2/3 the input data cannot be solely processed by the inner
loop, then the D-Loop pattern should not be used.

Note: Using the optimization explained further in this document, Wa equals 3, which
brings the previous equation as PK > 1/2. In this case, it means that at least half the input
data should be processed by the inner loop in order to make the D-Loop technique
attractive.

3.5 Performance analysis on real hardware

We have used Intel Vtune performance analyzer to gather information about
count_char() functions. Vtune uses hardware performance counter to measure how often
some specific events happen in the microprocessor. We focused on branches as the main
focus of the D-loop technique is to improve this aspect of the performance. We will first
look at the worse case results (counting the space character in a string).

Branch prediction rate = (1 - (mispredicted branches / number of branches))*100
4

Standard D-loop
Statitics

Time execution 0.40s 0.37s

Mispredicted branch 30.000.000 28.000.000

Cost of mispredicted branches 0,19s 0.17s

Branch prediction rate 90% 84%
Count_char() worse case informations(Space char)

The most important piece of information is the cost of mispredicted conditions.
The difference between Standard and D-loop count_char functions is 0.02 seconds,
which represents a difference of 66% in execution time. This is caused by two things.
First, D-Loop can reduce the number of mispredicted branches, and each mispredicted
branch can cost about 10 cycles or more (it depends on the pipeline depth). The second
reason is that the cost of a mispredicted branch is, in average, lower with D-Loop than
with a standard algorithm. To understand this, you ought to know that the cost in cycles
of a mispredicted branch is not a constant one, it depends on what kind of instructions
are in the pipeline and on the current state of the pipeline when the misprediction occurs.

D-loop has a lower Branch prediction rate, which is normal due to the fact that4

the decrease in mispredicted branches does not follow the decrease in the number of
branches. With the future optimizations in the prediction mechanisms of the next
generation of processors, D-Loop should increase its momentum over standard
algorithm.

Standard D-loop
Statitics

Time execution 0.170s 0.120s

Mispredicted branch 0 0

Cost of mispredicted branches 0,0s 0.0s

Branch prediction rate 100% 100%
Count_char() best case informations(W char)

But as you can see the difference in execution time isn’t caused by the number
of mispredicted branches. So where does it come from? In this case, only the inner loop
is executed, that particular piece of code is smaller than the code of the function
count_char() and has more parallelism. To document this, here is the assembly code of
both functions

Assembly code

Standard D-loop
(inner loop only)

0d : cmp ebx,edx

 jnz 14 :

 add eax,01h

14 : movzx ebx,BYTE PTR [ecx+01h]

 add ecx,01h

 test ebx,ebx

 jnz 0d :

4d : movzx eax, BYTE PTR [edi]

 movzx edx, BYTE PTR [esp+eax]

 add edi,01h

 test edx,edx

 je 4d:

Count_char() best case information (W char)

So, to recapitulate, D-Loop can respectively increase the average parallelism in
the best case and reduce the number of mispredicted branches in the worse case. In both
case the reduction of the amount of conditional branches makes it easier to the processor
to manage the code.

4 D-Loop combined to a mask technique

The D-Loop pattern can be applied to a lot of functions. At first sight it's not
always obvious, but the main idea is to find a relatively quick test that can split the
domain in two subsets. This section explains how the mask technique can be used to
achieve this goal.

4.1 The widely used strstr() function

In the C standard library, strstr() is a function that searches for the first
occurrence of a string in another. One of its common uses is to look up for a given word
in a text, and eventually, count all its occurrences. A lot of research has been done
around this function, papers and books on the matter spread all over the place. But since
strstr() has been so much analyzed, is it even possible to implement one that beats the

Intel C compiler (http://www.intel.com)
5

GNU Compiler collection (http://gcc.gnu.org)
6

highly optimized assembly versions from the latest compilers such as ICC and GCC.5 6

The following implementation in C will try to do so.

While I will not go into an in-depth analysis of this function - it's not a white
paper on strstr() -, here is a quick description of the algorithm it's using before we move
to the principles of the mask. Str2 is the string we are searching in the string str1.

1. If str2 is empty, we have to return str1, so says the C standard.

2. If str2 contains only one character, use strchr() instead.

3. Create a mask, a table, whose each entry respectively corresponds to all
possible values of the C type char. All entries are initialized to 0, except the
first one (which represents the null character) that is initialized to 1.

4. The inner loop sequentially parses str1 until the entry of the mask for the
current character is different from 0.

5. When the inner loop finishes, the current character must be either equal to 0
(the null character) or to the first char of str2. In the former case, no
occurrence of str2 could be found in str1 and we return NULL. In the latter
case, it's possible that an occurrence was found, this possibility has to be
checked.

6. If an occurrence was found then return a pointer indicating its position, else
go back to step 4.

4.2 Enabling 2 subset through the use of a mask

The mask is an array of boolean values. It enables us to create the two subsets
from the domain we're working on. The first one contains the null character and the first
character of the string we're looking for and the second one all the other characters. This
technique is already well known and it's used to reduce the number of conditional
branches; countless respectable filter functions implements this idea. In the case of the
D-Loop pattern applied to the strstr() function, this mask is the key to virtually define
the two subsets.

4.3 Efficiency of the D-loop using a mask

By definition, the K value is strongly bound to the input data. Because it's
dependent on the content of the two strings, it's either possible to produce an example
that misuses the above implementation and that is slower than the standard version, or
an example that's two times faster. But these worst and best case scenarios generally
don't happen on real-life texts.

According to my own tests, this new algorithm appears to be 1.1 to 1.6 faster than
the strstr function give by a compiler. It's an impressive improvement, especially if we
take in consideration that an assembly version would be even faster.

To show that the improvement is not due to a specific processor, or compiler or
operating system (which doesn’t mean it will be fast with any compiler and run fast on
any processors, but it’s not specific to Pentium 4 Northwood and Intel compiler), I have
done two tests. One with Intel compiler 8.0 on a Pentium 4 Northwood running on
Windows XP, and one with GCC 3.3.1 on a Pentium 3-S running on Linux.

Compiler
library

D-loop faster
(x)String

(not found)

etat 3.313s 2.890s 1.14

Xayen 1.860s 1.156s 1.60

Windows : Intel C/C++ 8.0. Pentium 4 Northwood 3.2 GHz

Compiler
Library

D-loop
faster

(x)String
(not found)

etat 6.984s 5.911s 1.18

Xayen 4.184s 2.857s 1.46

Linux : GCC 3.3.1. Pentium 3-S 1.4 GHz

Note : The strstr() implementation using the D-Loop pattern is based on a simple
algorithm. There are more sophisticated algorithms for the strstr() function like the
Boyer-Moore [1] algorithm. But such algorithm are not always faster because they need
to know the length of the strings and in C it’s a costly evaluation.

char *new_strstr(const char *str1,const char *str2)

{

unsigned int test,

i,

k,

j = 0;

const unsigned char *st1,

 *st2;

unsigned char char_mask[256] = {

1,0,

0,

0,

0,

0,

0,

0,

0,0

};

if(*str2 == '\0')

return((char *)str1);

if(*(str2+1) == '\0')

return(strchr(str1,*str2));

st1 = (const unsigned char *) str1;

st2 = (const unsigned char *) str2;

test = (unsigned char) *(str2+1);

char_mask[*st2] = 1;

i = 1;

while(st1[j] != 0)

{

while(char_mask[st1[j]] == 0)

{

 j++;

}

i f(st1[j] == 0)

break;

j++;

if(st1[j] == test)

{

k = j;

while(st1[k++] == st2[i++])

{

i f(st2[i] == 0)

{

 return((char *)(str1+k-i));

}

}

i = 1;

}

}

 return(NULL);

}

Listing 4:strstr() implementation using the D-loop pattern

The given implementation assumes that an integer has a size of 32 bits. Depending on the
7

platform, the C type unsigned int may be larger than this; if this happens the additional bits

will be ignored.

Preconditions : (val1[0] == val2[0]) && (val != val1) && (val != val2)
8

5 Applying D-Loop using a sentinel value

As seen in the previous section, the D-Loop technique sometimes needs to be
used in conjunction with another. The function seen in the current section uses a sentinel
value technique to apply the D-Loop pattern.

5.1 Big numbers addition

The function introduced here adds the mantissas of two floating point numbers;
it was taken from a library created with the sole purpose of computing Pi. In this library,
a mantissa is encoded as an array of integers. The first cell gives the size of this array7

and the regular mantissa binary representation is split into 30 bits blocks stored in the
other cells. The remaining two bits in each cell are used for the overflow that will occur
during some operations (e.g. during an addition, the 31 bit will be used as a carry flag).st

The first version (see listing 5) uses a standard approach while the second version (see8

Listing 6) is based on the D-Loop Pattern.

void add(unsigned int * val, const unsigned int * val1 ,const unsigned int * val2)

{

unsigned int n = *val1,

 r = 0,

 a;

for (a = 1; a <= n; ++a)

{

val[a] = val1[a] + va2l[a] + r;

if (val[a] > 0x3fffffff)

{

val[a] &= 0x3fffffff;

r =1;

}

else

{

r = 0;

}

}

}

Listing 5:standard approach to implement add()

5.2 The sentinel value

As you already know, the D-Loop technique relies on two subsets to work. In this
example, these two sets are defined by the couple (b1, b2) where b1 and b2 are the two
blocks currently being added. Whether such a couple belongs to the first or to the second
subset depends on the result of this addition. In some situations the carry flag has to be
set, but not in the others.

But by default, based on the sole result of an addition, the inner loop cannot
know when the end of the array is reached and may enter into an infinite loop, which will
eventually lead to a segmentation fault. To change this behavior, we use a sentinel value
(0x40000000) at the end of each mantissa. This ensures that the inner loop will implicitly
detect the end of the input data.

void add(unsigned int * val, const unsigned int * val1, const unsigned int * val2)

{

 unsigned int n = *val1,

 b = 0,

 a;

for (a = 1; a < *val; ++a)

{

b += val1[a] + val2[a];

while (b <= 0x3fffffff)

{

val[a] = b;

a++;

b = val1[a] + val2[a];

}

val[a] = b & 0x3fffffff;

b = 1;

}

val[a] = 0x40000000;

}

Listing 6:Add() implementation using the D-loop pattern

6 Applying D-Loop to single loops

Sometimes, if we can comply with more restricting preconditions, it’s possible
to use the D-Loop technique even on simple loops. In this paper, a simple loop is defined
as a loop not containing any conditional branches except its own terminal condition.

6.1 Another widely used function, strlen()

The function strlen() from the C standard library is often implemented using a
simple loop (See Listing 6). It returns the length of a string.

But since in theory the D-Loop pattern only applies to loops containing
conditional branches, how can we use it to such a function? To answer this question,
let’s implement strlen() using the kind of loop expected by the D-Loop pattern (see
Listing 7).

6.2 Working around the simple loop

size_t strlen(const char * src)

{

const char * src2 = src;

while (*src2 != '\0')

 ++src2;

return (src2 - src);

}

Listing 7: standard implementation of strlen()

size_t new_strlen(const char * src)

{

const char *src2 = src;

while (*src2 != '\0')

{

if (*src2 == '\0')

break;

 ++src2;

}

return (src2 - src);

}

Listing 8: strlen() implementation using a loop containing a conditional branch

Now, as it is, the new_strlen() function is useless. But it fits the requirements of
D-Loop as it defines two subsets: the input characters are either equal to the null
character or not. The problem is that if we simply use the D-Loop method the resulting
implementation will probably be slower than the first version. So this idea is to speed up
the inner loop by reinforcing some preconditions (see Listing 8).

6.3 Stronger requirements

In this new version, we test in the inner loop two consecutive characters at the
same time. Using a bitwise logical and operation we can quickly know whether one of
the two characters may be a null character. After the inner loop, more specific tests
enable us to know whether it’s the first or the second character, or if it’s simply a special
case where (a AND b) equals zero without either operands being the null characters.

Now, this D-Loop version of strlen() won’t always work on all kind of inputs.
In fact it brings a new precondition that requires that the string is stored in an array
whose size is a multiple of two. Because it tests characters two by two, the function may
generate a segmentation fault if this requirement is not met. I’ve included this function
mainly to show you how the D-Loop pattern can be used. But if you need a fast strlen()
implementation you can always use it (which doesn’t mean it’s the most faster strlen()
function that exist), keeping in mind that you’ll need to make sure your string always
feature an even size.

size_t new_strlen(const char * src)

{

unsigned int car,

 i = 0;

car = (unsigned char) src[i] & (unsigned char) src[i + 1];

i += 2;

for (;;)

{

while (car != 0)

{

car = (unsigned char) src[i] & (unsigned char) src[i + 1];

i += 2;

}

if (src[i - 2] == '\0')

return (i - 2);

if (src[i - 1] == '\0')

return (i - 1);

car = (unsigned char) src[i] & (unsigned char) src[i + 1];

i += 2;

}

}

Listing 9: strlen() implementation based on the D-loop pattern

Note : We did not transform the strlen() function using the d-loop pattern. But we use
(the spirit of) the d-loop pattern to create a new algorithm. So the knowledge that you
might acquire with the d-loop pattern can help to create news algorithms that are faster
than those existing.

6.4 Efficiency

According to our own tests, timed at 1.2 seconds instead of 2.0, the speed of the
D-Loop implementation is 1.66 times the speed of the one shipped with the Intel C
Compiler 8.0.

7 Optimizing the D-Loop pattern

The examples given in the previous sections show how one can improve some
functions using the D-Loop technique. Although those new implementations are faster,
they can still be tweaked and improved a little further.

7.1 Removing the explicit security test

In its current state, one of the weaknesses of the D-Loop pattern is located right
after the inner loop: when this loop terminates, the processor encounters three
conditional tests. The security test, a value specific test and the terminal condition of the
global loop, which is most of the time the same test as the security test.

During the correction of this white paper, Patrice Arrighi pointed to me that the
new_count_char() function could be rewritten in such a way that the redundant security
test is actually removed. Doing so improves the efficiency of the function as the number
of considered tests goes from three to two; in practice a speed up from 0 to 10% is
observed, mainly depending on the input data.

The main change in the layout of the D-Loop pattern is that the inner loop now
comes after the specific tests. This allows merging the security test with the terminal
condition of the global loop. The following listings show the previously seen D-Loop
functions rewritten with this optimization in mind.

Note : Because this security condition is always false except when getting at the end of
the input data, modern processors using their advanced prediction mechanisms is able
to avoid any pipeline flush and thus should virtually skip this test. So this improvement

comes from the fact that the compiler has easier time optimizing this simpler code and
also that the processor doesn’t waste an ALU on executing this test.

int new_count_char(char *val,char ch)

{

unsigned char char_mask[256];

int car,

i = -1;

memset(char_mask,0,256);

char_mask[(unsigned char)ch] = 1;

char_mask[0] = 1;

car = (unsigned char) *val;

while(car != 0)

{

i++;

car = (unsigned char) *val++;

while(char_mask[car] == 0)

{

car = (unsigned char) *val++;

}

}

return(i);

}

Listing 10: new_count_char() using an optimized d-loop pattern

size_t new_strlen(const char * src)

{

unsigned int i = 0;

while ((unsigned char) src[i] != '\0')

{

if ((unsigned char) src[i + 1] == '\0')

{

I++;

break;

}

i += 2;

while (((unsigned char) src[i] & (unsigned char) src[i + 1]) != 0)

i += 2;

}

return i;

}

Listing 11: new_strlen() using an optimized d-loop pattern

char *new_strstr(const char *str1,const char *str2)

{

unsigned char char_mask[256];

unsigned char *st3;

unsigned int car,

i;

if((unsigned char)*str2 == '\0')

return((char *)str1);

if((unsigned char)*(str2+1) == '\0')

return(strchr((char *)str1,(char)*str2));

memset(char_mask,0,256);

char_mask[(unsigned char)*str2] = 1;

char_mask[0] = 1;

car = (unsigned char) *str1++;

while(char_mask[car] == 0)

{

car = (unsigned char) *str1++;

}

while(car != 0)

{

car = (unsigned char) *str1++;

if(car == (unsigned char)str2[1])

{

st3 = (unsigned char *) (str1-2);

i = 1;

while((unsigned char)st3[i] == (unsigned char)str2[i])

{

i++;

if((unsigned char)str2[i] == 0)

{

 return((char *)(str1-2));

}

}

}

while(char_mask[car] == 0)

{

car = (unsigned char) *str1++;

}

}

return(NULL);

}

Listing 12: new_strstr() using the optimized d-loop pattern

8 D-loop and multi-threading

The D-Loop pattern itself can be used on concurrent programming (cf. multi-
threading), but complementary techniques might not. For example, if you are using the
sentinel value technique, D-Loop can be used in a multi-threading environment and be
called by multiple threads at the same time. However, the mask technique cannot always
meet all the conditions for this. The actual code you can find in this white paper can be
used in such an environment, but be aware that if you decide to use the ‘static’ keyword
in the declaration of the mask it won’t be thread-safe anymore (using ‘static’ may
improve the performance in some cases).

The sentinel value technique works as long as you don’t evaluate data that
overlaps. If you do, it’s more than probable that the functions that are called at the same
time will shoot into each others legs. But by definition, thread-safe code doesn’t imply
that you can work on the same piece of memory at the same time.

9 D-Loop : Practical use and restrictions

D-loop is not a optimization that will works in any cases. So I will give here some
practical information that can help you to decide to go with D-loop or not. You have
made test on specific compiler , processor,... and get bad or good result, let me know.

Compiler

D-loop need that the compiler is able to optimize ALU instructions. That the case for
the Intel compiler and GCC, but not for Visual C/C++ version 5 and 6. I do know
nothing about version >= 7.x.

The compiler should be able to optimize ‘while’ loop. That mostly the case for
C/C++ compilers, but not for Delphi.

Processor

I’ve developed and mostly tested D-Loop on an Intel Pentium 4 Northwood
(P4C). All variants of the D-Loop technique work very well on this processor, and I
suspect on Prescott (P4E) too, due to their common Netburst architecture. In fact, all
processors seem to react very well, with only one exception: when using the D-loop with
mask, the Athlon-XP badly performs. For example, with the D-Loop new_count_char()
function (using a mask) is 9% slower in the worse case than count_char(), while the

new_count_char_with_length() function (not using a mask) is 22% faster in the same
case.

About the mask technic. Some readers thinks that it works well only with a fast L1 data
cache. Sure a slow latency of the L1 data cache can reduce the performance of the mask
technic, but Pentium 3 processor are doing well even with a slower latency than the
Pentium 4 Northwood. So the bad performance of the Athlon XP seems not to come
from it’s latency. If anybodies have an explication, let me know.

I would be happy if someone could make test on Athlon-64 and Prescott processor,
specially the optimized Strstr() function

Languages

D-loop seems to like C/C++ language. I don’t have any other information about other
languages other that Delphi doesn’t like while instruction. If you have some let me
know.

Inline

D-loop functions are often bigger. This could make inline impossible and/or brings some
performance trouble.

If you have any comment to the practical use of D-loop, let me Know, I will be happy
to add them.

10 Last words and conclusion

I’ve been working with the D-Loop technique for quite a while now. And the
more I discover about it, the more this optimisation could be part of the feedback
directed optimizations used in some compilers that use execution profiles to optimize
further the code. Of course I’m not absolutely sure it’s feasible in practice, but people
in the matter should probably investigate this opening.

Optimizations are important, even if deeply optimizing a program can reveal
itself to be a difficult task and extremely expensive in both time and money. In fact,
developers tend to rely on the raw power of newer computers to speed up their

applications; which I believe isn’t always a good thing. But D-Loop is a simple
optimization, relatively easy to implement, and can bring some serious improvements
in execution speed. I sincerely hope this white paper will help you to go into that
direction.

11 Acknowledgments

I would like to thank Patrice Arrighi for his optimizations to the D-Loop pattern.
I would also like to thank Tanguy Fautré for his help on translating this document in
English and for the accuracy of his remarks that enhanced the quality of this white paper.
I also thank them for pushing me into making a more complete theoretical analysis.

12 References

[1] Robert Sedgewick :
 Algorithmes en langage C (french edition of : Algorithms in C)

Pages : 291 - 308 (ISBN:2100053310)

[2] Dan Richard Kaiser :
Loop optimization techniques on multi-issue architectures

 http://citeseer.nj.nec.com/cache/papers/cs/24653/http:zSzzSzwww.eec
s.umich.eduzSz~tnmzSztheseszSzdank.pdf/loop-optimization-techniq
ues-on.pdf

[3] Cheng Yun, Kai Chiu Kwan, Chan Yu Lai :
 Branch prediction strategies using instruction cache

http://citeseer.nj.nec.com/cache/papers/cs/11051/http:zSzzSzturing.ece
.wisc.eduzSz~kwanzSzreport_752.pdf/branch-prediction-strategies-usi
ng.pdf

[4] David L.Lilja :
Reducing the branch penalty in pipelined processors
http://www.elet.polimi.it/upload/gpalermo/Web/WebElet/Didattica/Pa
pers/BP-Survey.pdf

