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requires more than trillion years on Wiener’s machine [20]. Its main advantage
is that organizations can increase the security of their systems which use DES in
hardware, with the same encryption/decryption speed. An additional advantage
is the backward compatibility to the standard DES, that can be achieved by
choosing K, = K3 = 0 and K, which does not modify the order of the S-boxes.
Table 6 compares the security of the variants of our scheme and the standard

DES.

Scheme Number of Complexity of Attack:
Key Bits Exhaustive Differential Linear Im.Davies’
DES 56 2°% 27 21 2°0
Our scheme with:
DES S-boxes 109 2107 2% 2°! 2°2
DES w/o reorders” 109 2107 248 259 2°6
s’DES S-boxes 119 o117 266 264 00
s°DES w/o reorders 104 2102 266 264 o0

*using the best order of S-boxes S2, 54, 56, 57,.53,51, 55, 58.

Table 6. Comparison of our scheme with DES.

5 Summary

In this paper we described methods of strengthening DES against exhaustive
search, differential, and linear attacks that can use existing hardware, without
slowing encryption speed. We used the fact that there are DES chips on the
market that allow the user to load S-boxes of his choice (for example [18]).

The concept of key-dependent invariant S-box transformation was intro-
duced. We showed several ways to expand the key of DES. Possible reorderings
of S-boxes were discussed, and orders that are better than the standard order of
the S-boxes were shown. We gave an example of better orders for which a linear
attack needs 253 plaintexts. We discussed s3DES S-boxes. We claimed that this
set of S-boxes is far more secure than the standard set. We have also shown
that the replacement of the standard S-boxes by random key dependent S-boxes
might weaken DES.

Finally we suggested a concrete scheme which uses s3DES S-boxes and has a
longer key. This scheme can be used with existing DES hardware and is claimed
to be stronger than DES in view of differential, linear and improved Davies’
attacks, and especially in view of exhaustive search.
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K, Consists of 5 bits if DES S-boxes are used and consists of 15 bits if sDES S-
boxes are used. These bits decide the order in which the S-boxes are loaded.
Each combination of bits corresponds to one of the strong orders of the

S-boxes.
K4 Consists of 56-bits. It is loaded to the DES key scheduling algorithm.

Remark: The choice of a 16-bit K, (rather than 48-bit) eliminates key equiva-
lences and most complementation properties discussed in sections 3.1, 3.1. Two
complementation properties still remain — one is the famous complementation
property of DES and another is of the following type: Let

P =P@TFFF80007TFFF8000,,
K, = K, ® C00000C00000,,
K; = K; ® FFFFFF000000,.

Then ~ ~
C =Ekg(P)=C=Eg(P).

The E expansion prohibits existence of this complementation property in DES
(see also [10]). In order to eliminate the two complementation properties in our
scheme, we can fix one bit of each half of K, effectively reducing its size to 54
bits.

The key in our scheme (K4,K3, K., Kq) consist of 16 + 32+ 5+ 56 = 109 bits
in case of DES S-boxes and 16 + 32 4+ 15 4+ 56 = 119 bits for s3DES S-boxes.
In order to change the keys during encryption, it is now required not only to
change the 56-bit DES key. We should also compute the S-boxes and load them
to the hardware. The following algorithm generates the S-boxes:

1. Take s3DES S-boxes (or standard DES S-boxes) and reorder them according
to K. (using K. as an index to a table of strong orders).

2. For each S-box S;, i = 1...8 in the received order, perform the transforma-
tion under the two bits (2i — 2, 2i — 1) of K, that are XORed to the input of
S; and the four bits of K XORed to the output of §; according to the fol-
lowing formula (K, [s] is used to denote the two bits of K, padded with four
zero bits and Kj3[s] is used to denote the four bits of Kj which correspond
to the input and the output of the S-box § respectively):

Snew(z) = Soriginal(x @ K, [3]) @ Ky [5] (6)

3. The resultant S-boxes are loaded into the hardware and K, is loaded into
DES keys scheduling algorithm.

Those who prefer to simplify key processing slightly (and reduce the space,
required for keeping the table of orders), can eliminate the reorderings and ignore
K, thus using keys of the form (K,,K3,Kg4). We suggest to use in such case the
s3DES S-boxes, with the reversed order of S1 and S2(if the DES S-boxes are
used, the best order is: 52,54, S6, 57,53, 51, S5, S8).

We claim that our scheme is more secure than s>DES or DES against dif-
ferential, linear and improved Davies’ attacks and that an exhaustive search



S-box, which we denote by S. We use the right pair(s) that we already identified
and continue the 2R-attack described above in order to find more right pairs.
In the first round we have ¢y — v. Since we do not know both the S-box S and
the key, we will hide the XOR with K; on the first round inside the S-box S.
Denote by Pr, and Pg left and right halves of the plaintext. Then we obtain the
following formula for the active S-box:

S(Pg[s]) ® S(Pg[s]) = Pr[s]® Pr[s] = v (5)

Only the S-box S is unknown in (5), thus we get four bits of this S-box. There
can be 32 different right pairs suggesting new S-box bits. We organize these 32
pairs with their v in a table. Thus we get 32 - 4 bits of particular S-box out of
total 64 - 4. In order to find bits of the key we need to know another pattern
of type ¥ — ¢ from the last round. Such pattern can be found in a 1R-attack.
With the same data which we used to find 32 right pairs (2-32-2!8 = 224 chosen
plaintexts) we expect to find about four right pairs for a 1R-attack. Now by
hiding K16 in S-box on the last round we can get a part of another table for the
same S-box. These two tables can be used in order to find 5 key bits of K1 @ Ki¢.
In the last 16th round ¢ — 7, where ¢ is the output difference of the F'-function
on the 15th round (¢ — ¢). Since ¢ differs in inputs to at most six S-boxes,
using the same 32 right pairs we can gain up to 6 -4 - 32 bits of these S-boxes.

If we have two patterns ¥ — ¢; and 2 — ¢2 for the same S-box then we
can find 48 - 4 bits of this S-box and a sixth bit of the key K; @ Ki¢. In general
each new pattern for S-box reduces the number of the unknown S-box bits by a
factor of two. So we need about six different patterns to find all the bits of the
S-box except four bits which cannot be found with this method. As seen from
Table 4, the chances for several patterns with probabilities greater or equal than
% are very high. For example, for about 10% of the keys we can find all the bits
of the S-boxes except four for each and about 30-40 bits of K; @ K1 using 2%°
chosen plaintexts and for about 84% it can be found using 22° chosen plaintexts.
Later we can complete the key using other auxiliary techniques.

Due to this weakness of the key-dependent random S-boxes of DES, we do
not recommend to use this method in our proposed scheme.

4 Modified DES Scheme

In this section we present our concrete scheme of modified DES. We suggest to
use s°DES S-boxes with a reversed order of S1 and S2, instead of the standard
DES S-boxes, since they are more resistant to differential cryptanalysis. It is
also possible to use our scheme with the standard DES S-boxes. Our scheme
uses keys of the form (K,, K3, K., Kgq) where:

K, Consists of 16 bits. It is expanded by E* (described in section 3.1) to 48 bits
and is then XORed to the input of the S-boxes in all the rounds.

K3 Consists of 32 bits. It is XORed to the output of the S-boxes in all the
rounds.



Number of  Percentage of random S-box sets for which pattern 00zy00, — 0

occurrences takes place with probability as below or better

6/64 8/64 10/64 12/64 14/64 16/64
0 100.0 100.0 100.0 100.0 100.0 100.0
1 100.0 97.1 68.4 27.8 7.5 1.7
2 99.9 85.7 30.9 4.0 0.3 0.0
3 99.4 65.2 10.0 0.4 0.0 0.0
4 97.5 41.7 2.5 0.0 0.0 0.0
5 92.9 22.2 0.5 0.0 0.0 0.0
6 83.6 10.0 0.1 0.0 0.0 0.0
7 69.9 3.8 0.0 0.0 0.0 0.0
8 53.0 1.3 0.0 0.0 0.0 0.0
9 36.0 0.3 0.0 0.0 0.0 0.0
10 21.7 0.1 0.0 0.0 0.0 0.0
11 11.6 0.0 0.0 0.0 0.0 0.0
24 0.0 0.0 0.0 0.0 0.0 0.0

Table 5. Distribution of patterns 00zy00, — 0 in random S-boxes.

2718 However, we do not know exactly which pattern succeeds. There are 24
different patterns of this type (three for each S-box). Therefore, we should use
all the 24 characteristics that cover all the possible patterns.

Using the first round trick of the full 16-round attack on DES [2], we get
a 2R-attack with 2'3 structures, each structure contains 2° chosen plaintexts
producing 2° different pairs of each of the three patterns 00xy00, # 000000,.
Each structure contains a right pair for each pattern with probability 2718 .
25 = 2713, The plaintext difference is of the form (v, ) where ¢ is some input
difference in two middle bits to a particular S-box and v is some output difference
of this S-box (at most four bits differ). This attack has a very high S/N since
36 bits of the ciphertext XOR must be zero (or easily predictable) so we can
discard almost all wrong pairs.

The attack is as follows: In the first phase of the attack on DES with key-
dependent S-boxes we find all the patterns with probability % or higher using
8213 .25 = 222 chosen plaintexts. During the attack, we do not know a-priori
the actual probability of the characteristics. However, after we identify the right
pairs, we can find an approximation of the probability of the pattern 00zy00; — 0
for each S-box by the formula:

Nri airs
P(00zy00; — 0) = ¢ Ng# (4)
allpairs

In the second phase, we perform a massive attack on the concrete patterns
which were found in the first phase in which we find most values of the active



is increased by log(Nj.ss) bits. The problem with this approach is that we need
to perform a thorough check for each set of S-boxes against all known attacks.
The storage of the S-boxes is increased by the factor of Ny.ss, but the scheme is
strengthened by a smaller factor.

Another approach is to add new design principles to DES. This was already
done in [11]. Their s DES S-boxes suit all the published design principles of DES
plus one more — two inputs with difference 11zy10; cannot have the same out-
put. This property prohibits three adjacent active S-boxes to cause zero output
difference (in DES this is possible with probability about ﬁ — which was inten-
tionally lowered by the designers [6]). Moreover, in s°DES all the eight S-boxes
should be active in order to have such effect. This lowers the probability of the
two-round iterative characteristic used to attack the full 16-round DES to 27
(independent of the order of the S-boxes). Knudsen[12] found a four-round itera-
tive characteristic of s3DES. The iteration of this characteristic to 13 rounds has
probability about 2763, but there is a 16-round linear approximation of s3DES
with probability about % + 2726 for which an attack requires about 2*3 known
plaintexts. However, if we reverse the order of S1 and S2 of s3DES, then the
best known differential characteristic has probability about 27535 and the best
linear approximation has probability 1+ 27337 [5]. In [3] it is shown that s>DES
is immune to the improved Davies’ attack. Thus, it is predicted that this variant
of the s3DES S-boxes is much more secure than the standard set of S-boxes of
DES.

The properties of the S-boxes that we used in sections 3.1 and 3.2 also hold
for the S-boxes of sDES, and thus this suggestion can be used simultaneously
with the previous ones.

3.4 Random Key-Dependent S-Boxes

S-boxes are probably the most studied and still the most mysterious parts of
DES. Since most attacks start from an analysis of the S-boxes, one of the meth-
ods, that makes cryptanalysis more complex is to hide the S-boxes, and to make
them key-dependent. For example, Khufu [16] is more secure than Khafre [16, 2]
although they are very similar, only because of the hidden key-dependent S-
boxes.

In [2] a study of DES with known random S-boxes is described. It is shown
that 97% of the random sets of S-boxes are vulnerable to differential attack with
only 22! chosen plaintexts. Here we analyze a more general case of unknown
random S-boxes in which the S-boxes are key-dependent. We will show that
approximately 10% of the resultant sets of S-boxes are breakable with only 226
chosen plaintexts.

Table 5 describes approximate distribution of patterns of type 00zy00; — 0
in random S-boxes. This table is a result of testing 100000 sets of eight random
S-boxes. We see that patterns 00zy00; — 0 with probability % or better take
place only in 1.7% of all the sets and with probability % or better in 97% of
all sets (as shown in [2]). Thus, in 97% of the sets, some two-round iterative
characteristic with pattern 00zy00; — 0 has probability higher or equal to %,
and the corresponding 13-round characteristic has probability higher or equal to



Active S-boxes Prob(¢ — 0)(-27'%)

2,46 960
46,7 896
6,7,3 960
7,31 768
3,1,5 384
1,5,8 560
5,8,2 640
8,2,4 1024

Table 3. New order of the S-boxes 52,54, 56,57, 53, 51,55, 58: the maximal proba-
bilities of the two-round iterative characteristics with ¢ — 0.

linear cryptanalysis [4, 15]. It is stated that the current order of the S-boxes is rel-
atively weak against linear cryptanalysis, and that most of the orders strengthen
DES against this attack. We estimate that we can choose out of the pool of 104-8
orders that are strong as DES or better against differential and improved Davies’
attacks, at least 32 orders strong against differential, linear and improved Davies’
cryptanalysis and add 5 new bits to the key which will decide the order of S-
boxes in use. This increases the complexity of exhaustive search by a factor of
32. A variant of the attack on the full 16-round DES described in [2] can be per-
formed for this modification of DES with metastructures covering 15 -8 = 120
different characteristics which suffice for the all orders. It requires about 25!
chosen plaintexts. The 32 best orders of the DES S-boxes are shown in Table 4.

24673158 64273158 12643758 82764513
73158642 76431582 12643875 12673845
16273845 87512643 73158246 76451382
82467513 84512673 15642738 16243758
16243875 75812643 86724513 73458162
75642138 76438152 76458132 26738451
38752461 46731582 62738451 13642758
86427513 15824673 15864273 67384512

Table 4. The best orders of the DES S-boxes against both differential and linear
attacks

The approach described in this section strengthens marginally against linear,
differential, improved Davies’ and exhaustive search attacks.

3.3 Using Alternative DES-Like S-Boxes

One can compute several different sets of S-boxes according to the design princi-
ples of DES, and use additional key bits to control which set is used. The key size



DES if the input differences of these S-boxes are of the forms 00zyll; — 0,
11zy10; — 0, 10zy00; — 0 respectively. Table 1 describes the standard order
of the S-boxes in terms of the maximal entries in the difference distribution
tables for each pattern. Table 2 shows the maximal probabilities of the two-
round iterative characteristics for the standard order of the S-boxes. We can

Active S-boxes Prob(¢ — 0)(-27'%)

1,2,3 1120
2,34 768
34,5 1024
45,6 320
5,6,7 896
6,7,8 960
7,81 768
8,1,2 480

Table 2. Standard order of the S-boxes, maximal probabilities of two-round iterative
characteristic for pattern ¢ — 0.

see that p is reached when the first three S-boxes are active, with p = 1614230.

From Table 1 we can see also that the order S1,57,54,... [2] (the order of the
remaining S-boxes is irrelevant) is the worst, giving the highest probability of
two round iterative characteristic (p = 146163'16 & 71—3) Clearly, any rotation of
the order of the S-boxes does not change p, thus, the orders come in sets of eight
orders.

A program was written to solve the described optimization problem. It found
136 - 8 orders for which the maximal probability of a two-round iterative charac-
teristic is as in DES or smaller. Among those, 32-8 = 256 orders have probability
lower than in DES: p = 1604234 = %

The improved Davies’ attack suggests that 32 - 8 orders out of 136 - 8 are
weaker than the original order of the S-boxes by a factor of 4-5 in terms of
required known plaintexts and complexity of the attack. These are all the orders
where Sg comes after Ss or S4. Among the 32 -8 best differential orders 18 -8 are
weaker under Davies’ attack. These results can be verified easily by looking at
Figure 9 in [8].

We performed extensive analysis for one of the best orders. Table 3 describes
the order: 52,54, 56,57,53, 51,55, S8.

For this particular order the complexity of differential attack becomes (51=)% =

256

2748 instead of (ﬁf = 27472 This is not a major gain against differential at-

tack; however, quite surprisingly this order of S-boxes makes Matsui’s linear

attack much harder since it requires 253 known plaintexts, and actually it is the
best order in the view of both differential cryptanalysis and linear cryptanalysis.
The improved Davies’ attack requires about 2% known plaintexts to attack this
order.

Several papers study the influence of reorderings of the S-boxes in the view of



Related Keys Consider a pair of new keys with difference (AK,, AKj},0),
where AK? = 0. The maximal probability of AK, — AK, by the F-function
of DES is 1/4. Then if the plaintext difference is (AK¢, AK?), the ciphertext
difference will be the same with probability 2% Though the keys used are un-
known the relation between them leaks relation between possible ciphertexts. We
estimate that there are no relations with probability higher than 2% In order
to use this property for an attack, the attacker must be able to choose relations
between keys, making such an attack to be of theoretical interest only. There are
several ways to avoid weak choices of related keys in this scheme. One of them
is to hash the key with a hash function in order to create K, and K. Then, an
attacker will not be able to find a pair of keys with the required relation.

Equivalent Representations of Our Scheme This scheme is equivalent to
the following scheme which has no Kj, but has two different K,’s used in dif-
ferent rounds: No XOR with the key is performed after the S-boxes. In rounds
1,4,5,8,9,12,13,16 there is a XOR with K} = original K, before the S-boxes and
in rounds 2,3,6,7,10,11,14,15 there is a XOR with K2 = E(P(original K;))® K}
before the S-boxes.

3.2 Key-Dependent Reorderings of the S-Boxes

In [2] it was shown that many changes to the order of the S-boxes can make
DES much weaker. One can ask the question whether the standard order of the
S-boxes is optimal. In [6] it is stated that somewhat reduced probability p of
¢ — 0 in case of three active S-boxes was designed into DES (design rule S-8 in
6]).

In order to find good orders, we must solve an optimization problem, finding
the maximal probability p for each possible order of the eight S-boxes (7! = 5040
orders, rather than 8!, since the analysis is invariant for cyclic reorderings). The

S box 00zy11y 11zy10 10zy00,

1 14 6 12
2 6 8 10
3 8 8 10
4 8 16 16
5 8 4 8
6 6 8 10
7 8 16 14
8 8 8 10

Table 1. Maximal values corresponding to the entries 00zyl1l, — 0, 11zy10; — O,
10zy00, — 0 in difference distribution tables of DES S-boxes.

characteristics ¥ — 0 with only three adjacent active S-boxes takes place in



Complementation PropertyIn this section we show that the method of
invariant S-box transformations possesses a strong complementation property,
which cancels the effect of 32 out of the 48 bits of K.

Consider a pair of keys (Kq, Kp, Kq) and (K}, Kp, Kq). K, can be divided
into two keys: 16 bit internal key K% and 32 bit external key K¢, where K, =
E(K&)@E*(K!), E is the expansion of DES, and E* takes bits indexed 23, 25+ 1
in K¢ (j € [0,7]) into bits 65,65 + 1 while all the other 32 bits are set to zero.
Thus, we receive an equivalent description of our scheme that contains the short
internal key K on each round and K¢ is XORed to both halves of data entering
the cipher after IP and leaving the cipher before IP~!. This external key is
ineffective since it does not take part in the encryption process. As a result of
this and of the equivalences described in the previous section, (K4, K4, K3) can
be searched 23* times faster than full exhaustive search with a chosen plaintext
attack similar to the attack on the complementation property of DES (factor 232
due to the complementation property and factor 22 due to equivalent keys).

For this shortcut we need 23?2 chosen plaintexts representing all possible val-
ues of P, = P & (4,1) encrypted into C; under the unknown key. P is encrypted
under all keys K = (K,, K;, K4) where K, = E*(K!%) (i.e., K¢ = 0), and two
fixed bits of K4 (one in each half) are zero. Then we search for P; for which
C; = C @ (i,4) (this can be done efficiently with a lookup table). Such a P; sug-
gests the key (E(i)@® E*(KL), Ky, K4). Since the key is longer then the blocksize,
we need to verify this suggested key with additional ciphertexts. This attack de-
scribed above uses 32 complementation properties and two key equivalences (see
section 3.1). The complementation property of DES is included in these 34 re-
dundancies. Thus, the number of the additional effective key bits is 47 rather
than 80.

Weak and Semi-Weak Keys

Definition 2 A key K is called a weak key if Ex(Eg(P)) = P for any P.

Definition 3 A pair of keys K; and K are called semi-weak keys if Fx, (Ek,(P)) =
Fg,(Eg,(P)) = P for any P.

All the known weak keys of DES have symmetric subkeys, st. K1 = Kyg,
Ky = K5, ete. (actually K3 = Ky = ... = Ky5). All the known pairs of semi-
weak keys of DES have: K1 = Ky, Ko = K{5,... K16 = K7.

Lemma 1 Let K4 be a weak (or semi-weak) key of DES of the form described
above. Then, for any K,, and K3, the key K = (K4, K3, Kq) is a weak (semi-
weak) key of our scheme.

Lemma 2 For any two semi-weak keys of DES (not necessarily from one pair)
for which K4 @ K is a weak key, and for any K, there exists K such that for
any K3 the pair of keys (K, K3, K4) and (K}, K3, K3) is a pair of semi-weak
keys of our scheme.



K @K =K@ Kj=..=Kis®K}s=K,® K} = Const (3)

Due to the known regularities in the key scheduling algorithm of DES [7],
equation (3) holds only when K4 @ K is one of the four known weak keys. If
Kq® K] =0 then K, ® K} =0, and we result with K = K*. Thus, any key K
has exactly three equivalent keys.

Q.E.D.

Corollary 1 For any pair of weak keys of DES K4, K] and for any K,, there
exists K such that (K,, K3, Kq) is equivalent to (K, K, K}), for any Kj.

Proof Equation (3) holds since the weak keys produce sets of constant subkeys.
Q.E.D.

Corollary 2 For any pair of the semi-weak keys of DES K4, K and for any
K,, there exists K such that (K,, K, Kq) is equivalent to (K, Ky, K), for
any Kp.

Proof A pair of semi-weak keys suits (3) since if a key K4 generates the set of
subkeys:

Ki... K6 =s,t,t,1,t,t,t,1,s,s,8,8,8,8,s,t.

then its counterpart K generates the set:

K} ... Kjs=1,s,8,8,8,8,8 sttt t1t11s.

Thus K; @ Kf =s®t=K,® K, =Const #0 for any i =1...16.
Q.E.D.

The key space is divided into equivalence sets of size four: each key has three
equivalents. These key equivalences cancel the effect of two key bits.

Since DES S-boxes are nonlinear, set of all transformations Tk, k, con-
tains 280 different transformations, or in other words no two pairs (K,,K;) and
(K} K;) generate the same set of S-boxes. This is proved by the following corol-
lary of Theorem 1.

Corollary 3 If the assumption holds, no two different pairs (K,, K3) and (K}, K})
are equivalent.

Proof If there are two equivalent pairs (K, K3) and (K}, K}), then for any Ky,
(Ka, Ky, Kq) is equivalent to (K, Kj, K3}), and by the proof of Theorem 1, no
two equivalent keys have the same K.

Q.E.D.
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Fig. 1. New S-box.

against these attacks. The approach marginally strengthens the cipher against
the improved Davies’ attack. However, it increases the key size considerably in
order to thwart exhaustive search. In the following subsections, we study several
important properties of the resultant cipher.

Equivalent Keys

Definition 1 Two keys K; and K3 are equivalent if Fg, (P) = Eg,(P) for any
P.

Assumption 1 If two keys K = (K4, K3, Kq), K* = (K
lent, then

», Ky, K}) are equiva-

Ki®K,=K' &K' i=1...16 and K,=K;. (2)

Clearly, if (2) holds, then the two keys are equivalent. The question is whether
there are equivalent keys.

Theorem 1 If the assumption holds, any key K = (K,, K3, K4) has exactly
three equivalent keys.

Proof If two triplets (Ko, K3, Kq), (K}, K}, K}) are equivalent, according to
the assumption, the following relation holds for all 16 subkeys:



3 Possible Directions

Our aim is to develop methods that can strengthen DES (against exhaustive
search, and differential and linear attacks) that require no additional investments
in hardware. We also do not want to slow down the performance of encryption.
Since some hardware implementations of DES permit to change S-boxes, we
suggest several ways to change them with a positive effect on the security of
DES. It is clear that these changes should be made very carefully since the S-
boxes are a vital part of DES and the strength of the algorithm crucially depends
on their choice. For example in [2] it was shown how even negligible changes to
the S-boxes of DES can make differential attacks much more successful. Most
previous attempts to suggest alternative S-boxes for DES actually weakened the
resultant cryptosystem, since the designers of the new S-boxes were not aware
of crucial design principles of DES. We suggest three approaches to reach this
goal.

3.1 Key-Dependent S-Box Transformations

Our first suggestion is to create a new S-box by a transformation of an existing
S-box by XORing a six-bit key material K, [s] before the S-box substitution and
XORing a four-bit key material K;[s] to the output of the S-box (see Figure 1).
An equivalent description of the same suggestion XORs a 48-bit subkey K, to
the expanded input of the F-function, and XORs a 32-bit subkey Kj to the
result of the S-boxes, before the P permutation. Note that the same K, and
K are used in all the rounds during encryption. It is clear that this operation
is XOR-linear and does not influence differential or linear cryptanalysis. The
improved Davies’ attack can become only more complicated. Constant K, has
no influence on the attack, since inputs are considered to be random. Constant
K3 has no influence on even distributions and produces 16 variations of the odd
distributions (permutation of rows and columns), like D7 (which is used for the
improved attack). This way one can gain up to 80 new key bits (In the following
subsections we discuss the number of effective key bits that can be gained this
way).

These additional XORs with constant keys induce some transformations of
S-boxes, so the new set of S-boxes must be calculated from an old set of S-
boxes when a new key is chosen. Consider the following transformation of some
abstract S-box &, where K,[s] is the value of the six bits of K, which enter §
and Kj[s] is the value of the four bits of K3 which are XORed to the output of
S:

(Tk.[s1x,1518)(2) = (2 @ Kals]) @ Ko[s] (1)

The effect of K4[s] on & is a transposition of rows according to the value

of the two outmost bits of K,[s] and a transposition of columns according to
the four inner bits of K,[s]. The effect of K3[s] on § is an independent trans-
position of each row. In order to get a new set of S-boxes one must perform
the operation described in equation (1). This approach does not influence dif-
ferential and linear attacks. Thus it cannot make the cipher stronger or weaker



Several suggestions were made in the last two decades in order to strengthen
DES: increase of the number of rounds from 16 to 32, 64 or even more [10],
multiple encryption or larger key size[9], independent subkeys (768 bits) [1],
dramatic increase of the key scheduling complexity [13, 19] and others. Not
considering security features of these solutions we note that most of them either
require the design of new hardware or decrease encryption speed considerably.

The standard of DES[17] requires hardware implementation. During the last
two decades many different DES chips were developed. All these chips will be-
come useless if the standard is to be modified or substituted. Some of these
chips were designed with this fact in mind, and they allow the user to choose
his favorite S-boxes as a replacement to the standard S-boxes (for example see
[18]).

In this paper we describe new methods to strengthen DES against the attacks
mentioned above. These methods require no hardware replacement, whenever the
existing hardware can load alternative S-boxes. Our changes to DES are based
on loading new S-boxes. We introduce the concept of key-dependent invariant S-
box transformation. These transformations preserve the properties of the S-boxes
related to differential and linear attacks. We show how to increase the key size
using these transformations, resulting in a dramatical increase of the complexity
of exhaustive search. Possible reorderings of the S-boxes are discussed. In [2] it is
shown that some modified orders of the S-boxes weaken DES; we present several
modified orders of the S-boxes of DES that slightly increase strength against
both differential and linear attacks. We give an example of an order for which
linear attacks require 2%3 known plaintexts and differential attacks require 242
chosen plaintexts.

Recently Kim, Park and Lee suggested a new set of DES-like S-boxes (which
they call — s3DES). We believe that this set is more secure than the original set
against differential and linear attacks (when the order of S1 and S2 is reversed).
We use this set to strengthen our modified DES. We also show that random key
dependent S-boxes (as in Khufu [16]) might weaken DES.

Finally we suggest a concrete scheme, which uses s3DES S-boxes and has
a longer key. This modified DES can be used with existing DES hardware and
is claimed to be stronger than DES in a view of linear and differential attacks.
Exhaustive search of the whole key space is infeasible in this suggested scheme,
due to the longer key size.

2 Notations

Throughout this paper, the following notations are used.

ny A binary number n is denoted with the subscript b (e.g. 110000, = 48).

ngy A hexadecimal number n is denoted with the subscript  (e.g. 10, = 16).

Ex(P) The encryption of 64-bit plaintext block P under the key K.

K4 A 56-bit subkey (of our scheme) which is entered to the (original) DES key
scheduling algorithm.

K; The i-th round 48-bit subkey of K .

E(-) The expansion operation of DES.



How to Strengthen DES
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Eli Biham* Alex Biryukov**

Abstract. Differential, linear and improved Davies’ attacks are capable
of breaking DES faster than exhaustive search, but are usually impracti-
cal due to enormous amounts of data required. In [20] Wiener designed a
million dollar special purpose computer capable of breaking DES in 3.5
hours in average by exhaustive search. In this paper we describe meth-
ods of strengthening DES against exhaustive search, differential attacks,
linear attacks and improved Davies’ attacks that can be applied on ex-
isting DES hardware. We use the fact that there are DES chips in the
market that permit replacement of the S-boxes. We introduce the con-
cept of key-dependent invariant S-box transformations. Differential and
linear properties of the cipher are invariant under these transformations.
We show how to expand the key using such transformations. Possible re-
orderings of S-boxes are discussed; we present orders of the original DES
S-boxes which are slightly stronger than the standard order of S-boxes.
Finally we suggest a concrete scheme to strengthen DES which uses the
methods described above. This modified DES can be used with existing
DES hardware and is much stronger than the standard DES.

1 Introduction

Since the Data Encryption Standard was introduced [17], its 56-bit key size was
subject to criticism of the research community [10, 9]. It was considered to be
too short to withstand exhaustive search attack on a special purpose computer.
Recent results [20] show that with todays technology such computer will cost
about a million US$ and will be able to find a key in 3.5 hours in average.

In parallel, many researches invested a great effort to cryptanalyze DES.
Their work lead to development of two powerful methods of cryptanalysis of
iterative ciphers: differential cryptanalysis [2] and linear cryptanalysis [14]. Re-
cently Davies’ attack [8] has been improved to be capable of breaking DES faster
than exhaustive search [3]. Those are the only known methods of breaking DES
faster than half of exhaustive search; they require huge amounts of 247,243 and
250 plaintexts, respectively.

These attacks are very important for our understanding of the design princi-
ples of good cryptosystems. The fact that these attacks on DES are impractical
(due to the enormous amounts of data required) is a result of a careful design.
Still the real threat to the practical use of DES is its short secret key.
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