
Executable source code and non-executable source code:
analysis and relationships

Gregorio Robles, Jesus M. Gonzalez-Barahona
Universidad Rey Juan Carlos

Grupo de Sistemas y Comunicaciones
Tulipan s/n, 28933 Mostoles (Madrid), Spain

{grex,jgb}@gsyc.escet.urjc.es

Abstract

The concept of source code, understood as the
source components used to obtain a binary, ready
to execute version of a program, comprises currently
more than source code written in a programming lan-
guage. Specially when we move apart from systems-
programming and enter the realm of end-user appli-
cations, we find source files with documentation, in-
terface specifications, internationalization and localiza-
tion modules, multimedia files, etc. All of them are
source code in the sense that the developer works di-
rectly with them, and the application is built automat-
ically using them as input.

This paper discusses the relationship between ’clas-
sical’ source code (usually written in a programming
language) and these other files by analyzing a publicly-
available software versioning repository. Aspects that
have been studied include the nature of the software
repository, the different mixtures of source code found
in several software projects stored in it, the specializa-
tion of developers to the different tasks, etc.

1. Introduction

Software development has evolved from command-
line applications to huge end-user applications full
of graphics and multimedia elements. Following this
trend, software development has changed from a task
done mainly by software developers to an activity re-
quiring the coordinated work of many different groups
that are commited to various tasks: internationaliza-
tion and localization (i18n and l12n), graphic design,
user interface design, technical and end-user documen-
tation writing, creation of multimedia elements, and
many others.

’Classical’ source code analysis has focused on the
output of the work done mainly by software develop-
ers, source code written in a programming language.
The other elements mentioned above, built usually by
professionals with other backgrounds, have usually not
been considered, even though they are in many cases a
fundamental part of the application. We consider that
all those elements are also an integral part of the soft-
ware development process, and propose the beginning
of a path for its integral study, by looking at the inter-
dependences existing between all of them. In this sense,
our intention is to extend, for the purposes of the anal-
ysis of the software production process, the concept of
source code to all those other elements different from
pure programming code.

There is plenty of literature devoted to the analysis
of source code, both in the commercial software envi-
ronment and in the libre software1 world, but we’ve
found few articles focused on the aspects that we are
considering in this paper.

Some previous studies have attented to gain some
knowledge on the persons who are working on a self-
organized project. One attempt is the one given by
Capiluppi et al.[2] which analyzes changelogs in a
almost-automatic way. But this analysis is very lim-
ited and unaccurate in its scope and does not offer a
possibility to include a deeper analysis of the sources
as we intend in this paper.

A better source of data for our interests are other
publicly-available repositories[9], specially the version-
ing systems used for software development. These type
of systems allow to monitor the whole development pro-
cess, including file types and the developers. Another
argument for their use is that evolutionary studies are
easy to perform as all the previous states are avail-

1Throughout this article we use the term ‘libre software’ to
refer both to free and open source software.



able. Godfrey et al.[3] present such an evolutionary
study for the Linux kernel, although their primary aim
was centered on performing a “pure” source code and
dependency analysis, so this work could be classified
into the field of “classical” software evolution theory[5].
Our goal differs from this study in two main points.
First, we are more interested in end-user applications
rather than low-level programs as the Linux kernel is
as these have a bigger amount of source elements dif-
ferent from “pure” source code. Second, we also want
to research the human interactions and evolution in
such a software project. In this sense, there exists al-
ready some literature that has performed some analy-
sis on self-organizing development groups using social
network analysis techniques[6] and proposing ways of
identifying the community structure[4].

In our study, we discriminate several file types, cor-
responding different ‘kinds’ of source code. From the
analysis of such files and their evolution over time we
may infer the importance that a given software pro-
gram (or project) gives to different activities like doc-
umentation, translation, user interface design or mul-
timedia development.

This paper proposes a methodology for the study,
and a software that makes it possible when the sources
are stored in a CVS repository and certain common (at
least in libre software projects) conventions are used.

In the following section the methodology of this pa-
per will be presented. Next, a case of study will be
shown: the KDE project, a libre software desktop envi-
ronment with hundreds of applications and a large de-
velopment community around it. Results on the mod-
ules and on the developers of the KDE CVS repository
will be given next. Finally, some conclusions and fur-
ther work will be discussed. This paper includes also
an appendix containing some additional information
about the methodology.

2. Methodology

The methodology described in this paper is based
on the analysis of CVS2 log entries. Retrieving data
from a versioning system makes it possible not only to
have the latest version of the source code, but also to
have the possibility of fetching data in any point in time
since the repository was set up. Hence, an evolutionary
study is feasible.

The methodology is implemented in an automated
way by the CVSAnalY tool [8]. In CVSAnalY any
interaction (also called commit) performed by a com-

2The Concurrent Versions System (CVS) is the most popular
versioning repository used in the libre software world.

miter3 in the CVS repository is logged with the fol-
lowing data associated: commiter name, date, file, re-
vision number, lines added, lines removed, and an ex-
planatory comment introduced by the commiter. It is
of great importance for the goal of this paper to note
that commiters should not be taken only as software
developers in the sense of programming code genera-
tors; commiters can also be persons devoted to other
tasks such as translation or graphical design. Since it
is possible to know, from the logs, which commiters
have done which actions, it is also possible to correlate
those files with them and classify them (the commiters)
according to the task they are fulfilling.

There is also some file-specific information in the
CVS logs that can be skimmed, like for instance
whether the file has been removed4. An analysis of
the file name makes it possible to sort files by type,
so that programming-language files can be separated
from translation files and so on. This has been made
using simple heuristics that pay attention primarily on
the file extension, or search for other common patterns
that make identification possible. In the next subsec-
tion file type identification will be discussed further.

If needed, the human-inserted comment can also be
parsed in order to learn whether the commit corre-
sponds to an external contribution, or even to an au-
tomated script. This comment is usually forwarded
to a mailing list so that developers keep track of the
latest changes in CVS. Some projects have also conven-
tions so that certain commits do not produce a mes-
sage to the mailing list as it is supposed that the action
they have performed does not require any notification.
A good example of the pertinent use of “silent” com-
mits comes from the existence of bots that do several
tasks automatically. In any case, such conventions are
not limited to non-human bots, as human commiters
may also use them. In a large community -as it is the
case for the ones we are researching- we can argue that
“silent” commits can be considered as not contribu-
tory. Therefore, we have set a flag for such commits
in order to compute them separately or leave them out
completely.

Once the CVS logs have been parsed, and a database
has been fed with it, a postprocess stage is performed.
Several scripts querying the database perform statistic
analysis, calculate several inequality and concentration
indices, and generate graphs for the evolution in time
for a couple of interesting parameters (commits, com-
miters, LOCs...). Results are shown through a publicly

3A commiter is a person who has write access to the repository
and does a commit on it at a given time.

4In CVS there is actually no file removal. Files that are not
required anymore are stored in the Attic and could be called
back anytime in the future.



accessible web interface that permits an easy inspec-
tion of the whole repository (general results), a single
module or by commiters. Therefore these results them-
selves are again available for remote analysis and inter-
pretation by project participants and other interesting
parties.

3. Case of study: KDE

KDE is a libre software project with the goal of
building a libre software graphical desktop environ-
ment for UNIX-like operating systems. The desktop
and its applications (as for instance their own office
suite called KOffice) are built by making use of their
application development framework. A big community
has flourished in the last years around KDE: the num-
ber of commiters almost reaches 1,000 persons.

A CVS repository is internally organized in mod-
ules. Modules may contain several applications usu-
ally of the same application family, so there is a KOf-
fice module which groups the office suite applications
(word processor, spreadsheet, presentation program,
etc.). Other modules serve for the project’s own ad-
ministrative means and there exists a module that is
used to store all the translation files.

Table 1. General statistics for the KDE project
Number of modules 79
Number of commiters 915
Number of commits 2,935,436
Number of files 175,657
Lines added 106,036,517
Lines removed 73,534,466
First commit 1997-04-09
Last commit considered 2004-03-22
Number of days 2,539

Figure 1 presents a wheighted distribution of the file
types stored in the KDE CVS repository. The wheight
that has been used is the number of commits done to
files that correspond to each file type. This gives us an
idea of the activity that is done around any given file
type that we are investigating.

A first impression offers us already some informa-
tion. First, KDE is clearly a software development
project (red is the biggest portion), but the effort in-
vested into software development does not reach by
far 50%. Second, the amount of translations is a
good indicator of the wide spread of the KDE project
around the globe. Third, documentation and images
are also heavily represented. Fourth, we are able to

see that the amount of sound (multimedia) files is
minimal, an evidence that KDE is not a multimedia
project, while the user interface fraction (around 15%)
is big enough to properly argument that it is actually
a desktop-targeted environment. Finally, the fraction
corresponding to the unknown section lies under 3%.

Figure 1. Commits by file type for the KDE
repository.

Figure 2 presents the distribution of commits per
module for the selected file types, being both axes in
logarithmic scale. We expected to find a powerlaw dis-
tribution as it is commont in other distributions like
computer networks[1]. But the graphs point out a Pois-
son distribution with the interesting case of the purple
line (the one that corresponds to the i18n files) which
has two very differentiated regions, similar to the Pois-
son distribution found for instance in the number of
synonyms a word has in the English language.

4. Modules

Our methodology offers the possibility of studying
each module and commiter for its own. This will make
possible to classify modules and commiters depending
on its composition in the first case and on the tasks it is
devoted to in the second one. This way the most active
file types give us an idea of the nature of modules and
commiters and further research may also allow to know
their specialization.

As an example of the analysis that can be done on
modules we will pay attention on the KOffice mod-
ule. KOffice is the office suite developed by the KDE
project. Figure 3 shows the distribution of the dif-
ferent file types in a pie for KOffice, from which we



Figure 2. Log-log representation of file types
among KDE modules.

may infer that it is primarily a development project
(red), although the user interface (purple) portion is
not negigible. All other elements considered in this
study (images, documentation, translations and sound)
are very rare. The fact that commits done to transla-
tion files are so seldom is due to the existence of an
external module in the KDE project which centralizes
all the translations. Later these translations are auto-
matically joined with the sources. Commits done to
unidentified file types (’unknown’) correspond also to
a minimal portion of the pie.

The distribution depends of course on the mod-
ule that we are studying. For instance, the module
that contains all the translations done project-wide
and hence has a predominant green portion in its pie.
Usually modules that contain applications or a set of
applications have a pie that looks similar to the one
shown for KOffice (mostly red), while modules dedi-
cated to web pages and documentation have a clear
blue (documentation) and orange (images) flavour. In-
teresting are some minor modules like kdeedu (a KDE
subproject that contains applications suited for edu-
cation) which has an important portion of multimedia
elements (that appear yellow and are labeled as sound
in the pie).

Besides pies another way of data visualization is
given by heat maps. Heat maps can give an idea of
the specialization of commiters that work on a given
module. The idea is to show visually the correlation
given by a percentage that exists between file types. If
this percentage is high it will correspond in the heat
map with a hot zone that is modelled as a clear color

Figure 3. Commits by file types for KOffice.

(yellow or orange), while small values will correspond
to cold zones given by obscure colors (like blue or grey).
Black has been reserved as background color and also
appears when no files of a give file type exist or in the
diagonal (that really should be yellow as all its values
are of 100%) in order to make heat map reading easier.

Having a look at Figure 4 will make it clearer. The
first row shows the correlation of documentation with
all other file types considered in this study. As noted
before, the intersection of documentation with itself
has been left black although it should really be yel-
low as the correlation with itself is 100%. The second
column gives the percentage of the commits to docu-
mentation that commiters have done to documentation
and that have contributed both to documentation and
images in the KOffice module. As it can be observed
this zone is very cold (blue is given when values lie
between 0 and 20%). The next column gives us infor-
mation about the number of commits done by those
commiting files to documentation and translations. As
translation files are not included in the KOffice module,
the zone is very cold as it is given by the grey color. On
the other hand the common contribution of commiters
to documentation that have also contributed to user
interface and to development (fourth and sixth column
of the first row) is very high (more than 80%) in the
case of documentation. As there are no sound files in
that time period, the whole sound column as well as its
row have been left black. Interesting is also the case
for the ’unknown’ type as it may infere also information
as where to locate these type of files that are not well
sorted by our heuristics. In the case of documentation
we can see that this value is rather low (cold).

Note that the relation given in the heat maps has
not to be symmetric, because although the number of



commits commiters have done to documentation and
translation is the same, the total number of commits
to documentation and to translation differ.

As we have at our disposal data from the project
history, we may also study the evolution of the spe-
cialization. Therefore we have taken 10 time-equally
large time slots from the first commit of a module to
its present state and generated a heat map for each
time slot. In the case of KOffice, the first commit was
done 1998-04-18 while the last one considered in this
study dates from 2004-03-22. Hence, each time slot’s
interval supposes around 216 days (little more than 7
months) of activity.

Figure 4 corresponds to the time period from 2000-
08-30 to 2001-04-04 while figure 5 corresponds to the
time period three yearse later (exactly from 2003-08-18
to 2004-03-22). A close look at both maps throws that
there is a slight specialization (hoter zones are more
rare in the newer one) as well as a project expansion
(there are more file types in the latter than in the for-
mer one).

Figure 4. File type correlation heat map for
the 5th time slot.

Figure 5. File type correlation heat map for
the 10th (last) time slot.

5. Commiters

Write access to the versioning system is not given
to anyone. Usually this privilege is only given to con-
tributors who reach a compromise with the project and
the project’s goals. External contributions -commonly
called patches, that may contain bug fixes as well as
implementation of new functionality- from people out-
side the ones who have write access (commiters) are
always welcome. It is a widely accepted practice to
mark an external contribution when commiting it with
an authorship attribution, so we have constructed cer-
tain heuristics to find and mark commits due to such
contributions, although in this study we haven’t filtered
those contributions out.

In the following scatterplots any point corresponds
to a commiter. The color of the point is given by the file
type where the commiter is being more active. Color
assignation follows the rules used in the pies shown in
the previous sections and are summarized in table 2. In
one axis of the scatterplots the contributions to a given
file type are shown, while in the other axis contribu-
tions to another file type are given. The distribution



of commiters in the XY space may give us an idea of
the specialization of commiters as well as the possi-
ble relationships that may exist between different file
types.

In order to make the data offered by the scatterplots
easier to work with we have taken the natural logarithm
of the commits done by commiters to the whole repos-
itory. This means that only active commiters will be
shown (those who have at least one commit in any of
the two categories considered) and that the axis contain
those commiters who have commited only one commit
to a file type and one or more commits to the other one.
This confronted us with the problem of commiters who
haven’t done commits to one of the file types consid-
ered but with a considerable amount to the other. In
order to show these commiters too we have considered
commiters that have twenty or more commits 5 in one
file type to have at least one commit to the other (if no
commit had been done, this was added automatically).
This should not be a dramatic distorsion of the data
and would give us valuable information specially about
specialization of commiters.

Table 2. Colors used to identify file type where
most active in the scatterplots

Color File type
Red Development
Blue Documentation
Green Translations
Orange Images
Yellow Multimedia
Purple User interface
Gray Unknown

The first scatterplot we are going to considered is
shown in Figure and presents development commits in
the X axis and documentation in the Y axis. There are
several interesting facts that can be extracted from this
figure. First, that the development ’population’ (red
points) is by far bigger than any other one. Second,
that there is a natural division between documentators
(blue) and developers (red) given by our way of col-
oring commiters by its highest contributing file type.
Interesting on the other hand is the location of com-
miters whose primary task is none of these two: trans-
lators (green) are generally grouped with documenta-
tors, while those who work on the user interface (pur-
ple) appear in the red development dust. Third, that
among the most contributing commiters (log(commits)
¿ 10, also more than 20,000 commits) to the devel-

5ln(20) is almost 3.

opment file type we can find nine persons, but only
five of them having development as their first activ-
ity. Two more are mainly translators (green points)
and the other two are primarily documentators (blue
points).

Figure 6. Documentation vs development
scatterplot.

Figure maintains the development commits in the X
axis and sets in the Y axis the ones related to trans-
lations. We see another time that there are several
patterns that points with same color follow. Inter-
esting is the fact that the Y axis contains only green
points, meaning that many commiters do only trans-
lations tasks. This can be considered as a way of in-
terfering some specialization in a project: almost half
of the translators in the KDE project do not do any
development activity. The situation of the blue points
(documentation) in this scatterplot is also of great in-
terest: there is a first group that lies in between trans-
lators (green points) and developers (red points). The
interpretation for this is not straightforward. One pos-
sibility is that there is a natural tendency to get inte-
grated into the project that starts by doing some trans-
lation work (which is pretty simple as it only requires
to have some knowledge of the English and the own lan-
gauge), then by making some supporting task as docu-
mentation (which includes web pages) and finally land-
ing developing software (which requires to have some
knowledge on the platform and the technologies that
are used, as well as some not-so-easy-to-acquire skills).



Another curious fact about this scatterplot is that there
are almost any big contribution from commiters which
are not green, blue or red.

Figure 7. Translation vs documentation scat-
terplot.

As aforementioned one of the backdraws of our iden-
tification heuristics is that it is hard to divide documen-
tation and images clearly as some images correspond
to documentation. This is the case for instance for
web pages or technical documentation in XML. Fig-
ure may throw some light into this problem. The first
aspect that is worth mentioning is that documenta-
tors rarely do big contributions in documentation and
not inserting images. All major documentation con-
tributors have also an appreciable number of images
commits. The second one is that many developers con-
tribute both documentation and images -really more
images than documentation as the points are shifted
more towards the Y axis. As observed in a previous
scatterplot, translators are also more tied to documen-
tators than to images.

The last scatterplot in Figure highlights the com-
miters that work on user interface tasks and develop-
ment. The facts that can be seen here is that the num-
ber of persons dedicated to design and implement the
user interface is rather small. Interesting is the fact
that there is a noteworthy tendency that shows that
while developers do have a bigger contribution to de-
velopment their contribution to user interface file types
also increases. This may be interpreted in the sense

Figure 8. Images vs documentation scatter-
plot.

that besides the very specialized group that works on
ui, all others start first by developing in the classical
sense and as time passes and they acquire experience
they also work on user interface.

It is also possible to obtain a scatterplot of com-
miters for a module and see if it corresponds to the
general tendency. Among the interesting facts that we
may look at is to see if there are differences between
a local color choice (in the sense that only commits
by a commiter to the module are taken into account)
and a global color choice (where all commits made by a
commiter to the repository are considered). The num-
ber of “color changes” and the file types that are most
affected may allow us to infere some conclusions.

6. Conclusions and further work

Doing an examination of source code in the extended
sense allows us to discriminate several type of files that
reveal several “types” of source code. A deep study of
them and of their evolution may help us infering what
importance a program (or a project) attributes to cer-
tain tasks beyond generating source code in the sense
of writing in a programming language. These activi-
ties include documentation, translation, user interface
design, generation of multimedia elements, etc. This
paper also proposes a methodology and a software that



Figure 9. User interface vs development scat-
terplot.

implemts it in the case that the sources are stored in a
CVS versioning system and that common conventions
in the libre software world are used.

One of the main goals of this paper and which should
be further researched is the possibility to use objective
criteria to characterize projects based on its activity
in the aforementioned areas and study the evolution of
these activities over time. If data is available we can
proceed to make the same study for part of the project
(modules or subprojects) and even for the persons that
are working on them (in the case of a CVS system
these are commiters). Our first attempt has been to
characterize them by assigning colors to the different
tasks that we are considering and being able to visu-
ally recognize what type of module/commiter we have.
Pending work includes studying correlations between
modules and commiters.

Future research should also focus on the evolution
of modules and commiters in time, although some as-
pects have been pointed out in this paper specially in
the case of commiters. The scatterplots have shown
that there are several tendencies among the behaviour
of commiters although these have not been proved in
a deterministic way. Hence, we argue that many com-
miters evolve from translators to documentators and fi-
nally to development tasks. This same behaviour arises
with user interface, that require some previous activity

in the development area.

References

[1] R. Albert, A. L. Barabsi, H. Jeong, and G. Bianconi.
Power-law distribution of the world wide web. Science,
287, 2000.

[2] A. Capiluppi, P. Lago, and M. Morisio. Evidences in
the evolution of os projects through changelog analyses.
2003.

[3] M. W. Godfrey and Q. Tu. Evolution in open source
software: A case study. 2000.

[4] J. M. Gonzlez-Barahona, L. Lpez-Fernndez, and
G. Robles. Community structure of modules in the
apache project. 2004.

[5] M. Lehman, J. Ramil, P. Wernick, and D. Perry. Met-
rics and laws of software evolution - the nineties view.
1997.

[6] L. Lopez, J. M. Gonzalez-Barahona, and G. Robles. Ap-
plying social network analysis to the information in cvs
repositories. In Proceedings of the International Work-
shop on Mining Software Repositories, 26th Interna-
tional Conference on Software Engineering, Edinburg,
Scotland, UK, 2004.

[7] G. Robles, J. M. Gonzalez-Barahona, and R. A. Ghosh.
Gluetheos: Automating the retrieval and analysis of
data from publicly available software repositories. In
Proceedings of the International Workshop on Min-
ing Software Repositories, 26th International Confer-
ence on Software Engineering, Edinburg, Scotland, UK,
2004.

[8] G. Robles, S. Koch, and J. M. Gonzalez-Barahona. Re-
mote analysis and measurement of libre software sys-
tems by means of the cvsanaly tool. In Proceedings of
the 2nd ICSE Workshop on Remote Analysis and Mea-
surement of Software Systems (RAMSS), 26th Interna-
tional Conference on Software Engineering, Edinburg,
Scotland, UK, 2004.

[9] G. Robles-Martinez, J. M. Gonzalez-Barahona,
J. Centeno-Gonzalez, V. Matellan-Olivera, and
L. Rodero-Merino. Studying the evolution of libre
software projects using publicly available data. In
Proceedings of the 3rd Workshop on Open Source
Software Engineering, 25th International Conference
on Software Engineering, pages 111–115, Portland,
Oregon, 2003.



7. Appendix: File extensions

In this appendix we will focus on the methodologi-
cal part that is related to the identification of the file
type as it is the most important for the goals of this
paper. As it was mentioned before, the CVS logs are
retrieved and parsed. We have included a procedure
into CVSAnalY that enables the identification a file
type by the inspection of its file name and specially by
its extension. Hence, we’ve built a list of most common
extensions and file names and later have gruoped them
in several sets.

Table 3 is a small excerpt of the grouping that has
been created. As it can be noted,

Table 3. Summary of file extension groups

.c, .cpp, .java, .h, .py... Development file extensions
readme*, changelog*... Development documentation
configure*, makefile*... Building, compiling, conf...
.html, .txt, .pdf, .xml... Documentation, web pages
.png, .jpg, .gif... Images and graphics
.po, .pot, .mo... i18n and l12n
.desktop, .ui, .xpm... User interface
.mp3, .ogg, .wav... Multimedia

There are some drawbacks in our classification
method. The first and obvious one is that this is a
heuristical procedure and hence cannot be proven to
be exact in any case. Second we could mention that
the heuristics could be enhanced in a simple way by
looking at the content of the file for a given set of
patterns that certify that the classification is correct
or not. This is also a reasonable sugerence as we are
working with source code that is in fact available.

Besides, there are a set of file extensions that are
hardly to classify in an accurate way. This is the case
for instance for HTML and text files. Usually these
types of files contain information targeted to humans,
although it is difficult to assess if the target group
are developers (in the wide sense including also those
who don’t contribute code), users or just new-comers.
We’ve decided to group all these pages in a set called
“Documentation and web pages” (shortly documenta-
tion).

Files that we find that usually are tied to the de-
velopment process have been grouped in a different set
called “Development documentation”, which includes
files such as README, TODO, ChangeLog, HOWTO,
etc. etc. On the other hand, in the study shown in
this paper all development categories (development file
extensions, development documentation and building,

compiling, configuration, etc.) have been grouped into
a unique set called generically “development”.

Another case of uncertainty is the one related to
images. Web pages usually make use of them, so they
could have been classified into the documentation cat-
egory. We have seen in the case study in sections 3,
4 and 5 that there is a big correlation in projects and
developers among these two file types. But there are
images related to other means as application design,
etc. Generally, our decision has been to put images
and graphcis in the “Images” set, with the exception
of very clear cases as the images with the “.xpm” ex-
tension that can be classified into the user interface set
without trouble.

File type identification and grouping has been tested
with several huge CVS repositories and the precentage
of files that cannot be classified (and that has been la-
beled as ’unknown’) lies under 5%. Further investiga-
tion of the repository allows to identify project-own file
extensions and conventions which in some cases have
lowered the unknown fraction under the 3% barrier. In
any case, a detailed study is pending about the amount
of false positives (those files that are wrongly assigned
to a given set) that this method arises, although the
manual audit we have done points out that this should
be not a severe deficiency of the methodology.


