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Abstract. RC4, a stream cipher designed by Rivest for RSA Data Se-
curity Inc., has found several commercial applications, but little public
analysis has been done to date. In this paper, alleged RC4 (hereafter
called RC4) is described and existing analysis outlined. The properties
of RC4, and in particular its cycle structure, are discussed. Several vari-
ants of a basic “tracking” attack are described, and we provide exper-
imental results on their success for scaled-down versions of RC4. This
analysis shows that, although the full-size RC4 remains secure against
known attacks, keystreams are distinguishable from randomly generated
bit streams, and the RC4 key can be recovered if a significant fraction of
the full cycle of keystream bits is generated (while recognizing that for
a full-size system, the cycle length is too large for this to be practical).
The tracking attacks discussed provide a significant improvement over
the exhaustive search of the full RC4 keyspace. For example, the state of
a 5 bit RC4-like cipher can be obtained from a portion of the keystream
using 242 steps, while the nominal keyspace of the system is 2160. More
work is necessary to improve these attacks in the case where a reduced
keyspace is used.

1 Introduction

Stream ciphers are often used in applications where high speed and low delay
are a requirement. Although many stream ciphers are based on linear feedback
shift registers, the need for software-oriented stream ciphers has lead to several
alternative proposals. One of the more promising algorithms, RC4[9], designed
by R. Rivest for RSA Data Security Inc., has been incorporated into many
commercial products including BSAFE and Lotus Notes, and is being considered
in upcoming standards such as TLS[1].

In this paper, the RC41 algorithm is described and known attacks reviewed.
A detailed discussion of “tracking” attacks is provided and estimates of the
complexity of cryptanalysis for simplified versions of RC4 are given.
1 While RC4 remains a trade secret of RSA Data Security Inc., the algorithm de-

scribed in [11] is believed to be output-compatible with RC4. This paper discusses
the algorithm given in [11], and is referred to as RC4 for convenience.
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2 Background

The following description of RC4 is based on that given in [11]. It generalizes
RC4 to use n-bit words, but n = 8 is the most commonly used value. To use
RC4, a key is first used to initialize the 2n word s-box S and counters i and
j through Algorithm 1. The keystream K is then generated using Algorithm 2.
The s-box entries and the counters i and j are n-bit words.

Algorithm 1 (RC4 Initialization). Let k0 . . . kl−1 denote the user’s key, a
set of l n-bit words.

1. For z from 0 to 2n − 1
(a) Set Kz = kz mod l.

2. For z from 0 to 2n − 1
(a) Set Sz = z.

3. Set j = 0.
4. For i from 0 to 2n − 1

(a) Set j = j + Si +Ki mod 2n.
(b) Swap Si and Sj .

5. Set i = 0 and j = 0.

Algorithm 2 (Keystream Generation).

1. Set i = i+ 1 mod 2n.
2. Set j = j + Si mod 2n.
3. Swap Si and Sj .
4. Output SSi+Sj mod 2n as the next word in the keystream.

The RC4 keystream generation algorithm is depicted in Fig. 1.
The initialization algorithm is a key-dependent variant of the keystream gen-

eration algorithm, and is used to initialize the s-box S to a “randomly chosen”
permutation. The nominal key length could be up to n · 2n bits, but since it is
used to generate only a permutation of 2n values, the entropy provided by the
key can be at most log2(2n!) bits, which will be referred to as the effective key
length. Table 1 shows the nominal and effective key lengths for different values of
n. In the remainder of this paper, the mod 2n is sometimes omitted for brevity.

3 Published Results

This section is based on [7].

3.1 A Class of Weak Keys

In 1995, Andrew Roos posted a paper to the sci.crypt newsgroup[10] describing a
class of weak keys, for which the initial byte of the keystream is highly correlated
with the first few key bytes. The weak keys are those satisfying

k0 + k1 ≡ 0 mod 2n .
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Fig. 1. RC4 Keystream Generation

Table 1. Nominal and Effective Key Sizes for RC4-n

RC4 Word Size Nominal Key Length (bits) Effective Key Length (bits)

2 8 4.58

3 24 15.30

4 64 44.25

5 160 117.66

6 384 296.00

7 896 716.16

8 2048 1684.00

9 4608 3875.17

The weak keys occur because the keystream initialization algorithm swaps a
given entry of the s-box exactly once (corresponding to when the pointer i points
to the entry) with probability 1/e. In addition, for low values of i, it is likely
that Sj = j during the initialization. The reduction in search effort from this
attack is 25.1, but if linearly related session keys are used, the reduction in effort
increases to 218.
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3.2 Linear Statistical Weaknesses in RC4

In [3], the author derives a linear model of RC4 using the linear sequential circuit
approximation (LSCA) method. The model has correlation coefficient 15 · 2−3n,
and requires 64n/225 keystream words. The model is successful in part because
the s-box evolves slowly.

3.3 A Set of Short Cycles

Suppose that i = a, j = a+1, and Sa+1 = 1 for some a. Then, after one iteration,
i = a+ 1, j = a+ 2, and Sa+2 = 1. Thus, the original relationship is preserved.
Each such cycle has length 2n · (2n − 1), and (2n − 2)! such cycles exist. Note
however that, because RC4 is initialized to i = j = 0, these cycles never occur
in practice. These observations were first made in [2] and outlined in [5].

4 Cycle Structures in RC4

4.1 Comparison with Randomly Chosen Invertible Mappings

The state of RC4 is fully determined by the two n-bit counters i and j and the
s-box S. Since the number of states is finite, it must ultimately be periodic as
the keystream generation function is iterated. Because the keystream generation
function is invertible, the sequence of states is periodic. The length of the period
depends on the word size n and the particular starting state, as illustrated in
Table 2 for n = 2 and n = 3. For each period, the number of distinct cycles of that
period is listed, followed by the number of initial states in each cycle, expressed
as a formal sum. The last three columns will be explained in the next section.
For comparison, Fig. 2 plots the expected cycle lengths for a randomly chosen
permutation and those observed for RC4. For the randomly chosen permutation,
the minimum and maximum lengths observed for the kth longest cycle in a set
of 1500 arbitrarily chosen permutations is plotted.

It has also been observed that RC4 keystream sequences are slightly biased[4].
Define the gap at i for a sequence s to be the smallest integer t ≥ 0 such that
si = si−t−1. For a random sequence in which each element takes on one of 2n

values, the probability that t = k is given by(
2n − 1

2n

)k
· 1

2n
.

Table 3 shows the ratio of the actual to the expected gap probability, based on
a sample of approximately 230 elements of an arbitrarily chosen RC4 keystream.
For all values of n, gaps of length 0 are more likely than expected, and gaps
of length 1 are less likely than expected. In support of this, it has also been
observed that the probability that Si = 0 is lower than expected and that the
probability that Si = 2n − 1 is higher than expected after a gap of length 0.
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Table 2. Possible Periods for RC4 with Word Length 2 and 3

n Period # of Number of Shift Offset Shifts Found

Cycles Initial States Generator (indexes are right shifts)

2 196 1 12 1 49 {0, 1, 2, 3}
164 1 12 1 41 {0, 1, 2, 3}

3 955496 2 15010 + 15274 = 30284 2 238874 {0, 2, 4, 6}, {0, 2, 4, 6}
322120 1 5144 1 40265 {0, 1, 2, 3, 4, 5, 6, 7}
53000 1 816 1 6625 {0, 1, 2, 3, 4, 5, 6, 7}
44264 1 688 5 5533 {0, 1, 2, 3, 4, 5, 6, 7}
29032 4 482 + 505 + 488 + 457 = 1932 4 14516 {0, 4}, {0, 4}, {0, 4}, {0, 4}
9624 2 153 + 149 = 302 6 2406 {0, 2, 4, 6}, {0, 2, 4, 6}
9432 1 140 3 3537 {0, 1, 2, 3, 4, 5, 6, 7}
4696 8 80 + 77 + 70 + 93 0 4696 {0}, {0}, {0}, {0},

+61 + 77 + 81 + 83 = 622 {0}, {0}, {0}, {0}
3008 8 50 + 41 + 32 + 35 0 3008 {0}, {0}, {0}, {0},

+46 + 55 + 43 + 38 = 340 {0}, {0}, {0}, {0}
648 1 8 1 81 {0, 1, 2, 3, 4, 5, 6, 7}
472 2 7 + 7 = 14 6 118 {0, 2, 4, 6}, {0, 2, 4, 6}
456 1 12 1 57 {0, 1, 2, 3, 4, 5, 6, 7}
264 2 5 + 7 = 12 2 66 {0, 2, 4, 6}, {0, 2, 4, 6}
120 2 2 + 2 = 4 7 15 {0, 1, 2, 3, 4, 5, 6, 7},

{0, 1, 2, 3, 4, 5, 6, 7}
24 2 1 + 1 = 2 4 12 {0, 4}, {0, 4}
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Fig. 2. Comparison of Cycle Lengths for RC4 and Random Permutations

Table 3. Deviation of RC4 Gap Lengths from those of Random Keystream

n Gap

0 1 2 3 4 5 6

2 1.04082 0.952381 0.834467 0.870748 0.902998 1.72 1.26133

3 1.01828 0.956577 1.01042 0.994535 1.02179 1.00909 1.00284

4 1.00365 0.993622 1.0009 1.00126 1.00276 1.00039 1.00059

5 1.00099 0.99859 0.999946 1.0009 1.00081 1.00024 1.00046

6 0.999762 0.999901 1.00024 1.00039 1.00036 1.00014 0.999714
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4.2 Partitioning of RC4 Cycles

As observed independently in [5], individual RC4 cycles can be partitioned into
pieces of “equivalent” subsets, as follows. Define by S�d the s-box obtained by
rotating the s-box entries to the right (or down) by d (formally, S′ = S�d if
S′t = St−d mod 2n). Let the right shift by d of an RC4 state (i, j, S) be defined by
(i+ d, j + d, S�d). The following theorem holds:

Theorem 1. Suppose that, for a given key, an RC4-n system goes through the
state (i′, j′, S′) and that the cycle length for this key is T . Then any cycle going
through one or more states of the form (i′+d, j′+d, S′�d) (where d is an integer)
has period T and the shift relationship between the states is maintained as the
two systems evolve. In addition, if the output sequences are compared word for
word as the systems evolve beyond those states, the outputs will always differ if
d 6≡ 0 mod 2n and will always agree otherwise.

Proof. Compare the state evolutions of the two systems (i′, j′, S′) and (i′′ =
i′+ d, j′′ = j′ + d, S′′ = S′�d). The steps for one round of keystream generation
are:

1. Set i′′ = i′′ + 1 mod 2n.
2. Set j′′ = j′′ + S′′i′′ mod 2n.
3. Swap S′′i′′ and S′′j′′ .
4. Output S′′S′′

i′′+S
′′
j′′ mod 2n as the next word in the keystream.

or
1. Set i′′ = i′′ + 1 mod 2n.
2. Set j′′ = j′′ + S′i′′−d mod 2n.
3. Swap S′′i′′ and S′′j′′ .
4. Output S′S′

i′′−d+S′
j′′−d−d mod 2n as the next word in the

keystream.

which becomes:

1. Set i′′ = i′ + d+ 1 mod 2n.
2. Set j′′ = j′ + d+ S′i′ mod 2n.
3. Swap S′′i′+d and S′′j′+d.
4. Output S′S′

i′+S
′
j′−d mod 2n as the next word in the keystream.

Thus, the shift relationship between the two systems is preserved, and only the
output is different provided d 6≡ 0 mod 2n. Because the systems are identical
except for the output, the periods of the two systems must also be the same. ut

Consider a cycle of period T , and an arbitrary RC4 state (i′, j′, S′) in that
cycle. Then all shifts of this state belong to a cycle of length T . If there are only
a few cycles of length T (as will be the case if T is large), then more than one
may appear in the same cycle. The following theorem holds:
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Theorem 2 (Cycle Partitioning). Let γ be a cycle of period T and let D =
(i′, j′, S′) be any state in the cycle. Let d1, . . . , dk−1 (k < 2n) be the right shifts of
D in the order they appear as RC4 evolves from state D (d0 = 0 is understood).
Then the distance (expressed as the number of encryptions) between successive
shifts is given by T/k, and for any other state, D′, in the same cycle, the right
shifts of D′ d1, . . . , dk−1 are the only right shifts of D′ appearing in the cycle,
and appear in that order. Figure 3 illustrates this partitioning, with α = T/k
and k = 4.

Proof. Denote by Dt the right shift by dt of D, and by D(s) the RC4 state
obtained by performing s encryptions starting at state D. Let l be the greatest
distance between two consecutive shifts and denote the corresponding shifts da
and da+1 mod k. Suppose that for some b, the distance s between db and db+1 mod k

was smaller than l. By Theorem 1, Da remains a right shift of Db as the systems
evolve. Since Db(s) is a right shift of Db, Da(s) must be a right shift of Da.
Thus, the distance between Da and Da+1 mod k is less than or equal to s. But
that distance is l, contradicting the assumption that s < l. Therefore, no smaller
distance exists, and the shifts are at equal distances from each other. The second
part of the theorem follows by Theorem 1 and the fact that any state in the cycle
can be obtained by repeated encryption starting at any state D. ut

In fact, only certain orderings of the shifts present in a given cycle are possible
because Theorem 2 implies that di+1 − di is constant in a cycle. d1 must then
be a generator for the shifts in the cycle, and di = i · d1 mod 2n. The last three
columns of Table 2 confirm this statement for RC4-2 and RC4-3. In this table,
the “Shift Generator” entry is the value of d1, and the entry “Offset” is the
distance between successive shifts. Finally, the “Shifts Found” table enumerates
the right shifts of the initial state found in each cycle. All of these results were
obtained experimentally. Note that in all cases, T/k = Offset as required by
the theorem. For example, for the cycles of length 472, a distance of 118 exists
between shifts, the shifts appear in the order {0, 6, 4, 2}, and 472/4 = 118. The
entry {0} in the “Shifts Found” column indicates that no shifts of the initial
state appear in the cycle.

5 Tracking Analysis

Algorithm 3 below outlines a basic attack which can be mounted against RC4.
In essence, the algorithm keeps track of all states which RC4 could be in, given
that a particular keystream has been generated.
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Fig. 3. Partitioning of an RC4 Cycle

Algorithm 3 (Forward Tracking).

1. Mark all entries St as unassigned.
2. Set i = 0, j = 0, and z = 0.
3. Repeat:

(a) Set i = i+ 1 mod 2n.
(b) If Si is unassigned, continue with the remainder of the algorithm for each

possible assignment of Si.
(c) Set j = j + Si mod 2n.
(d) If Sj is unassigned, continue with the remainder of the algorithm for

each possible assignment of Sj .
(e) Swap Si and Sj .
(f) Set t = Si + Sj mod 2n.
(g) If St is unassigned and Kz does not yet appear in the s-box, set St = Kz.
(h) If St 6= Kz, the state information is incorrect. Terminate this round.
(i) Increment z.
(j) If z is equal to the length of the keystream, output the current state as a

solution and terminate the run.

The forward tracking algorithm is illustrated in Fig. 4. In this diagram, the ob-
served keystream is the all zero sequence, and the system is RC4-2. Figure 5
shows the number of nodes visited by the tracking algorithm as a function
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of depth for various word sizes n. Two cases are considered for the observed
keystream; an arbitrarily chosen nonzero keystream, and a zero keystream. The
zero keystream can be analysed more quickly than a more general keystream.
To obtain approximate data for the n = 5 case in Fig. 5, at a given depth the
depth-first search was only carried out for selected nodes. The total number of
nodes visited was then calculated assuming that the number of nodes in each
subtree would be the same for all nodes. Similar work has been done by Luke
O’Connor[8].

Keystream
Observed

0 correctly.
All initial states can generate the keystream of length

(0,0,{?,?,?,?})

(1,1,{?,1,0,?})(1,2,{?,1,2,0})

(2,1,{?,0,1,?})

(3,0,{3,0,1,2})

(0,3,{2,0,1,3})

1 node, 2 total states

1 node, 1 total states

1 node, 1 total states0, 0, 0, 0

0, 0, 0

0, 0

0

NoneDepth 0

Depth 1

Depth 2

Depth 3

Depth 4

Depth Tree Diagram

3 nodes, 4 total states(1,3,{0,1,?,3})

1 node, 24 total states

A unique solution has been found

Fig. 4. Forward Tracking Algorithm for n = 2, and a 0 Keystream of Length 4

Several variations of this algorithm are possible. Backtracking, in which the
keystream is processed in reverse, appears to be easier to implement efficiently
because s-box entries are fixed sooner. Probabilistic variants, which use trun-
cated tracking analysis or other information to determine the “best” node to
follow in the tracking analysis, may be able to analyse more keystream, avoiding
keystreams which result in a more difficult search. These variants are discussed
in [6].

The performance of these algorithms can be used to provide an upper bound
on the complexity of RC4 cryptanalysis. Table 4 shows the attack complexity
observed to date. All of the results are based on backtracking, except the nonzero
keystream n = 5 entry, based on an estimate from a probabilistic backtracking
attack.
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6 An Attack on a Weakened Version of RC4

Suppose that RC4 was modified by replacing its initialization function with the
following:

Algorithm 4 (Weak RC4 Initialization). Let k0 . . . kl−1 denote the user’s
key.

1. Calculate γ such that log2 (γ!) = 8 · l.
2. For z from 0 to 2n − 1

(a) Set Kz = kz mod l.
3. For z from 0 to 2n − 1

(a) Set Sz = z.
4. Set j = 0.
5. For i from 0 to 2n − 1

(a) Set j = j + Si +Ki mod 2n.
(b) Swap Si mod γ and Sj mod γ.

6. Set i = 0 and j = 0.

The system still has 8·l bits of entropy. However, because the tracking analysis
can easily be confined to searching the reduced keyspace, it is likely to succeed
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Table 4. Estimated Upper Bound on the Complexity of Cryptanalysis of RC4-n

RC4 Nominal Effective Attack Attack

Word Size Key Space Keyspace Complexity Complexity

(arbitrary keystream) (zero keystream)

2 28 24.58 24 23

3 224 215.30 28 27

4 264 244.25 220 217

5 2160 2117.66 269 242

6 2384 2296.00 ? ?

7 2896 2716.16 ? ?

8 22048 21684.00 ? ?

very quickly even for the full-size cipher. Table 5 summarizes the performance of
the tracking attack for this weakened variant of RC4. Table 5 was obtained by
performing a tracking attack on 20 keystreams generated with randomly chosen
keys for each value of γ. The maximum observed complexity is reported. This
result shows that RC4 depends heavily on its key schedule for its security. The
attack complexity indicated in Table 5 is not monotonically increasing because it
is often the case that the attack succeeds in substantially less than the maximum
number of steps.

Table 5. Tracking Attack Complexity for RC4 with a Weakened Key Schedule
(n = 8)

γ Effective Keyspace Attack Complexity

15 240 214

20 261 219

25 283 223

30 2107 217

31 2112 228

32 2117 226

33 2122 226
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7 Conclusion

RC4 remains a secure cipher for practical applications. Several theoretical at-
tacks exist but none have been successful against commonly used key lengths.
Nonetheless, tracking analysis does substantially reduce the complexity of crypt-
analysis compared to the maximum key length which could be specified. Tracking
analysis would show promise if it were possible to use knowledge of the actual
key length to limit the state space to be searched. In this regard, RC4’s resilience
is mainly due to the fact that the key schedule effectively prevents partial knowl-
edge of the s-box state from providing information about the key. If this were
not the case, tracking analysis would be successful even for the full-size cipher.
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