The RC5 Encryption Algorithm*

Ronald L. Rivest

MIT Laboratory for Computer Science
545 Technology Square, Cambridge, Mass. 02139
rivest@theory.lcs.mit.edu

Abstract. This document describes the RC5 encryption algorithm. RC5
is a fast symmetric block cipher suitable for hardware or software imple-
mentations. A novel feature of RC5 is the heavy use of data-dependent
rotations. RC5 has a variable word size, a variable number of rounds,
and a variable-length secret key.

1 A Parameterized Family of Encryption Algorithms

RC5 is word-oriented: all of the primitive operations work on w-bit words as
their basic unit of information. Here we assume w = 32, although the formal
specification of RCh admits variants for other word lengths, such as w = 64 bits.
RC5 has two-word (64-bit) input (plaintext) and output (ciphertext) block sizes.

RC)5 uses an “expanded key table,” S, derived from the user’s supplied secret
key. The size t of table S depends on the number r of rounds: S hast = 2(r+1)
words.

There are thus several distinct “RC5” algorithms, depending on the choice
of parameters w and r. We summarize these parameters below:

w This is the word size, in bits; each word contains u = (w/8) 8-bit bytes.
The standard value of w is 32 bits; allowable values of w are 16, 32, and 64.
RC5 encrypts two-word blocks: plaintext and ciphertext blocks are each
2w bits long.

r This is the number of rounds. Also, the expanded key table S contains
t = 2(r 4+ 1) words. Allowable values of r are 0, 1, ..., 255.

In addition to w and r, RC) has a variable-length secret cryptographic key,
specified parameters b and K':

b The number of bytes in the secret key K. Allowable values of b are 0, 1,
.y 255,

K The b-byte secret key: K[0], K[1], ..., K[b—1] .

A particular RC) algorithm is designated as RC5-w/r/b . For example, RC5-

32/16/10 has 32-bit words, 16 rounds, a 10-byte (80-bit) secret key variable, and
an expanded key table of 2(16 + 1) = 34 words, Parameters may be dropped,

* RC5 is a trademark of RSA Data Security. Patent pending.

from last to first, to talk about RC5 with the dropped parameters unspecified.
(So, for example: how many rounds should one use in RC5-327)

All of the parameters given above are packaged together to form a RCH
control block, containing the following fields:

v 1 byte version number; 10 (hex) for version 1.0 here.
w 1 byte.
r 1 byte.
b 1 byte.
K b bytes.

A control block is thus represented using b 4+ 4 bytes. It is expected that
RC) key-management schemes would typically manage and transmit entire RC5
control blocks. As an example, the control block

10 20 10 OA 20 33 7D 83 05 5F 62 51 BB 09 (in hexadecimal)

specifies an RC5 algorithm (version 1.0) with 32-bit words, 16 rounds, and a
10-byte (80-bit) key “20 33 ... 09”.

2 Parameter Values — Philosophy

It is not intended that RC5 be secure for all possible parameter values. For
example, » = 0 provides essentially no encryption, and r = 1 is easily broken.
And choosing b = 0 clearly gives no security.

On the other hand, choosing the maximum parameter values would be overkill
for most applications.

We provide a variety of parameter settings so that users may select an en-
cryption algorithm whose security and speed are optimized for their application,
while providing an evolutionary path for adjusting their parameters as necessary
in the future.

As an example, consider the problem of replacing DES with an “equivalent”
RC5 algorithm, such as RC5-32/16/7. The input/output blocks are 2w = 64 bits
long, just as in DES. The number of rounds is also the same, although each RC5
round is similar to two DES rounds since all data registers, rather than just half
of them, are updated in one round. Finally, the number of key bits, 7+ 8 = 56,
is identical.

Unlike unparameterized DES, however, RC5 permits upgrades as necessary.
For example, an RCH user can upgrade the above choice for a DES replacement to
an 80-bit key, for example, by moving to RC5-32/16/10. As technology improves,
and as the true strength of RC5 algorithms becomes better understood through
analysis, the most appropriate parameters can be chosen.

The choice of r affects both encryption speed and security. For some ap-
plications, high speed may be the most critical requirement—one wishes for the
best security obtainable within a given encryption time requirement. Choosing a
smallish value of r (say r = 6) may provide some security, albeit modest, within
the given speed constraint.

In other applications, such as key-management, security is the primary con-
cern, and speed is relatively unimportant. Here, choosing 32 rounds might be
appropriate for such applications. Since RC5 is a new design, the security pro-
vided by various values of r is still open to study.

Similarly, the word size w also affects speed and security. For example, choos-
ing a value of w larger than the register size of the CPU can degrade encryption
speed. The word size w = 16 is primarily for researchers who wish to examine
the security properties of a natural “scaled-down” RC5. As 64-bit processors
become common, one can move to RC5-64 as a natural extension of RC5-32. It
may also be convenient to specify w = 64 if RC5 is to be used as the basis for a
hash function, in order to have 128-bit input/output blocks.

It may be considered unusual and risky to specify an encryption algorithm
that permits insecure parameter choices. We have two responses to this criticism:

1. A fixed set of parameters may be at least as dangerous, since the parameters
can not be increased when necessary. Consider the problem DES has now:
its key size is too short, and there is no easy way to increase it.

2. It is expected that implementors will provide implementations that ensure
that suitably large parameters are chosen. While unsafe choices might be
usable in principle, in practice they would be forbidden.

It is not expected that a typical RC5 implementation will work with any
RC5 control block. Rather, it may only work for certain parameter values, or
parameters in a certain range. The parameters w, 7, and b in a received or trans-
mitted RC5 control block are then merely used for type-checking—values other
than those supported by the implementation will be disallowed. The flexibility
of RC5 is thus utilized at the system design stage, when the appropriate param-
eters are chosen, rather than at run time, when unsuitable parameters might be
chosen by an unwary user.

We propose RC5-32/12/16 as providing a “nominal” choice of parameters.
Further analysis is needed to analyze the security of this choice.

3 Notation and RC5 Primitive Operations

We use lg(z) to denote the base-two logarithm of .
RC5 uses only the following three primitive operations (and their inverses).

1. Two’s complement addition of words, denoted by “+”. This is modulo-2¥
addition. The inverse operation, subtraction, is denoted “—”.

2. Bit-wise exclusive-OR of words, denoted by .

3. A left-rotation (or “left-spin”) of words: the rotation of word z left by y bits is
denoted # < y. Only the lg(w) low-order bits of y are used to determine the
rotation amount, so that y is interpreted modulo w . The inverse operation,

right-rotation, is denoted z >> y.

These operations are directly and efficiently supported by most processors.

A distinguishing feature of RC5 is that the rotations are rotations by “vari-
able” (plaintext-dependent) amounts. We note that on modern microprocessors,
a variable-rotation z <« y takes an amount of time that is independent of the
shift amount y. We also note that rotations are the only non-linear operator in
RC5; there are no nonlinear substitution tables or other nonlinear operators.
The strength of RC5 depends heavily on the cryptographic properties of data-
dependent rotations.

4 The RC5 Algorithm

The plaintext input to RC5 consists of two w-bit words, denoted A and B.
The algorithm uses an ezpanded key table, S[0...t—1], consisting of ¢ = 2(r+1)
w-bit words. The key-expansion algorithm initializes S from the user’s given
secret key parameter K. (Note that S is not used like a DES S-box.)
RC5 consists of three components: a key expansion algorithm, an encryption
algorithm, and a decryption algorithm.

4.1 Key Expansion

The purpose of the key-expansion routine is to expand the user’s key K to fill
the expanded key array S, so S resembles an array of ¢ random binary words
determined by the user’s secret key K.

Definition of the Magic Constants The key-expansion algorithm uses two
word-sized binary constants P, and @, . They are defined for arbitrary w as
follows:

P, = 0dd((e — 2)2%) (1)
Qw = 0dd((¢ —1)2%) (2)
where
e = 2.718281828459... (base of natural logarithms)
¢ = 1.618033988749... (golden ratio) ,

and where Odd(z) is the least odd integer greater than or equal to |z]|. For
w = 16, 32, and 64, each constant is given below in binary and in hexadecimal.

b7el
9e37

P16 = 1011011111100001
Q16 = 1001111000110111

P32 = 10110111111000010101000101100011 = b7e15163
Q32 = 10011110001101110111100110111001 = 9e3779b9

P64 = 1011011111100001010100010110001010001010111011010010101001101011
= b7e151628aed2abb

Q64 = 1001111000110111011110011011100101111111010010100111110000010101
= 9e3779b97f4a7c15

Converting the Secret Key from Bytes to Words. The first step of key
expansion is to copy the secret key K[0...b — 1] into an array L[0...c — 1] of ¢ = [b/u]
words, where u = w/8 is the number of bytes/word. This is done in a natural manner,
using u successive key bytes of K to fill up each successive words in L, low-order byte
to high-order byte. Unfilled byte positions of L, if any, are zeroed.

On “little-endian” machines such as an Intel ’486, the above task can be accom-
plished merely by zeroing the array L, and then copying the string K directly into the
memory positions representing L. The following pseudo-code achieves the same effect,
assuming that all bytes are “unsigned” and that array L is initially zeroed.

for : =5—1 downto 0 do
Lli/u] = (L[i/u] < 8) + K[i];

Initializing the Array S. The second step of key expansion is to initialize array S
using a linear congruential generator modulo 2% determined by the “magic constants”
P, and Q.. Since @ is odd, the generator has period 2.

S[O]:Pw§
for:i=1tot—1do
S[i] = S[t — 1] + Qus;

Mixing in the Secret Key. The third step of key expansion is mix in the user’s
secret key in three passes over the arrays S and L. Actually, due to the differing sizes
of these arrays, the largest array will be processed three times, and the other may be
handled more times.

1=3=0;

A=B=0;

do 3 * max(t, c) times:
A=S8[]=(S[i]+ A+ B) x 3;
B=1[j) = (L[] + A+ B) < (A + B);
i= (14 1) mod(t);
j= (G +1) mod(0);

The key-expansion function has a certain amount of “one-wayness”: it is not so
easy to determine K from S.

4.2 Encryption

We assume that the input block is given in two w-bit registers A and B. (We assume
standard little-endian conventions for packing bytes into input/output blocks: the first
byte goes into the low-order bit positions of register A, and so on.) We also assume
that key-expansion has already been performed. Here is the encryption algorithm in
pseudo-code:

A=A+ S[0];

B = B + S[1];

for 1 =1to r do
A=((A® B) « B) + 5[2 = 1];
B=((BoA) xw A)+S[2xi+1];

The output is in the registers A and B.

4.3 Decryption

The decryption routine is easily derived from the encryption routine.

for : = r downto 1 do
B=((B-S[2*i+1])>> A)® A,
A=((A-S[2%1])>> B)® B;

B — S[1];

A—-S

5 Discussion

A distinguishing feature of RC5 is its heavy use of data-dependent rotations—the
amount of rotation performed is dependent on the input data, and is not pre-determined.

The encryption/decryption routines are very simple. While other operations (such
as substitution operations) could have been included in the basic round operations, the
objective here is to focus on the data-dependent rotations as a source of cryptographic
strength.

Some of the expanded key from S is initially added to the plaintext, and each round
ends by adding expanded key from S to the intermediate values just computed. This
assures that each round acts in a potentially different manner, in terms of the shift
amounts used.

The xor operations provide some avalanche properties, causing a single-bit change
in an input block to cause multiple bit-changes in following rounds.

The encryption algorithm is very compact, and can be coded efficiently in assembly
language on most processors. The table S is accessed sequentially, minimizing issues
of cache size. The RC5 encryption speeds obtainable are yet to be fully determined.
For RC5-32/12/16 on a 90MhZ Pentium, a preliminary C++ implementation compiled
with the Borland C++ compiler (in 16-bit mode) performs a key-setup in 220 microsec-
onds and performs an encryption in 22 microseconds (equivalent to 360,000 bytes/sec).
These timings can presumably be improved by more than an order of magnitude us-
ing a 32-bit compiler and/or assembly language—an assembly-language routine for the
’486 can perform each round in eight instructions.

6 Analysis

This section contains some preliminary results on the strength of RC5. Much more
work remains to be done. Here we report the results of two experiments studying how
changing the number of rounds affects properties of RC5.

The first test involved uniformity of correlation between input and output bits. We
found that four rounds sufficed to get very uniform correlations between individual
input and output bits in RC5-32.

The second test checked to see if the amount of variable rotations performed de-
pended on every plaintext bit, in 10,000 trials. That is, it checked whether flipping a
plaintext bit caused some intermediate rotation to be a rotation by a different amount.
We found that seven rounds in RC5-32 were sufficient to cause each message bit to
affect some rotation amount.

The number of rounds chosen in practice should always be at least as great (if not
substantially greater) than these simple-minded tests would suggest. As noted above,
we suggest 12 rounds as a “nominal” choice.

The use by RC5 of variable rotations should help defeat differential cryptanalysis
(Biham/Shamir [1]) and linear cryptanalysis (Matsui [2]), since bits are rotated to
“random” positions in each round.

There is no obvious way in which an RC5 key can be “weak,” other than by being
too short.

I invite the reader to help determine the strength of RC5.

7 Acknowledgements

I’d like to thank Burt Kaliski, Lisa Yin, Paul Kocher, and everyone else at RSA Lab-

oratories for their comments and constructive criticisms.

References

1. E. Biham and A. Shamir. A Differential Cryptanalysis of the Data Fncryption
Standard. Springer-Verlag, 1993.

2. Mitsuru Matsui. The first experimental cryptanalysis of the data encryption stan-
dard. In Yvo G. Desmedt, editor, Proceedings CRYPTO 94, pages 1-11, Springer,
1994. Lecture Notes in Computer Science No. 839.

This article was processed using the INTpX macro package with LLNCS style

