
The Design and Implementation of the NetBSD rc.d system

Luke Mewburn

Wasabi Systems, Inc.

lukem@wasabisystems.com
is-
s-

nd

-

s
ed,

er

h
pri-

r
r

pri-

d
ys-
V

ct
d

be
e

Abstract
In this paper I cover the design and implementation of
the rc.d system start-up mechanism in NetBSD 1.5,
which replaced the monolithic/etc/rcstart-up file inher-
ited from 4.4BSD. Topics covered include a history of
various UNIX start-up mechanisms (including NetBSD
prior to 1.5), design considerations that evolved over six
years of discussions, implementation details, an exami-
nation of the human issues that occurred during the
design and implementation, as well as future directions
for the system.

1. Introduction
NetBSD recently converted from the traditional 4.4BSD
monolithic /etc/rc start-up script to an/etc/rc.dmecha-
nism, where there is a separate script to manage each
service or daemon, and these scripts are executed in a
specific order at system boot.

This paper covers the motivation, design and implemen-
tation of therc.d system; from the history of what Net-
BSD had before to the system that NetBSD 1.5 shipped
with in December 2000, as well as future directions.

The changes were contentious and generated some of
the liveliest discussions about any feature change ever
made in NetBSD. Parts of those discussions will be cov-
ered to provide insight into some of the design and
implementation decisions.

2. History
There is great diversity in the system start-up mecha-
nisms used by various UNIX variants. A few of the
more pertinent schemes are detailed below. As NetBSD
is derived from 4.4BSD, it follows that a description of
the latter’s method is relevant. Solaris’ start-up method
is also detailed, as it is the most common System V
UNIX variant.

2.1. 4.4BSD
4.4BSD has a rather simple start-up sequence.

When booting multi-user, the kernel runsinit (located
in /sbin/init), which spawns a shell (/bin/sh) to run
/etc/rc, which contains commands to check the cons
tency of the file-systems, mount the disks, start up sy
tem processes, etc./etc/rc invokes /etc/netstart to
configure the network and any associated services, a
/etc/rc.local (if it exists) for locally added services.
After /etc/rc has successfully completed,init forks a
copy of itself for each terminal in/etc/ttys, usually run-
ning /usr/libexec/gettyon them. [1]

Administrative configuration of system services is con
trolled by editing the scripts (/etc/rc, /etc/rc.local,
/etc/netstart). In some instances, only shell variable
need to be changed, in others commands are add
changed, or removed. [2]

4.4BSD has no specific shut down procedure. Aft
init receives aSIGTERMsignal it sends aSIGHUP
signal to each process with a controlling terminal, whic
the process was expected to catch and handle appro
ately. Ten seconds later, this is repeated withSIGTERM
instead of theSIGHUP, and another ten seconds afte
thatSIGKILL is sent. After all processes have exited o
when thirty seconds had elapsed,init then drops to
single user mode, reboots, or shuts down, as appro
ate.

2.2. Solaris 7
Solaris is the most common System V variant, an
serves as a good reference implementation of the S
tem V init.d mechanism, as implemented by System
Release 4 (SVR4).

When running, the system can be in one of eight distin
run levels [3], which are distinct states in which selecte
groups of processes may run. The run level may
changed at any time by a privileged user running th

p
y

or
m;

s

t
ut
ts
s-

-
his
ble
-

-
e.
he
n-

e
M
e

i-

re
init with the run level as the argument, and the run
level may be determined at any time with the “who -r ”
command.

When the system is booted, the kernel runsinit
(located in/sbin/init), whose purpose is to spawn pro-
cesses defined in/etc/inittab[4]. For each configuration
line in /etc/inittab that has a run level field (‘rlevel’)
which matches the current run level,init starts the
process defined on that line as per the given ‘action’
field. The different run levels are:

For a given run levelX, an shell script/sbin/rcXexists to
control the run level change, and/etc/rcX.d contains
scripts to be executed at the change./sbin/rcXstops the
services in the files matching/etc/rcX.d/K* in lexico-
graphical order, and then starts the services matching
/etc/rcX.d/S*in order.

To add a new service foo requires adding
/etc/rcX.d/S*fooin the appropriate run level to start the
service, and then/etc/rcY.d/K*fooin all the other run
levelsY where the service is not to be run. Usually these
files are actually links to the appropriate script in
/etc/init.dwhich implements the start up and shut down
procedures for a given service.

To disable or remove a servicefoo, any files matching
/etc/rc?.d/[KS]*fooneed to be removed.

2.3. NetBSD prior to 1.5
Prior to the release of NetBSD 1.3, NetBSD’s start-u
mechanism was similar to 4.4BSD’s, with relativel
minor changes, as described below.

2.3.1. NetBSD 1.3
In NetBSD 1.3 (released in January 1998), two maj
user-visible additions were made to the start-up syste
/etc/rc.confand/etc/rc.lkm.

/etc/rc.confcontains variables to control which service
are started by/etc/rc and /etc/netstart. For each service
foo, two variables may be provided:

The aim of/etc/rc.confwas to separate the scripts tha
start services from the configuration information abo
the services. This allows updating of the start-up scrip
in an operating system upgrade with less chance of lo
ing site-specific configuration.

Similar /etc/rc.conffunctionality has been implemented
in commercial UNIX and BSD derived systems, includ
ing current systems such as FreeBSD. By the time t
change was considered for NetBSD, it had a reasona
number of users of the prior art to help justify its imple
mentation.

/etc/rc.lkmwas added to provide control over how load
able kernel modules (LKMs) are loaded at boot tim
/etc/rc.lkmis invoked at three separate stages during t
boot process; before networking is started, before no
critical file systems (i.e., file systems other than/, /usr,
/var) are mounted, and after all file-systems ar
mounted. This complexity is required because an LK
may be located on a local or remote file system. Th
configuration file /etc/lkm.conf controls behavior of
/etc/rc.lkm.

2.3.2. NetBSD 1.4
In NetBSD 1.4 (released in May 1999), two more add
tions were made;/etc/rc.shutdownand/etc/rc.wscons.

/etc/rc.shutdownis run at shut down time byshut-
down. This occurs before the globalSIGHUPis sent (as
described in section 2.1). This is useful because the

0 Shut down the operating system so that it’s
safe to turn off the power.

s or S Single user mode, with all file systems
mounted.

1 Single user mode, with all file systems
mounted and user logins allowed.

2 Multi user mode, with all services running
except NFS server daemons.

3 Multi-user mode with all services running.
This is usually the default.

4 Currently unused.

5 Shut down the system and attempt to turn
off the power.

6 Shut down the system to level 0, and
reboot.

$foo Can be “yes ” or “ no” (or various
other boolean equivalents). If set to
“yes ”, the service or action relating
to foo is started.

$foo _flags Optional flags to invokefoo with.

in-
s
p-

l
y

o

ns
se
r-

ur-
i-
n.

re

-

are some services that should be shut down in order
(e.g., database-using applications before their databases)
and some services that require more thanSIGHUPfor a
clean shutdown.

/etc/rc.wsconswas added to control how thewscons
console driver was configured at boot time, and to allow
manual reconfiguration./etc/wscons.confcontrols this
behavior.

2.3.3. Summary prior to NetBSD 1.5
At multiuser boot,init calls /etc/rc to initialize the
system./etc/rc calls /etc/netstartto setup network ser-
vices, /etc/rc.local for local services,/etc/rc.lkmto ini-
tialize load-able kernel modules, and/etc/rc.wsconsto
configure thewsconsconsole driver. The start-up of ser-
vices is controlled by variables in/etc/rc.conf.

At system shutdown time,shutdown calls/etc/rc.shut-
down to shut down specific services which have to be
shut down before the globalSIGHUPthat init sends.

3. Design considerations
Over a six year period, various ideas on how to enhance
the start-up system were floated on the public NetBSD
mailing lists ‘current-users’ and ‘tech-userlevel’, as well
as on the NetBSD developer-only mailing list.

There was no consensus on ‘One True Design’; there
was too much contention for that. What is described
below is an amalgamation of what a few developers felt
was a reasonable analysis of the problems and feedback
as well as the most reasonable solution to support the
widest variety of circumstances.

3.1. Problems with the old system
The old system was perceived to suffer from the follow-
ing problems:

• There was no control over the dependency ordering,
except by manually editing/etc/rc(and other
scripts) and moving parts around.

This caused problems at various times, in situations
such as workstations with remotely mounted/usr
partitions, and these problems weren’t completely
resolved as was seen by observing various mailing
discussions and a flurry of CVS commits to the
source tree.

• It was difficult to manually control an individual
service after the system booted (e.g., restart
dhcpd , shut down a database, etc).

Whilst some people suggested that a system adm
istrator who couldn’t manually restart a service wa
incompetent, this doesn’t resolve the issue that ty
ing “/etc/rc.d/amd restart ” is signifi-
cantly easier that finding the process identifier of
amd, killing it, examining/etc/rcfor the syntax that
amd is invoked with, searching/etc/rc.conffor any
site-specific options, and manually typing in the
resulting command.

Unfortunately, there was a slight tendency during
some of the mailing list discussions to resort to
attacks on people’s competency in this manner. I
consider this a form of computer based intellectua
snobbery, and an unreasonable justification for wh
that person disliked a feature.

• It didn’t easily cater for addition of local or third
party start-up mechanisms, especially addition int
arbitrary points in the boot sequence, including
those installed by (semi-)automated procedures
such as the NetBSD ‘pkg’ tools.

3.2. Requirements of the new system
Given the problems in the old system, and observatio
of what other systems have done, including tho
described in section 2, the following design conside
ations were defined.

Some of these considerations were not determined d
ing discussion prior to implementation, but were ident
fied once users were actively using the implementatio

3.2.1. Dependency ordering
Dependency ordering is a strong requirement.

The following dependency ordering requirements we
determined:

• Independence from lexicographical ordering of file
names.

Some other systems (e.g., System V init.d) use an
existing lexicographical ordering of filenames in a
given directory, such as/etc/rc2.d/S69inetoccurring
before/etc/rc2.d/S70uucp, but experience has
shown that this doesn’t necessarily scale cleanly
when adding local or third-party services into the

it
ol,
te

),
in

te
ts
a
g

ke

nce
o-

-
e,
n-

-
d

if
-
d
a
ith
far
tly
-
ir
order; often you end up with a lot of convoluted
names around ‘S99’.

• Ability to insert local or third-party scripts any-
where into the sequence.

Some people proposed running/etc/rc.d/*out of
/etc/rc.local, and retaining the existing/etc/rc
semantics. This doesn’t easily cater to a user who
requires the ability to insert their own start-up items
anywhere in the boot sequence (such as a cable
modem authentication daemon required for net-
working).

• Not bloating/bin and/sbinon machines with small
root (/) file-systems. The use of tools from /usr/bin
has to be avoided because/usr might not be avail-
able early in the boot sequence.

• Use a dynamic dependency ordering.

A lot of debate occurred regarding whether the
dependency ordering is predetermined (e.g., by cre-
ating links to filenames or building a configuration
file), or dynamically generated.

A predetermined order may be more obvious to
determine the order (using ‘ls ’ or examining the
configuration file instead of invoking a special
command), but it can be difficult to add a service in
at a given point on a system because generally
ordering is not based on services provided.

A dynamic order may slow down boot slightly, but
provides the flexibility of specifying start-up order
in terms of dependencies.

For example, if serviceC depends onB which
depends onA, and I have a new serviceD to install
that must start afterA and beforeC then I want to
specify it in these terms, without having to worry
about whether it starts beforeB, afterB, or simulta-
neously withB.

There was some discussion about various methods
in which to determine the dynamic ordering:

• Usingmake and aMakefile.

• Usingtsort , awk, and a few shell commands

• Providing a dedicated ordering tool which
parsed the scripts for command directives in
special comments to determine the order. If a

script did not have a directive, it would be
ordered last.

After various discussions and implementation tests,
was decided that a dedicated dynamic ordering to
rcorder (see section 4.2.6), was the most appropria
mechanism; usingmake or tsort and awk would
require moving those programs to/bin (‘bloating’ the
root file-system for machines with limited resources
and a dedicated tool could provide better feedback
certain error situations.

3.2.2. Manipulation of individual services
Most people seem to agree that the ability to manipula
an individual service (via a script) is one of the benefi
of the System V init.d start-up mechanism. Having
script that allows direct starting, stopping, and restartin
of a service, as well as other per-service options li
‘reloading configuration files’, significantly reduces
system administrator overheads.

Having the same script be used by the start-up seque
is also highly desirable, as opposed to using a mon
lithic /etc/rcfor booting and separate/etc/rc.dscripts for
manual control (which had been suggested).

It is interesting to note that some System V init.d imple
mentations often start multiple services in the one fil
which defeats the purpose of providing per-service co
trol files. An example is Solaris’/etc/init.d/inetsvc,
which configures network interfaces, startsnamed and
startsinetd .

3.2.3. Support third-party scripts
An important requirement is the ability to support third
party scripts, especially by allowing them to be inserte
at any place in the boot sequence order.

The current system does support third-party scripts
they are installed into/etc/rc.d. There has been discus
sion about allowing for different directories to be use
for local and third-party scripts, in order to provide
separate ‘name-space’ to prevent possible conflicts w
a local script and a future base system script, but so
none of the suggestions has been considered sufficien
complete to provide in the default system. This, how
ever, does not prevent a site from implementing the
own method.

at

of

a

-
ly

rv-

l
ls

e
-
d
le

em
o

the
3.2.4. Maintain /etc/rc.conf
/etc/rc.confwas introduced in NetBSD 1.3, and most
users seem fairly happy with the concept.

One of the concerns about a traditional System V init.d
style mechanism is that the control of service start-up is
managed by the existing of a link (or symbolic link)
from /etc/rc2.d/S69inetto /etc/init.d/inetinit, which is
difficult to manage in a traditional configuration change
management environment (such as RCS). Similar con-
cerns exist regarding the suggestion of using mode bits
on files in /etc/rc.dto control start-up.

/etc/rc.conf was further enhanced as described in section
3.3.

3.2.5. Promote code re-use
Traditional System V init.d implementations do not
appear to re-use any code between scripts. From experi-
ence, maintaining local scripts in a traditionalinit.d
environment is a maintenance nightmare. We achieved
code re-use with common functions in/etc/rc.subr
which results in the average/etc/rc.dscript being a small
(5-10 line) file. There were some concerns raised about
using these common functions, but they weren’t consid-
ered to be serious issues. (We have a C library and com-
mon Makefile fragments, so why not common shell
functions?)

3.2.6. Service shut down
The ability to shut down certain services at system shut-
down time with/etc/rc.shutdownwas a useful feature of
the previous system and of other systems, and it makes
sense to retain this feature.

In the initial implementation, we reverse the depen-
dency order, and shut down any services which are
tagged with a ‘shutdown ’ keyword (see section 4.2.6)
within the script. We may modify or enhance this behav-
ior if observation of in-field use reveals a more compli-
cated scheme is required.

3.2.7. Avoid mandatory run levels
We avoided the use of System V run levels (also known
as run states or init states) and/etc/inittab. This was the
result of many discussions about the design, which can
be summarized to:

• They’re just too contentious; the/etc/inittabcon-
cept had the least number of advocates. Many peo-
ple expressed the opinion (both during the design
phase and post implementation) that they don’t

mind the/etc/rc.didea but don’t think an
/etc/inittab, run-levels or/etc/rcN.ddirectories
would improve things.

• There doesn’t seem to be consistency between wh
each run-level means on various System V init.d
implementations, or the exact semantics of what
occurs at state change. Thus, using the argument
compatibility for system administrator ease of use
isn’t as relevant. Some systems (such as HP/UX
10.x) treat these as levels, where a transition from
level 4 to level 2 executes the shut down scripts in
level 3 and then level 2. Other systems (such as
Solaris) treat these as separate run states, where
transition to a level runs all the stop scripts in that
level and then all the start scripts. This can be con
fusing to an administrator, as well as not necessari
providing the optimal behavior.

• We currently support single-user mode (s), multi-
user mode (2 or 3, depending on whether NFS se
ing is configured in/etc/rc.conf), shutting down the
system to single user mode (1), halting the system
(0), rebooting the system (6), and powering off the
system (5) (with the equivalent Solaris init state in
parenthesis).

• If the ability to take the system from a given point
in the order to another point in the order, then I fee
that most people’s requirements for what run-leve
are touted to provide would be met. This is cur-
rently a work in progress.

• Whilst /etc/inittabprovides for re-spawning of dae-
mons, in practice very few daemons are actually
started that way, and it’s trivial to implement that
feature in a few lines of shell script as a ‘wrapper’
to the start of the daemon.

3.2.8. Other issues
After various discussions, we settled on the nam
/etc/rc.d instead of/etc/init.d, because the implementa
tion was different enough from the System V /etc/init.
mechanism that we decided not to confuse peop
expecting the exact System V semantics. Many syst
administrators may be used to referring directly t
/etc/init.d/foo or /sbin/init.d/bar when manipulating a
service; a symbolic link from/etc/init.dor /sbin/init.dto
/etc/rc.don their systems could help retain their sanity.

The first implementation of/etc/rc.dthat I released for
evaluation supported all three start-up schemes;
original monolithic /etc/rc, a System V init.d (without

:

-

,

b-

-

n

nt

a

run-levels), and the current/etc/rc.d. These were all
built from the same sources, and a command was pro-
vided to generate the style that an administrator pre-
ferred. After feedback and discussion, this functionality
was abandoned, because:

• It is very difficult to support multiple ways of start-
ing the system when users have problems or ques-
tions, especially so in a volunteer project.

• Two of the methods (/etc/rc, and System V init.d)
do not have the ability to dynamically order the
dependency list. In those situations, an administra-
tor (or automatic application) would have to per-
form the extra step of ‘rebuild order’ upon
installation.

• The source scripts had various constraints to ensure
that they could work as part of/etc/rcas well as act-
ing as a stand-alone script in/etc/rc.dor /etc/init.d.

As architects of the NetBSD operating system, we have
the responsibility to provide useful solutions to prob-
lems. In general, those solutions should be as flexible as
possible, without introducingunnecessaryflexibility,
which will only cause confusion. Therefore, the alterna-
tive mechanisms were dropped.

That said, the current system is flexible enough that if a
site decided to use a System V init.d approach, it is
fairly trivial to populate/etc/rcN.dwith a symbolic link
farm to files in /etc/rc.d (using rcorder to build the
dependency list), and modify/etc/rc to run the scripts in
/etc/rcN.d/ in lexicographical order, or to even imple-
ment a System V/etc/inittaband run states.

Unfortunately, there is no easy solution for people who
want to retain/etc/rc. However, as NetBSD is an Open
Source project and allows for public access to the CVS
source code repository (via anonymous CVS as well as
via a WWW front-end [6]), nothing prevents users from
reverting to the old style/etc/rc.

It is interesting that the people who argued the most to
retain/etc/rcare probably those who are skilled enough
to maintain this, and during the various discussions
some even offered (some might say “threatened”) to
maintain their own copy of/etc/rc in their own public
CVS server for those who wished to retain this function-
ality. Interestingly, over a year has passed since the
implementation of this work and there is no evidence
that any/etc/rcsplinter work has actually occurred.

3.3. Configuration improvements
The /etc/rc.confmechanism was enhanced in two ways

• The default configuration settings were moved
from /etc/rc.confto /etc/defaults/rc.conf, and
/etc/rc.confsources the former. Site specific config
uration overrides are placed in/etc/rc.conf. This
enables easier upgrades (both manual and auto-
matic) of the default settings in/etc/defaults/rc.conf
for new or changed services.

There was debate about this change, but a signifi-
cant majority of users agreed with the change. Also
FreeBSD had made a similar change some time
before, with a similar debate and outcome, and su
sequent upgrade benefits observed which helped
the case supporting the change.

• An optional per-service configuration file in
/etc/rc.conf.d/SERVICEwas added. This configura-
tion file (if it exists) is read after/etc/rc.conf, to
allow per-service overrides. This optional function
ality was added to allow automated third-party
installation mechanisms to easily add configuratio
data.

Migrating entirely away from/etc/rc.confto a mul-
titude of /etc/rc.conf.d/SERVICEfiles was consid-
ered, but no consensus was reached, and after a
local trial, we decided that providing for the latter
but retaining the former satisfies proponents of
either side.

Recently (post NetBSD 1.5), a/sbin/chkconfig
command has been added (similar to the equivale
command in IRIX) to manage/etc/rc.conf.dby dis-
playing a setting or changing its value.

Thus, the order that configuration information for
given servicefoo is read in is as follows:

• foo sources/etc/rc.conf.

• /etc/rc.confsources in/etc/defaults/rc.conf(if it
exists), and machine specific overrides of the
defaults are added at the end of/etc/rc.conf.

• A per-service configuration file in/etc/rc.conf.d/foo
(if it exists) will be loaded. This allows for auto-
mated maintenance of/etc/rc.conf.dconfiguration
files, whilst retaining the popular/etc/rc.conf
semantics.

the
he
m
ded
to
it

in

-

of

-
e

4. Implementation & aftermath
The system was implemented as described above in the
design section, although the design was slightly fluid
and did change as feedback was incorporated.

There are two elements to the post-implementation anal-
ysis; the human issues, and the technical details.

4.1. The human issues
There was a lot of feedback, debate, angst, flames, and
hate-mail. The change has been one of the most conten-
tious in the history of the project.

The first commits to the source code repository were
made with the intention of providing a mostly complete
implementation which was to be incrementally
improved over a few months before the release of Net-
BSD 1.5.

Unfortunately, we made one of our largest implementa-
tion mistakes at this point; we didn’t warn the user-base
that this was our intention, and the commits were seen
as a ‘stealth attack’. This was partly because we felt that
there had been enough debate and announcing our inten-
tions would have delayed the project another few
months for a rehash of the same debate (which had been
going on for five years at that point).

After the initial implementation, various technical and
‘religious’ complaints were raised about the system. A
summary of these is:

• “The use of ‘magic’ functions [from /etc/rc.subr] is
bad.”

It was felt that the code re-use that/etc/rc.subrpro-
motes was sufficiently worthy to justify its contin-
ued use, as described in section 3.2.5.

• “Switching from /etc/rc is not the BSD way, …”

This particular objection was expected; it’s a reli-
gious argument and the change was bound to annoy
a certain section of the community.

Robert Elz, a long time user and contributor to
BSD, had a good point to make about ‘the BSD
way’: “ [the BSD way is to] find something that
looks to be better (in the opinion of the small group
deciding such things), implement it, and ship it.”[5]

In this case, the ‘small group’ was the NetBSD core
team, who voted in unanimous agreement for the

work, with the proviso that it would be tweaked and
improved as necessary, which is what occurred.

• “Why wasn’t a System V init.d implemented?”

This was covered in section 3.2.7.

Because some of the detractors were quite vocal in
complaints, there was a perception for a time that t
work was against a majority decision. This was far fro
the truth; many users and developers had become ja
with the discussion over the years and did not bother
argue in support of the change, since they agreed with
in principle, if not in implementation particulars. This
was borne out by the level of support for the change
the time since implementation.

4.2. The technical details
The rc.d system comprises of the following compo
nents:

4.2.1. /etc/rc
On system start-up,/etc/rc is executed byinit .

/etc/rc then calls rcorder to order the scripts in
/etc/rc.dthat do not have a ‘nostart ’ rcorder key-
word to obtain a dependency list of script names./etc/rc
then invokes each script in turn with the argument
‘start ’ to start the service.

The purpose of the ‘nostart ’ support it to allow (pri-
marily third-party) scripts which are only to be manipu
lated manually (and not started automatically) to b
installed into/etc/rc.d. No scripts in the standard Net-
BSD distribution use this feature as yet.

/etc/rc System start-up script.

/etc/rc.shutdown System shutdown script.

/etc/rc.d/* Individual start-up scripts.

/etc/rc.subr Common shell code used by
various scripts.

/etc/defaults/rc.conf Default system configuration.

/etc/rc.conf System configuration file.

/etc/rc.conf.d/* Per service configuration file.

rd

is-

e

ra-
-

be
or
se
nd
4.2.2. /etc/rc.shutdown
At system shutdown,/etc/rc.shutdownis executed by
shutdown . halt , reboot and poweroff do not
call this script.

/etc/rc.shutdownthen calls rcorder to order the
scripts in/etc/rc.dthat have a ‘shutdown ’ rcorder
keyword to obtain a dependency list of script names.
This dependency list is then reversed, and/etc/rc.shut-
downthen invokes each script in turn with the argument
of ‘stop ’ to stop the service.

The rationale for this is that only a few services (such as
databases) actually require a shutdown mechanism more
complicated than theSIGHUPsent by/sbin/init at shut-
down time. Also, having every script perform ‘stop ’
slows down system shutdown as well as causing prob-
lems in other areas (such as cleanly un-mounting a
‘busy’ NFS mount once the networking services have
been stopped).

4.2.3. /etc/rc.d/* scripts
The scripts in/etc/rc.dare invoked by/etc/rc (with an
argument of ‘start ’) and /etc/rc.shutdown(with an
argument of ‘stop ’) in the order specified by
rcorder to start and stop (respectively) a given ser-
vice.

The /etc/rc.dscripts can be invoked manually by a sys-
tem administrator to manipulate a given service (such as
starting, reloading configuration, stopping, etc.)

Each script should support the following (mutually
exclusive) arguments:

Other arguments which are supported in the standa
NetBSD/etc/rc.dscripts include:

If the argument is prefixed by ‘force ’, then tell the
script to as if the/etc/rc.confvariable which controls
that service’s start-up has been set to ‘yes ’. This allows
a system administrator to manually control a service d
abled by/etc/rc.confwithout editing the latter to enable
it. This does not skip the check which determines if th
service is already running.

Other arguments for manual use by a system administ
tor (such as ‘reload ’, etc) can be added on a per ser
vice basis. For example,/etc/rc.d/named supports
‘ reload ’ to reloadnamed’s configuration files with-
out interrupting service.

There are some ‘placeholder’ services which can
required by a service to ensure that it is started before
after certain operations have been performed. The
scripts generally have a name that is all upper case, a
in the order found in the default boot sequence are:

start Start the service. This should check that
the service is to be started as controlled by
/etc/rc.conf. Also checks if the service is
already running and refuses to start if it is.
This latter check is not performed by stan-
dard NetBSD scripts if the system is start-
ing directly to multi-user mode, to speed
up the boot process.

stop Stop the service if/etc/rc.confspecifies
that it should have been started. This
should check that the service is running
and complain if it is not.

restart Effectively perform ‘stop’ then ‘start’.

status If the script starts a process (rather than
performing a one-off operation), show
the status of the process. Otherwise, it’s
not necessary to support this argument.
Defaults to displaying the process ID of
the service (if running).

rcvar Display which/etc/rc.confvariables are
used to control the start-up of the service
(if any).

NETWORK Ensure basic network services are run-
ning, including general network config-
uration (network), anddhclient .

SERVERS Ensure basic services (such asNET-
WORK, ppp , syslogd , andkdc) exist
for services that start early (such as
named), because they’re required by
DAEMONbelow.

DAEMON Before all general purpose daemons
such asdhcpd , lpd , andntpd .

LOGIN Before user login services (inetd ,
telnetd , rshd , sshd , andxdm), as
well as before services which might run
commands as users (cron , postfix ,
andsendmail).

.

),
ipt
e-
se
2

4.2.4. /etc/defaults/rc.conf, /etc/rc.conf,
/etc/rc.conf.d/*
/etc/defaults/rc.confcontains the default settings for the
standard system services, and is provided to facilitate
easier system upgrades. End users should not edit this
file.

/etc/rc.confis the primary system start-up configuration
file. It reads in/etc/defaults/rc.conf(if it exists), and the
end-user puts site-local overrides of these settings at the
end of the/etc/rc.conf. This makes it more obvious to
between what is a system default and what is a site-local
change, and provides similar functionality to FreeBSD’s
/etc/defaultsmechanism.

For a given servicefoo, it is possible to have a per-ser-
vice configuration file in /etc/rc.conf.d/foo, which is
read after/etc/rc.conf. This was provided to allow third-
party installation tools to install a default configuration
without requiring them to in-line edit/etc/rc.conf.

Example/etc/rc.confentries fordhclient are:

To ensure that the system doesn’t start into multi-user
mode without the system administrator actually check-
ing the configuration of the system, the variable
‘ rc_configured ’ is set to ‘no ’ by default, and must
be set to ‘yes ’ by the system administrator. If this is not
set, the system will not boot into multi-user mode, and
instead remain in single-user mode. The system installa-
tion tool ‘sysinst ’ makes this change for you when
configuring a newly-installed system, but users per-
forming manual installations or upgrades need to be
aware of this.

As /etc/rc.confis a shell script, it is possible to put vari-
ous shell commands into the script to conditionally set
flags if necessary. Be aware, however, that if the script
exits then any script that sources/etc/rc.conf(such as the
system boot scripts) will exit too. As/etc/rc.confmay be
loaded early in the boot sequence (possibly before/usr
is mounted), not all commands may not be available for
use.

4.2.5. /etc/rc.subr
/etc/rc.subr is a shell script that’s sourced by the
/etc/rc.dscripts. It contains ‘helper’ shell functions for
commonly used operations:

• checkyesno var

Determine if the given variablevar is set to ‘yes’
or ‘no’ (or a variant), and return with an exit code
of 0 if yes, 1 if no.

• check_pidfile pidfile procname

Parse the first line of the specified filepidfile
for a PID, and print the PID if that process is run-
ning and matches the given process nameproc-
name.

• check_process procname

Print a list of PIDs that match the given process
nameprocname .

• load_rc_config command

Load in the rc.conf configuration forcommand,
first from /etc/rc.conf, and then from
/etc/rc.conf.d/command(if it exists.)

• run_rc_command arg

Implement the ‘guts’ of an rc.d script. This is highly
flexible, and supports many different service types
arg is argument describing the operation to per-
form (e.g., ‘start’ or ‘stop’). The behavior of
run_rc_command is controlled by shell vari-
ables defined before invoking the function.

In traditional System V init.d systems (e.g., Solaris
each script contains the code to determine if a scr
should be started or shut down, and often re-impl
mented the checks for a running process, etc. The
scripts become difficult to maintain, and are often 1-
pages long.

By using the functions in/etc/rc.subr, the standard Net-
BSD rc.d scripts are quite small in comparison.

dhclient=YES

dhclient_flags="-q tlp0"

e

s,

rty

int

d
art
t
tc.

e
nt

o-
e
I
-

ts

nd
e-

he
to
d

f
et-
For example, the/etc/rc.d/dhclientscript (sans com-
ments which aren’t used byrcorder) is:

It is not mandatory for scripts to use these functions. An
ordinary shell script (with the appropriatercorder
control comment lines) which supports the arguments
‘start ’ and ‘stop ’ should work at system start-up
and shutdown without modification. In order to be con-
sistent with the existing rc.d scripts, in may help to also
support ‘restart ’, ‘ status ’, ‘ rcvar ’ (if appropri-
ate), as well as the ‘force ’ prefix.

4.2.6. rcorder
The ordering of the scripts in/etc/rc.d is performed by
rcorder (located in /sbin/rcorder), which prints a
dependency ordering of a set of interdependent scripts.
rcorder reads each script for special comment lines
which describe how the script is dependent upon other
services, and what services this script provides.

Examplercorder comment lines for/etc/rc.d/dhclient
follow:

In this case,dhclient requires the services ‘net-
work ’ (to configure basic network services) and
‘mountcritlocal ’ (to mount critical file-systems
required for early in the boot sequence, usually/var),
and provides the service ‘dhclient ’ (which happens
to be depended upon by the placeholder script
/etc/rc.d/NETWORK).

It is possible to tag a script with a keyword which can b
used to conditionally include or exclude the script from
being returned byrcorder in the result./etc/rc uses
this to exclude scripts that have a ‘nostart ’ keyword,
and /etc/rc.shutdownuses this to only include scripts
that have a ‘shutdown ’ keyword. For example, asxdm
needs to be shut down cleanly on some platform
/etc/rc.d/xdmcontains:

The rcorder dependency mechanism enables third-pa
scripts to be installed into/etc/rc.dand therefore added
into the dependency tree at the appropriate start-up po
without difficulty.

5. Future Work
I’d like to implement functionality to allow you to start
up (or shut down) services from serviceA to serviceB.
This would allow you to start in single user mode, an
then start up enough to get the network running, or st
all services until just before ‘multi user login’, or jus
those between ‘network running’ to ‘database start’, e

This could be a fairly simple system, and would provid
most of the functionality that most people seem to wa
run states for.

I encourage other systems that are still using a mon
lithic /etc/rc and who would like to resolve some of th
similar issues NetBSD had, to consider this work.
would like to liaise with the maintainers of those sys
tems to ensure as much code re-use as possible.

6. Conclusion
NetBSD 1.5 has a start-up system which implemen
useful functionality such the ability to control the
dependency ordering of services at system boot a
manipulate individual services, as well as retaining us
ful features of previous releases such as/etc/rc.conf.

This work was extremely contentious and difficult to
implement because of this contentious nature. T
implementation phase did provide valuable insight in
some of the difficulties involved in the design an
development of large open source projects.

I the long run I believe that this work will have benefits
for a majority of users, both in day-to-day operation o
the system as well as during future upgrades from N
BSD 1.5.

#!/bin/sh

#

PROVIDE: dhclient

REQUIRE: network mountcritlocal

. /etc/rc.subr

name="dhclient"

rcvar=$name

command="/sbin/${name}"

pidfile="/var/run/${name}.pid"

load_rc_config $name

run_rc_command "$1"

PROVIDE: dhclient

REQUIRE: network mountcritlocal

KEYWORD: shutdown

Availability
This work first appeared in NetBSD 1.5, which was
released in December, 2000 [7]. The CVSweb interface
[6] can be used to browse the work and its CVS history.

Acknowledgements
Many people contributed to the discussions and design
of the current system.

However, some people in particular provided some of
the important elements: Matthew Green for finishing
rcorder and providing the initial attempt at splitting
/etc/rc into /etc/rc.d, and Perry Metzger for the idea of
providing dependencies using a ‘PROVIDE’ and
‘REQUIRE’ mechanism, and for the initialrcorder
implementation.

References
[1] M. K. McKusick, K. Bostic, M. J. Karels, & J. S.

Quarterman,The Design and Implementation of the
4.4BSD Operating System, Addison-Wesley, Read-
ing, MA, 1996.

[2] M. K. McKusick, K. Bostic, M. J. Karels, & S. J.
Leffler, “Installing and Operating 4.4BSD UNIX”,
in 4.4BSD System Managers Manual, pp. 1:44-53,
O’Reilly & Associates, Sebastopol, CA, 1994.

[3] Sun Microsystems,System Administration Guide,
Volume I, Sun Microsystems, Palo Alto, CA, 1998.

[4] Sun Microsystems, “init(1M)”, inman Page(1M)
System Administration Commands, Sun Microsys-
tems, Palo Alto, CA, 1998.

[5] Robert Elz, in email to tech-userlevel@netbsd.org:
http://mail-index.netbsd.org/tech-userlevel/
2000/03/17/0010.html

[6] The NetBSD Project, “CVS Repository”,
http://cvsweb.netbsd.org/

[7] The NetBSD Project, “Information about NetBSD
1.5”, http://www.netbsd.org/Releases/formal-1.5/

	The Design and Implementation of the NetBSD rc.d system
	Abstract
	1. Introduction
	2. History
	2.1. 4.4BSD
	2.2. Solaris 7
	2.3. NetBSD prior to 1.5
	2.3.1. NetBSD 1.3
	2.3.2. NetBSD 1.4
	2.3.3. Summary prior to NetBSD 1.5

	3. Design considerations
	3.1. Problems with the old system
	3.2. Requirements of the new system
	3.2.1. Dependency ordering
	3.2.2. Manipulation of individual services
	3.2.3. Support third-party scripts
	3.2.4. Maintain /etc/rc.conf
	3.2.5. Promote code re-use
	3.2.6. Service shut down
	3.2.7. Avoid mandatory run levels
	3.2.8. Other issues

	3.3. Configuration improvements

	4. Implementation & aftermath
	4.1. The human issues
	4.2. The technical details
	4.2.1. /etc/rc
	4.2.2. /etc/rc.shutdown
	4.2.3. /etc/rc.d/* scripts
	4.2.4. /etc/defaults/rc.conf, /etc/rc.conf, /etc/rc.conf.d/*
	4.2.5. /etc/rc.subr
	4.2.6. rcorder

	5. Future Work
	6. Conclusion
	Availability
	Acknowledgements
	References
	[1] M. K. McKusick, K. Bostic, M. J. Karels, & J. S. Quarterman, The Design and Implementation of...
	[2] M. K. McKusick, K. Bostic, M. J. Karels, & S. J. Leffler, “Installing and Operating 4.4BSD UN...
	[3] Sun Microsystems, System Administration Guide, Volume I, Sun Microsystems, Palo Alto, CA, 1998.
	[4] Sun Microsystems, “init(1M)”, in man Page(1M) System Administration Commands, Sun Microsystem...
	[5] Robert Elz, in email to tech-userlevel@netbsd.org: http://mail-index.netbsd.org/tech-userleve...
	[6] The NetBSD Project, “CVS Repository”, http://cvsweb.netbsd.org/
	[7] The NetBSD Project, “Information about NetBSD 1.5”, http://www.netbsd.org/Releases/formal-1.5/

