
GeekOS — A template for booting and
running programs on an x86 PC

David Hovemeyer

http://www.cs.umd.edu/projects/shrug/

http://www.cs.umd.edu/projects/shrug/


Outline

• Goals / background

• Implementation

. Makefile

. boot sector and setup

. initialization

. operation

• Conclusions

http://www.cs.umd.edu/projects/shrug/ 1

http://www.cs.umd.edu/projects/shrug/


General goals

• Find out how to boot a C program on bare hardware

• Learn about low-level programming on the PC

. protected mode

. interrupt handling

. hardware devices

. threads / context switching

• Learn about tools for OS development

• Evaluate bochs/gcc/nasm as platform for learning about operating

systems

http://www.cs.umd.edu/projects/shrug/ 2

http://www.cs.umd.edu/projects/shrug/


Approach

• Instead of running on real hardware, use bochs, a freeware PC

emulator

. http://www.bochs.com/

. Can be restarted in seconds (unlike a real PC)

. Runs on Windows/Mac/BeOS/UNIX, etc.

. Instruction-level debugging

• This greatly sped up the edit/compile/debug cycle

• Bochs is really cool!

• In /fs/unsupported/bochs on junkfood machines

http://www.cs.umd.edu/projects/shrug/ 3

http://www.bochs.com/
http://www.cs.umd.edu/projects/shrug/


Tools

• Bochs (already mentioned)

• Nasm, an excellent free x86 assembler

. http://www.web-sites.co.uk/nasm/

• gcc, GNU linker, under Linux/x86

• GNU objcopy: a simple way to transform an executable into a form

suitable for loading directly into memory

• Development hosted under Linux/x86

• Bochs run on Linux/x86 and Solaris/Sparc

http://www.cs.umd.edu/projects/shrug/ 4

http://www.web-sites.co.uk/nasm/
http://www.cs.umd.edu/projects/shrug/


Information sources

• Intel 486 manual

• Protected Mode Software Architecture by Tom Shanley, ISBN

020155447X.

• The Undocumented PC by Frank van Gilluwe, ISBN 0201479508.

• The Intel 8259A datasheet,

http://support.intel.com/support/controllers/peripheral
/231468.htm

• System BIOS for IBM PCs, Compatibles, and EISA Computers,

Phoenix Technologies Ltd., second edition, ISBN 0201577607.

http://www.cs.umd.edu/projects/shrug/ 5

http://support.intel.com/support/controllers/peripheral/231468.htm
http://support.intel.com/support/controllers/peripheral/231468.htm
http://www.cs.umd.edu/projects/shrug/


Information sources (continued)

• FreeVGA Project:

http://sf.znet.com/~vhold/FreeVGA/home.htm

• Kernel Toolkit 0.2

. http://web.tiscalinet.it/luigisgro/ktk.html

. Similar to my project; a very simple ‘kernel’ that boots on bare

hardware. I stole lots of tricks from it.

• Linux kernel source, http://www.kernel.org/

• Newsgroups:

. alt.lang.asm.x86

. alt.os.development

http://www.cs.umd.edu/projects/shrug/ 6

http://sf.znet.com/~vhold/FreeVGA/home.htm
http://web.tiscalinet.it/luigisgro/ktk.html
http://www.kernel.org/
http://www.cs.umd.edu/projects/shrug/


Development goals

• I wanted to write (almost) all of the code myself:

. boot loader

. switch into protected mode

. memory management

. interrupt handling

. device support (VGA text screen, keyboard)

. threads

• I did steal bits of code from Kernel Toolkit and Linux

• At the same time, I wanted to keep things as simple as possible,

e.g., no segmentation, no paging, no user/kernel interface

http://www.cs.umd.edu/projects/shrug/ 7

http://www.cs.umd.edu/projects/shrug/


Result

• About 1000 lines of assembly and 2000 lines of C code, with lots

of comments

• Everything done as simply as possible

• 32 bit flat address space, in ring 0

• cooperatively scheduled threads, with Yield(), Wait() and

Wake Up() scheduling primitives

• VGA text screen support (with printf()-style formatted output)

• Keyboard device driver with event (thread) driven interface

http://www.cs.umd.edu/projects/shrug/ 8

http://www.cs.umd.edu/projects/shrug/


Disclaimer

• There are almost certainly bugs in the code and inaccuracies in my

comments and documentation

• I am not an expert

• You have been warned

• Also note that I haven’t actually run this code on real hardware :-)

http://www.cs.umd.edu/projects/shrug/ 9

http://www.cs.umd.edu/projects/shrug/


Background assumptions

• I assume that you

. are relatively familiar with basic x86 architecture, registers, and

assembly syntax

. know about x86 calling conventions

. are familiar with assemblers, compilers, and linkers

. are familiar with general OS concepts such as interrupts and

threads

http://www.cs.umd.edu/projects/shrug/ 10

http://www.cs.umd.edu/projects/shrug/


Outline

• Goals / background

• Implementation

. Makefile

. boot sector and setup

. initialization

. operation

• Conclusions

http://www.cs.umd.edu/projects/shrug/ 11

http://www.cs.umd.edu/projects/shrug/


Makefile

• This is actually one of the more challenging issues: how to get the

code in a suitable format for loading?

• For user programs, the compiler, linker, and dynamic loader

automatically take care of the messy details

• For programs running on hardware, you need to carefully control

details such as the base address for which the program is linked

• You probably don’t want to leave relocations in the image, unless

your boot loader can fix them up

• My solution was to copy Kernel Toolkit’s Makefile :-)

http://www.cs.umd.edu/projects/shrug/ 12

http://www.cs.umd.edu/projects/shrug/


Makefile (continued)

• Line 89: linking the kernel

. We specify that the .text section should be located at address

0x10000 (64K), and that the Main() function should be the

entry point

. Results in Main() being located at 0x10000

. Note that the kernel executable is in ELF format, so it can’t be

directly loading into memory

• Line 82: producing the kernel image file

. Use objcopy to strip out unneeded sections, and produce a flat

binary image

. Pad to multiple of one sector (512 bytes)

. This file can be loaded directly into memory

http://www.cs.umd.edu/projects/shrug/ 13

http://www.cs.umd.edu/projects/shrug/


Makefile (continued)

• Line 74: assemble the setup code

. Note that we instruct nasm to use the ‘bin’ format, which

produces a ‘flat’ output file

. I.e., no special headers, section information, symbol tables, etc.

. Pad to multiple of one sector (512 bytes)

• Line 95: assemble the boot sector

. Also uses ‘bin’ format

. The rule depends on the setup code and kernel image files, so we

know how many disk sectors they occupy

. Note that it is always exactly 512 bytes, due to an assembler

directive at the end of bootsect.asm

http://www.cs.umd.edu/projects/shrug/ 14

http://www.cs.umd.edu/projects/shrug/


Makefile (continued)

• Line 64: produce the floppy image file from which Bochs will boot

• It’s just a concatenation of the boot sector, setup code, and kernel

image file

http://www.cs.umd.edu/projects/shrug/ 15

http://www.cs.umd.edu/projects/shrug/


Outline

• Goals / background

• Implementation

. Makefile

. boot sector and setup

. initialization

. operation

• Conclusions

http://www.cs.umd.edu/projects/shrug/ 16

http://www.cs.umd.edu/projects/shrug/


Initial machine state

• x86 PCs boot in ‘real mode’

• Using the infamous Intel segment/offset address scheme

• Can only directly address low 1MB of memory

• Operand sizes are (by default) 16 bits

• BIOS services are available

. disk I/O, keyboard I/O, screen output, etc.

http://www.cs.umd.edu/projects/shrug/ 17

http://www.cs.umd.edu/projects/shrug/


The boot sector

• I chose to boot Bochs from a virtual floppy

. This is the easiest way to boot

• Boot sector is the first sector of the floppy

• Loaded by BIOS at address 07C0:0000

• Files: bootsect.asm, defs.asm

• Note: the design of my boot sector was heavily influenced by

Kernel Toolkit’s boot sector, which in turn is a simplified version of

Linux’s boot sector

http://www.cs.umd.edu/projects/shrug/ 18

http://www.cs.umd.edu/projects/shrug/


Purpose of boot sector

• Load the 16-bit setup code and kernel image from the floppy, into

memory

• Jump to the setup code

• That’s it!

• We have only 510 bytes to work with, so it has to be simple

http://www.cs.umd.edu/projects/shrug/ 19

http://www.cs.umd.edu/projects/shrug/


Boot sector operation

• Line 31: we move the boot sector up to INITSEG (address

0x90000)

. Why? Because Kernel Toolkit and Linux do it that way.

• Line 46: make default data segment (ds) the same as the new

location of boot sector

• Line 50: move stack segment (ss) to old location of boot sector

. There’s nothing useful there, now

• Line 56: a loop to read the 16-bit setup code (setup.asm) into

memory in SETUPSEG

http://www.cs.umd.edu/projects/shrug/ 20

http://www.cs.umd.edu/projects/shrug/


Boot sector operation (continued)

• Line 78: a loop to read the kernel image into memory at KERNSEG
(address 0x10000 == 64K)

. Recall that we linked the kernel at base address 0x10000

• Line 111: Jump to setup code!

• Line 113: The Read Sector function reads a single sector of the

floppy (addressed ‘logically’) into memory in given segment and

offset

. A very simple and slow approach

. A better approach would be to read an entire track at a time

http://www.cs.umd.edu/projects/shrug/ 21

http://www.cs.umd.edu/projects/shrug/


Setup code

• perform initialization needed to execute 32 bit C code

• can occupy an arbitrary number of sectors

. so code can be larger and more sophisticated than boot sector

• can use BIOS services

http://www.cs.umd.edu/projects/shrug/ 22

http://www.cs.umd.edu/projects/shrug/


Setup tasks

• Tasks performed by setup code:

. detect amount of memory installed

. detect other hardware (currently not implemented)

. create initial IDT and GDT

◦ these data structures are needed by the processor for protected

mode operation

. initialize interrupt controllers

. enable A20 address line

. switch to protected mode

. jump to kernel entry point

http://www.cs.umd.edu/projects/shrug/ 23

http://www.cs.umd.edu/projects/shrug/


Setup (details)

• Source file: setup.asm

• Line 25: use BIOS to detect amount of memory installed

• Line 37: disable interrupts, since we’re not ready to deal with them

. means that we can’t use the BIOS anymore

• Line 39: load initial (temporary) IDT and GDT

. the IDT is empty, since we’re not dealing with interrupts yet

. the GDT defines 32 flat address spaces for kernel code and data

. Actual GDT at line 170

http://www.cs.umd.edu/projects/shrug/ 24

http://www.cs.umd.edu/projects/shrug/


Setup: PIC initialization

• Line 45: call Init PIC function

• The interrupt controllers (master and slave Intel 8259A’s) take

interrupts from hardware devices, and deliver them to the

processor in a controlled manner

• Term: PIC

. stands for ‘Programmable Interrupt Controller’

• Pentium and above have a more sophisticated built-in interrupt

controller, the I/O APIC

. which by default operates in 8259A-compatible mode :-)

http://www.cs.umd.edu/projects/shrug/ 25

http://www.cs.umd.edu/projects/shrug/


Setup: PIC initialization (continued)

• The reason we need to reprogram the PICs is that the BIOS

programs them to route IRQ lines to interrupts 8-23

. But some of these are reserved by Intel for internal

processor-generated interrupts!

• We reprogram them to route hardware IRQs to generate interrupts

32-47

• Term: IRQ

. stands for ‘Interrupt ReQuest’

. An IRQ line is a signal connected to an input pin of the PICs

. Typical x86 PCs have 16 IRQs

http://www.cs.umd.edu/projects/shrug/ 26

http://www.cs.umd.edu/projects/shrug/


Setup: PIC initialization (continued)

• Line 100: The code to reprogram the PICs

. Was stolen directly from Linux

. See Intel 8259A datasheet for details

. Note that all IRQs are masked (blocked) initially

http://www.cs.umd.edu/projects/shrug/ 27

http://www.cs.umd.edu/projects/shrug/


Setup: A20 address line

• Line 46: call Enable A20 function

• Using segment/offset real mode addressing, it is possible to

generate physical addresses above 1MB

. e.g., FFFF:0100 yields physical address 0x1000F0

• On the original IBM PC and XT, such addresses wrapped around

to low 64KB

• Some software depended on this behavior!

http://www.cs.umd.edu/projects/shrug/ 28

http://www.cs.umd.edu/projects/shrug/


Setup: A20 address line (continued)

• So for compatibility, the AT disabled address line 20 by default!

. The AT had 24 physical address lines, for 16MB of memory max

• A spare pin in the keyboard controller was used to enable the A20

line

• Line 139: the code to enable the A20 line

http://www.cs.umd.edu/projects/shrug/ 29

http://www.cs.umd.edu/projects/shrug/


Setup: Entering protected mode!

• Line 48: protected mode is enabled by setting bit 0 in the MSW
(Machine Status Word), which is the low 16 bits of the CR0 register

• However, the processor continues executing in 16-mode until we

make an explicit jump to a 32-bit code segment

• Line 52: a far jump into 32 bit code

. Uses the kernel code segment described in the GDT

. KERNEL CS is a ‘segment selector’, which references entry 1 in

the GDT

. A ‘far’ jump is one that explicitly specifies the code segment

http://www.cs.umd.edu/projects/shrug/ 30

http://www.cs.umd.edu/projects/shrug/


Setup: Executing 32 bit code

• Line 62: start of 32 bit code

• Line 65: reload all data segment registers to refer to the kernel

data segment (otherwise they would still refer to 16 bit data

segments)

• Line 73: set up initial kernel stack

• Line 75: build a Boot Info data structure to pass to kernel entry

point

. defined in file bootinfo.h

. can be used to pass useful information to kernel

. currently, just the amount of memory

http://www.cs.umd.edu/projects/shrug/ 31

http://www.cs.umd.edu/projects/shrug/


Setup: Executing 32 bit code (continued)

• Line 89: push a return address on the stack (in case we want to

return from the kernel entry point)

. I don’t know why we would

• Line 92: Jump to the kernel entry point!

http://www.cs.umd.edu/projects/shrug/ 32

http://www.cs.umd.edu/projects/shrug/


Outline

• Goals / background

• Implementation

. Makefile

. boot sector and setup

. initialization

. operation

• Conclusions

http://www.cs.umd.edu/projects/shrug/ 33

http://www.cs.umd.edu/projects/shrug/


Kernel entry point

• File main.c, function Main()

• Call initialization functions

• As a demonstration, read keystrokes and print them to screen

• Also, test thread creation and destruction

http://www.cs.umd.edu/projects/shrug/ 34

http://www.cs.umd.edu/projects/shrug/


Kernel entry point (continued)

• Lines 18, 41: initialize the kernel .bss

. The part of the executable image for uninitialized static and

global data

• At this point, we are completely ready to execute aribitrary code,

call functions, return values, etc.

. Shows that C’s runtime environment has very minimal

requirements

. Which is why it’s so frequently used in OS development

http://www.cs.umd.edu/projects/shrug/ 35

http://www.cs.umd.edu/projects/shrug/


Kernel initialization

• Initialization process:

. Screen output

. Memory

. Interrupts

. Threads

. Keyboard driver

http://www.cs.umd.edu/projects/shrug/ 36

http://www.cs.umd.edu/projects/shrug/


Screen output

• In files screen.{h,c}

• Implements a very simple scrolling terminal

• VGA text mode:

. mapped into memory at address 0xB8000

. even bytes are characters

. odd bytes are attributes (foreground and background colors)

• The hardware cursor can be manipulated with port I/O to VGA

registers

. screen.c, line 111: Update Cursor()

http://www.cs.umd.edu/projects/shrug/ 37

http://www.cs.umd.edu/projects/shrug/


Screen output (continued)

• screen.c, line 265: the Print() function

. printf()-style formatted output

. essential for debugging :-)

http://www.cs.umd.edu/projects/shrug/ 38

http://www.cs.umd.edu/projects/shrug/


Memory initialization

• Files mem.{h,c}

• Initializes GDT (again), files gdt.{h,c}

. Mostly so GDT lies within kernel, rather than setup code (which

may be overwritten)

• Create an array of Page structs, one for each page of physical

memory

. mem.h, line 29

. Status flags

. Next free page, for kernel freelist

http://www.cs.umd.edu/projects/shrug/ 39

http://www.cs.umd.edu/projects/shrug/


Memory initialization (continued)

• mem.c, Line 94: Init Mem()

. Classify memory pages as unused, available, kernel, or hardware

. Organize available pages into a freelist

• The ‘ISA hole’

. Physical addresses from 640KB - 1MB used for VGA, BIOS, etc.

• Once memory and interrupts are initialized, can allocate memory

. mem.c, line 168: Alloc Page(), Alloc Page Atomic()

. mem.c, line 200: Free Page(), Free Page Atomic()

. regular versions functions are used with interrupts disabled

. Atomic versons of functions are used with interrupts enabled

http://www.cs.umd.edu/projects/shrug/ 40

http://www.cs.umd.edu/projects/shrug/


Interrupts

• Files int.{h,c}, lowlevel.asm

• Build a real IDT: files idt.{h,c}

• Term: IDT

. ‘Interrupt Descriptor Table’

. Contains entries corresponding to interrupts that may be

generated

. Each descriptor specifies a procedure or task to handle the

interrupt

http://www.cs.umd.edu/projects/shrug/ 41

http://www.cs.umd.edu/projects/shrug/


Interrupts (continued)

• idt.c, line 39: Init IDT()

. the IDT is initialized using handler entry points defined in

lowlevel.asm

. For each interrupt, we define an interrupt gate that refers to the

appropriate handler entry point

. idt.h, line 24: Interrupt Gate struct shows how a C struct

with bitfields can be used to represent a hardware data structure

http://www.cs.umd.edu/projects/shrug/ 42

http://www.cs.umd.edu/projects/shrug/


Low-level interrupt handling

• File: lowlevel.asm

• What happens when an interrupt is generated?

. processor pushes eflags, cs, and eip registers onto current

stack

. interrupts are disabled (as if a cli instruction were executed)

. some interrupts additionally push an error code

• Line 169: table of entry points, one for each interrupt

http://www.cs.umd.edu/projects/shrug/ 43

http://www.cs.umd.edu/projects/shrug/


Low-level interrupt handling (continued)

• Building the handler entry points

. Lines 49, 59: Int With Err and Int No Err macros

. Int No Err macro pushes a ‘fake’ error code, so stack layout is

always the same, regardless of interrupt type

. Push the interrupt number

. Jump to common interrupt handling code: Handle Interrupt,

line 134

http://www.cs.umd.edu/projects/shrug/ 44

http://www.cs.umd.edu/projects/shrug/


Handle Interrupt

• Line 138: Save registers that may be modified by handler

. Line 18: definition of SaveRegisters macro

• Line 141: set a global variable to indicate that an interrupt is in

progress

• Line 146: get address of C function to handle interrupt from a

table (g interruptTable, defined at idt.c, line 29)

• Line 153: push address of Interrupt State struct (which is just

a description of the stack, defined in int.h) as argument to C

handler function

• Line 154: Call the C handler function

http://www.cs.umd.edu/projects/shrug/ 45

http://www.cs.umd.edu/projects/shrug/


Handle Interrupt (continued)

• Line 158: Restore registers

. Line 33: definition of RestoreRegisters macro

• Line 161: unset global variable, since handler is finished

• Line 164: return from the interrupt. When the saved eflags value

on the stack is restored, interrupts are reenabled (as though a sti
instruction were executed)

http://www.cs.umd.edu/projects/shrug/ 46

http://www.cs.umd.edu/projects/shrug/


Note: interrupt handling and privilege levels

• Interrupt handling is more complicated when there are multiple

privilege levels involved

• OS must define a TSS (Task State Segment) to define stacks for

each privilege level

. TSS structures can also be used for task-switching

• Since I only use privilege level 0 (most privileged), I didn’t need to

worry about it

• Would be required to have a true user/kernel distinction

http://www.cs.umd.edu/projects/shrug/ 47

http://www.cs.umd.edu/projects/shrug/


Thread/scheduler initialization

• Files kthread.{h,c}

• kthread.c, line 153: Init Scheduler()

• Creates a thread context object and stack for the initial thread of

control (i.e., the one currently executing)

. Uses memory pages that are known a priori

. The thread of control in Main() is scheduled just like any other

thread

• Creates idle thread and reaper thread

• I’ll discuss thread support in more detail later

http://www.cs.umd.edu/projects/shrug/ 48

http://www.cs.umd.edu/projects/shrug/


Keyboard initialization

• Files keyboard.{h,c}

• keyboard.c, line 159: Init Keyboard()

. initialize key buffer and shift state status variable

. install an interrupt handler for the keyboard IRQ

. unmask the keybord IRQ in the PIC, so it can start delivering

keyboard interrupts to the processor

• IRQ and keyboard operation discussed later

http://www.cs.umd.edu/projects/shrug/ 49

http://www.cs.umd.edu/projects/shrug/


Outline

• Goals / background

• Implementation

. Makefile

. boot sector and setup

. initialization

. operation

• Conclusions

http://www.cs.umd.edu/projects/shrug/ 50

http://www.cs.umd.edu/projects/shrug/


Operation

• As a test of the screen, keyboard driver and threads, I wrote some

code to read keystrokes and echo characters to the screen

• Makes use of the thread scheduling primitives

• main.c, line 31:

. if key event is not a ‘special’ key, and the event is the key press

rather than the release, get ASCII code (stored in low 8 bits) and

echo to screen

http://www.cs.umd.edu/projects/shrug/ 51

http://www.cs.umd.edu/projects/shrug/


The keyboard driver

• Files keyboard.{h,c}

• Shows example of how an interrupt associated with an IRQ is

handled, and how an interrupt can wake up threads that are

waiting for an event

http://www.cs.umd.edu/projects/shrug/ 52

http://www.cs.umd.edu/projects/shrug/


Handling a keyboard interrupt

• Each keystroke (press and release) generates an interrupt

. keyboard.c, line 97: the interrupt handler

• The key’s scan code can then be read from the keyboard controller

. Line 105: get status of keyboard controller, see if a scan code is

available

. Line 110: get the scan code

http://www.cs.umd.edu/projects/shrug/ 53

http://www.cs.umd.edu/projects/shrug/


Handling a keyboard interrupt (continued)

• The keyboard driver then translates scan codes to ‘key codes’,

using lookup tables

. The key code tries to encode all useful information about the key

event, including the ASCII character code if appropriate

. Key code returned also depends on the current shift state

(whether the shift keys are down or up)

• keyboard.c, line 144: put keycode in buffer

• keyboard.c, line 148: wake up thread(s) waiting for key event

http://www.cs.umd.edu/projects/shrug/ 54

http://www.cs.umd.edu/projects/shrug/


Handling a keyboard interrupt (continued)

• Since keyboard interrupts are generated by one of the PICs, some

special handling is needed at the end of the handler

• keyboard.c, line 152: call to End IRQ()

. This function sends an ‘End Of Interrupt’ command, or ‘EOI’, to

the relevant PIC(s)

. This lets the PIC know that the device was serviced, and that it

may proceed to send other IRQ interrupts

http://www.cs.umd.edu/projects/shrug/ 55

http://www.cs.umd.edu/projects/shrug/


Handling a keyboard interrupt (continued)

• irq.c, line 70: definition of End IRQ()

. From the interrupt number in the Interrupt State() struct

(which was created by the Handle Interrupt() code in

lowlevel.asm), we determine which IRQ was handled

. Based on the IRQ, we send an EOI to the master (IRQs 0-7), or

both the slave and master (IRQs 8-15)

http://www.cs.umd.edu/projects/shrug/ 56

http://www.cs.umd.edu/projects/shrug/


Threads

• Files kthread.{h,c}

• A thread consists of a thread context object (struct

Kernel Thread) and a stack page

• The context object is used to store register contents when the

thread is inactive

http://www.cs.umd.edu/projects/shrug/ 57

http://www.cs.umd.edu/projects/shrug/


Thread states

• A thread can be in one of the following states:

1. executing (g currentThread, kthread.c, line 27)

2. waiting to execute (on the run queue)

3. waiting for an event to occur (on a wait queue)

4. dead, waiting to be deallocated (on the reaper queue)

• The threads are cooperatively scheduled

http://www.cs.umd.edu/projects/shrug/ 58

http://www.cs.umd.edu/projects/shrug/


Thread context switch

• File switch.asm

• Functions Switch To Thread and Restore Thread

. Switch To Thread saves context of current thread, activates a

new thread

. Restore Thread just activates a new thread

• Context switch is really pretty simple, just saving and restoring

registers

http://www.cs.umd.edu/projects/shrug/ 59

http://www.cs.umd.edu/projects/shrug/


Thread context switch (continued)

• Since Switch To Thread is a function, the thread that called it

will push its instruction pointer (return address) onto the stack

. Thus, the top of an inactive thread’s stack always has the

address of the instruction where execution should resume

. Explains the calls to Push() in Start Thread()

http://www.cs.umd.edu/projects/shrug/ 60

http://www.cs.umd.edu/projects/shrug/


Start Thread

• kthread.c, line 173

• Line 179: Allocate two pages of memory, one for the context

object, one for the stack

• Line 197: initialize registers for new thread — stack pointer (esp)

is the only one that’s important

• Line 212: push argument to thread start function onto thread

stack, to pass data to thread

• Line 213: push address of Shutdown Thread() function, which

the thread start function will ‘return’ to

http://www.cs.umd.edu/projects/shrug/ 61

http://www.cs.umd.edu/projects/shrug/


Start Thread (continued)

• Line 216: push address of thread start function, which the

Launch Thread() function will ‘return’ to

• Line 221: push address of Launch Thread() function, which

performs initialization needed before the start function is executed

• So, the thread will execute Launch Thread() first, then

startFunc(), then Shutdown Thread()

http://www.cs.umd.edu/projects/shrug/ 62

http://www.cs.umd.edu/projects/shrug/


Shutdown Thread

• kthread.c, line 64

• Executed when a thread start function returns

• Line 74: find a new runnable thread

• Line 77: put the thread on the ‘graveyard queue’, and wake up the

reaper thread

• Note that we can’t call Switch To Thread(), since the current

thread is going away and we don’t want to save its context

• Instead we put the address of the new runnable thread in the eax
register, and jump to Restore Thread

http://www.cs.umd.edu/projects/shrug/ 63

http://www.cs.umd.edu/projects/shrug/


Schedule

• kthread.c, line 259

• Called when the current thread is being deactivated, and has been

placed on a queue for later reactivation

• Finds a new thread to run, and switches to it

• Schedule() is the basis of the Yield() and Wait()
synchronization primitives

http://www.cs.umd.edu/projects/shrug/ 64

http://www.cs.umd.edu/projects/shrug/


Yield, Wait, and Wake Up

• kthread.c, line 278: Yield()

. Give up the CPU if another thread is runnable

. Otherwise, do nothing

• kthread.c, line 336: Wait()

. Puts the thread on the wait queue

. Finds a new thread to run

• kthread.c, line 353: Wake Up()

. Atomically transfers all threads in a wait queue to the run queue,

so they can be scheduled

http://www.cs.umd.edu/projects/shrug/ 65

http://www.cs.umd.edu/projects/shrug/


Event driven keyboard input

• The keyboard driver uses the thread synchronization primitives to

implement an event-driven interface

• keyboard.c, line 200: Wait For Key()

• Loops checking to see if a key is available in the buffer.

. If so, returns it.

. If not, waits in the keyboard wait queue for one to become

available.

http://www.cs.umd.edu/projects/shrug/ 66

http://www.cs.umd.edu/projects/shrug/


Outline

• Goals / background

• Implementation

. Makefile

. boot sector and setup

. initialization

. operation

• Conclusions

http://www.cs.umd.edu/projects/shrug/ 67

http://www.cs.umd.edu/projects/shrug/


Conclusions

• Writing programs to run on bare x86 hardware isn’t too difficult

• There are lots of good tools and documentation

• I think that learning about hardware and device level programming

is critical to understanding how operating systems work (and thus,

all other software)

• GeekOS can serve as a template for getting code running on x86

hardware

http://www.cs.umd.edu/projects/shrug/ 68

http://www.cs.umd.edu/projects/shrug/


Bochs/gcc/nasm as a teaching platform?

• There are many approaches to introductory OS projects

. Nachos: simulated MIPS CPU

. CMSC 412: DOS, Borland C

• Many intro projects try to hide details of hardware

. I.e., write a ‘fake’ operating system

http://www.cs.umd.edu/projects/shrug/ 69

http://www.cs.umd.edu/projects/shrug/


Bochs/gcc/nasm as a teaching platform?

• Personally, I prefer the Bochs approach

. It’s realistic

. And, it’s easy to restart, and has a built-in debugger

. Code that runs on Bochs has a decent chance of running on

actual hardware

• I think that it would be possible to provide code to students to

take care of some of the low-level details (for example, the boot

sector, setting up the IDT and GDT, etc.)

• More investigation is needed

http://www.cs.umd.edu/projects/shrug/ 70

http://www.cs.umd.edu/projects/shrug/


Future work?

• Timer interrupt

• Real user/kernel distinction (i.e., a process model)

• Paging

• Disk device driver

http://www.cs.umd.edu/projects/shrug/ 71

http://www.cs.umd.edu/projects/shrug/

