
The Taros Block Cipher

Phongphun Kijsanayothin and Somnuk Keretho
Department of Computer Engineering, Kasetsart University 50 Phaholyothin

Rd. Bangkok 10903
 kphongph@lycos.com sk@ku.ac.th

ABSTRACT
We propose a new block cipher called Taros.
Taros has a block size of 128 bits and allows a
variable-length key up to 1024 bits whereas the
Square block can accept key only 128 bits. The
cipher is a 6-round non-Feistel network. The
proposed cipher is modified from the Square block
cipher. The design of Taros concentrates on the
resistance against Square attack cryptanalysis.

KEY WORDS
Block Cipher, Cryptanalysis

1. Introduction

In this paper we propose a block cipher called
Taros. The types of building blocks and their
interactions have been carefully chosen to allow
efficient implementations on a wide range of
processors and platforms. Firstly we provide a
basic concept needed for understanding the paper.
Subsequently, we present structure of Taros. The
design rationale of the cipher and its inverse are
treated. Afterward, the motivation of design
choices and the treatment of the resistance against
known types of attacks will be described. With the
proposed algorithm, we provide security claims ,
goals and its advantages .

2. Mathematical Preliminaries

The operations in Taros are defined in byte level
representing elements in a finite field GF(28),
Galois Field. In this section we introduce the basic
mathematical concepts necessary for
understanding this paper.

The elements of the finite field can be represented
in several different ways. For any prime power
there is a single field, hence all representations of
GF(28) are isomorphic. Despite this equivalence,
the representation has an impact on the
implementation complexity.

A byte b, consisting of bits b7 b6 b5 b4 b3 b2 b1 b0 , is
considered as a polynomial representation with
coefficient in {0,1} :

b7x7+ b6x6+ b5 x5 + b4 x4

 + b3 x3
 + b2x2+b1x+ b0

In addition, the sum of two elements is the
polynomial with coefficients that are given by the
sum modulo 2 of the coefficients of the two terms.

Example: ‘0x65’+‘0x43’=’0x27’ (which + means
exclusive-or), or:

(x6+x5+x2+1) + (x6+x1 +1) = x5 +x2+x1

In multiplication, multiplication in GF(28)
corresponds with multiplication of polynomials
modulo an irreducible binary polynomial of degree
8. A polynomial is irreducible if it has no divisors
other than 1 and itself.
Example: ‘0x65’*‘0x43’=’0x07’
(which * means multiplication) define irreducible
binary polynomial equals ‘11B’ (x8+x4 + x3 +x1+1)

(x6+x5+x2+1)*(x6 +x1+1)
 =x12+x7+x6 +x11+x6+x5 +x8+x3 +x2+x6 +x1+1
 =x12+x11+x8+ x6 +x5 +x3+x2 +x1+1
 =x12+x11+x8+ x6 +x5 +x3+x2 +x1+1 modulo x8 +x4+
x3 +x1+1
 =x2+x1 +1

3. Design rationale

The three criteria taken into account in the design
of Taros are as the following:

• Resistance against all known attacks (Square
Attack as attacked to AES).

• Speed and code compactness on a wide range
of platforms (No affect of byte orientation). For
many microprocessors , computation depends
on byte-orientation(Big endian – Little endian).

• Simplicity. The risk of implementation errors
increases with the complexity of the
description. It is therefore advantageous to
have a succinct and clear specification that
makes an appeal to a pre-understanding of a
reader.

Since DES was published [1], the round
transformation used in most ciphers has the Feistel
Structure. In this structure, the parts of bits of the
intermediate round are simply transposed
unchanged to another position. The round
transformation of the proposed Taros does not has
the Feistel structure but it composes of two main
distinct invertible uniform transformations instead,
as explained method following sections.

4. Specification

4.1 Structure of Taros
Taros is a non-Feistel network operating on
128-bit block. The block cipher uses 8 128-bit
subkeys, derived from a user key by the key
schedule. The structure of Taros is representing a
physical tetrahedron structure as shown in Figure
1. The round transformation of Taros is composed
of three distinct transformations. Round
transformation of Taros is byte-oriented.

As shown in Figure 2, the Taros structure is
composed of 4 triangles. Each piece is called a
“phrase”. All 4 phrases is called a “state”. Each
phrase can be divided into 4 segments
(phrase.TOP , phrase.RIGHT, phrase.LEFT ,
phrase.CENTER). In each segment, 8 bit of data is
assigned within each segment. So there are all
together 16 segments (on 128 bits) in each state.
For the sake of explanation, all 16 segments are
numbered as shown in Figure 2d.

Figure 1: The tetrahedron

Figure 2: A state is divided into 4 phrases and each phrase is divided into 4 segments

c. Each phrase is divided further into 4
segments.

phrase A
phrase C

phrase B

phrase D

phrase A

phrase C phrase B

 phrase D

Top

Left Right

 Center

a. A state of Taros shown in 3 dimensions. b. A state of Taros could be unfolded and
shown in 2 dimensions.

d. Numbers are assigned in each segment
of all phrase

2

13 4

7

8
6

5
12

10 119
13

16 15

14

4.2 The round transformation
Let define some operators to perform some
useful round transformation on the data. The
round transformation is composed of four
different operators, as following :

• RotatePhrase
• MixPhrase
• AddSubKey
• Whitening (first round and last round)

4.2.1 The RotatePhrase transformation
The RotatePhrase transformation is designed for
high data diffusion, operating on each of the
pharses independently. For encryption three
angles of 4 corners of the tetrahedron rotate
counterclockwise (counterclockwise when
looking towards the corner Figure 3.). In
decryption mode, rotation is the opposite
direction of the encryption. Shown detail in
Figure 4.

Figure 3: RotatePhrase transformation encryption and decryption

Figure 4 : Geometrical representation of the RotatePhrase transformation.

Encryption Decryption

6

7
5

8

10

11
9

12

2

3 1 4

14

15 13 16

10

16 1 7

2

15 5
11

6

14 9 3

8

4 13
12

pharse A pharse B pharse C pharse D

For Encryption

state

1

2

3 4

state

1

2

3 4

4.2.2 The MixPhrase transformation
The MixPhrase transformation treats the different
phrase of a state completely separately.

4.2.2.1 The Multiplication Polynomial
The four bytes of the pharse are mutilplied by
polynomial of degree below 4. Multiplication by
polynomials is more complicated. Assume we
have two polynomials over GF(28) :

a(x) = a3 x
3 + a2 x

2 + a1 x
1 + a0 and b(x) = b3 x

3 +
b2 x

2 + b1 x
1 + b0

The product of polynomials a(x) and b(x) equals
c(x). The output c(x) can no longer be
represented by a 4-byte vector. To reducing c
(x),we must modulo c(x) by a polynomial of
degree 4. If we give a modulo polynomial equals
x4 +1. Then the modular product of a(x) and b(x)
is given by

c(x) = c3 x
3 + c2 x

2 + c1 x
1 + c0

c0=a0*b0⊕ a3*b1⊕ a2*b2⊕ a1*b3

c1=a1*b0⊕ a0*b1⊕ a3*b2⊕ a2*b3

c2=a2*b0⊕ a1*b1⊕ a0*b2⊕ a3*b3

c3=a3*b0⊕ a2*b1⊕ a1*b2⊕ a0*b3

4.2.2.2 The MixPhrase Layout
In MixPhrase, the phrases of the state convert as
a polynomials degree 4 over GF(28) Figure 5.
We use polynomial multiplication for data high
diffusion. In MixPhrase transformation we want
to generate fixed polynomial e(x). We must
choose the polynomial e(x) having a properties
invertible. The invert matrix of e(x) is used in
MixPhrase in a decryption method (polynomials
d(x)).. It can represent as:

Phrasenew = Phraseold ⊗ FixPolynomial
Detail is shown Figure 6.

Figure 5: Convert pharse to Polynomial degree 4 over GF(28)

f0 f3 f2 f1 2 6 10 14 c00 c01 c02 C03

f1 f0 f3 f2 * 3 7 11 15 = c10 c11 c12 C13

f2 f1 f0 f3 4 8 12 16 c20 c21 c22 C23

f3 f2 f1 f0 1 5 9 13 c30 c31 c32 C33

c00 = 2 * f0 + 3 * f3 + 4 * f2 + 1 * f1 c02 = 10 * f0 + 11 * f3 + 12 * f2 + 9 * f1
c10 = 2 * f1 + 3 * f0 + 4 * f3 + 1 * f2 c12 = 10 * f1 + 11 * f0 + 12 * f3 + 9 * f2
c20 = 2 * f2 + 3 * f1 + 4 * f0 + 1 * f3 c22 = 10 * f2 + 11 * f1 + 12 * f0 + 9 * f3
c30 = 2 * f3 + 3 * f2 + 4 * f1 + 1 * f0 c32 = 10 * f3 + 11 * f2 + 12 * f1 + 9 * f0
c01 = 6 * f0 + 7 * f3 + 8 * f2 + 5 * f1 c03 = 14 * f0 + 15 * f3 + 16 * f2 + 13 * f1
c11 = 6 * f1 + 7 * f0 + 8 * f3 + 5 * f2 c13 = 14 * f1 + 15 * f0 + 16 * f3 + 13 * f2
c21 = 6 * f2 + 7 * f1 + 8 * f0 + 5 * f3 c23 = 14 * f2 + 15 * f1 + 16 * f0 + 13 * f3
c31 = 6 * f3 + 7 * f2 + 8 * f1 + 5 * f0 c33 = 14 * f3 + 15 * f2 + 16 * f1 + 13 * f0

Figure 6 : Geometrical representation of the MixPhrase transformation.

6

7 5 8

10

11 9 12

2

3 1 4

14

15 13 16

Top

Left Right

 Center

Phrase

Phrase = PhraseTOP x3 + PhraseLEFT x2 + PhraseRIGHT x1 + PhraseCENTER x0

FixPolynomial = f3 x3 + f2 x2 + f1 x1 + f0 x0

4.2.3 The AddSubKey
In this operation, a Sub Key is applied to the
state by a simple bitwise exclusive-or. The Sub
Key is derived from the Cipher Key by means of
the key schedule. The sub key length is equal to
128 bit

4.2.4 Whitening
Whitening, the technique of XORing key
material can be used before the first round and
after the last round. Tarsos uses the Whitening
algorithm for increasing the difficulty of
keysearch attacks against the remainder of the
cipher. Taros XORs 128 bits of subkey is used
before the first round and another 128 bits after
the last round.

4.3 Key schedule
The key schedule is designed to be simple and to
reuse the cipher components already available.
Given a user key, which is a sequence of one or
more 128-bit, it produces the 8 subkey required
by the cipher. The key schedule is very similar to
Blowfish [4]. The subkey array is assigned an
initial constant value derived from the matrix
used in the cipher. Words from the user key are
XORed into the array, starting from the
beginning, and restarting from the beginning of
the user key when all the user key words are
exhausted. A 128-bit block is initialized to zero,
and enciphered with Taros, using the subkeys
currently in the array. The first subkey words are
then replaced with the resulting ciphertext, which
is then encrypted again using the new subkeys.
The next subkey words are replaced with the
ciphertext, and the process will be reiterated until
all of the subkey words have been replaced, 8
times for all. According to the algorithm, the
Taros key schedule can accept user keys up to
1024 bits long.

The subkeys are calculated using the Taros
algorithm. The exact method is as follows

1. Initialize of all subkeys , with fixed bytes
(1024 bit).

2. XOR subkeys generating from Step 1 with
cipher key (padding).

3. Encrypt the all-zero plaintext bytes with
Taros algorithm, using the subkeys
creating in Step 1 and 2.

4. Replace the first 128 bit of subkeys from
Step 1 and 2 with the output of Step 3.

5. Encrypt the output of Step 3 using the
Taros algorithm with the modified
subkeys.

6. Replace the second 128 bits of subkeys
with the output of Step 5.

7. Reiterate the process until replacing all
entries in subkeys array.

5. Motivation for Design Choices

In the following subsections, we will describe the
selected transformation algorithms .

5.1 The RotatePhrase transformation
The choice from all possible combinations has
been made based on the following criteria:

1. The data on any phrase can move to other
phrase.

2. Resistance against attacks using the
Square attack

3. Simplicity

5.2 The MixPhrase transformation
MixPhrase has been chosen from the space of
phrase-size to phrase-size linear transformations
according to the following criteria:

1. Invertibility;
2. Linearity in GF(2);
3. Relevant diffusion power;
4. Simplicity of description;
5. Symmetry;

6. Square Attack

The “Square” attack is a dedicated attack on
Square that exploits the byte-oriented structure of
Square cipher. This attack is also valid for Taros.
The attack is a chosen plaintext attack and is
independent of the specific choices of
RotatePhrase, MixPhrase and AddSubKey.

6.1 Preliminaries
Let a ∧-set be a set of 256 states that are all
different in some of the state bytes (the active)
and all equal in the other state bytes (the
passive). Applying the transformations
AddSubkey on a ∧-set with the positions of the
active bytes unchnaged. Applying RotatePharse
and MixPhrase to a ∧-set the output of this
operation can make the phrase having all active
byte, an input of state with a single active byte
gives rise to an output phrase with all bytes
active.

6.2 The basic attack
Consider a ∧-set in which only one byte is active,
then we trace the evolution of the positions of the
active bytes through 2 rounds. MixPhrase of the
1st round converts the active byte to a complete
phrase of active bytes. The three active bytes
(phrase.TOP,phrase.RIGHT,phrase.LEFT) of this
phrase are spreaded over other three phrases by
RotatePhrase of the 2nd round. MixPhrase of the
2nd round subsequently spreads the active bytes
throughout each phrase. (All bytes in each state
are active). This stays a ∧-set until it is
transformed to be the input of MixPhrase of the
3rd round.

Hence, all bytes at the input of the 3rd round of
the state are balanced. By assigning a value to
Kxi (Subkey at round i), the value of state (at
round i) for all elements of the ∧-set can be
calculated from the ciphertexts. If the values of
this tate are not balanced over ∧-set, the assigned
value for the key byte was wrong. Detail in
Figure 7.

Figure 7: Propagation of activity pattern
through a second round

7. Performance figure
Our estimates are based on the execution time of
the KAT and MCT code on a 200 MHz Pentium,
running Linux. The JDK1.1.1 Java compiler was
used. The performance figures of the Java
implementation are given in Figure 8.[6]

8. Conclusion and Further work

We propose a block cipher, Taros with 3D
representation of tetrahedorn. We could accept a
variable-length key up to 1024 bits whereas the
Square block cipher can accept only 128 bit .
Comparing RotatePharse transformation with the
ShiftRow transformation of Rijndale [2],
RotatePharse is use byte-substitution but
ShiftRow uses matrix multiplication. The
proposed Taros cannot be reversible like Twofish
[5]and does not contain a non-linear byte
substitution (The substitution table S-box) . The
paper uses only Square Attack crypanalysis for
analysis. There are many other cryptanalysis
algorithms in which improvement can be further
studied.

9. References

[1] Data Encryption Standard , Federal
Information Processing Standard (FIP),
Publication 46, National Bureau of Standards,
U.S. Department of Commerce, Washington
D.C., January 1977.

[2] The Rijndael Block Cipher, AES Proposal,
Joan Daeman & Vincent Rijme

[3] J. Daemen, L.R. Knudsen and V. Rijmen,
”The block cipher Square,” Fast Software
Encryption, LNC 1267, E. Biham, Ed.,
Springer-Verlag, 1997, pp. 149-165. Also
available as
http://www.esat.kuleuven.ac.be/rijmen/square
/fse.ps.gz

[4] B. Schneier, “The Blowfish Encryption
Algorithm”, Dr Dobb's Journal, vol.19 no. 4,
April 1994, pp. 38-40

[5] Twofish: A 128-Bit Block Cipher, AES
Proposal, Bruch Schneier, John Kels ey, Doug
Whiting, David Wagner, Chris Hall, Niel
Ferguson

[6] Report on the NIST JavaTM AES Candidate
Algorithm Analysis, Jim Dray

RotatePhrase 1st

MixPhrase 1st

RotatePhrase 2nd

MixPhrase 2nd

Plaintext

where Active Byte

Candidate Code size Heap Key Setup Encrypt Decrypt

(bytes) (bytes) (kbits/sec) (kbits/sec) (kbits/sec)

DEAL 16965 8624 52 140 140

LOKI97 9744 15016 96 294 294

Mars 18110 4808 107 492 496
Rijndael 12158 18360 279 1129 1129

Serpent 39290 4680 31 485 462

Taros 5124 16560 250 1225 1225
Twofish 17189 7600 37 379 379

Figure 8 : Performance table

ph ph

ph ph

ph ph

