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Abstract. This paper presents xmx, a new symmetric block cipher op-
timized for public-key libraries and microcontrollers with arithmetic co-
processors. xmx has no S-boxes and uses only modular multiplications
and xors. The complete scheme can be described by a couple of compact
formulae that offer several interesting time-space trade-offs (number of
rounds/key-size for constant security).

In practice, xmx appears to be tiny and fast: 136 code bytes and a 121
kilo-bits/second throughput on a Siemens SLE44CR80s smart-card (5
MHz oscillator).

1 Introduction

Since efficiency and flexibility are probably the most appreciated design criteria,
block ciphers were traditionally optimized for either software (typically SAFER
[4]) or hardware (DES [2]) implementation. More recently, autonomous agents
and object-oriented technologies motivated the design of particularly tiny codes
(such as TEA [9], 189 bytes on a 68HC05) and algorithms adapted to particular
programming languages such as PERL.

Surprisingly, although an ever-increasing number of applications gain access
to arithmetic co-processors [5] and public-key libraries such as BSAFE, MIR-
ACL, BIGNUM [8] or ZEN [1], no block cipher was specifically designed to take
advantage of such facilities.

This paper presents xmx (xor-multiply-xor), a new symmetric cipher which
uses public-key-like operations as confusion and diffusion means. The scheme
does not require S-boxes or permutation tables, there is virtually no key-schedule
and the code itself (when relying on a co-processor or a library) is extremely
compact and easy to describe.

xmx is firmware-suitable and, as such, was specifically designed to take a
(carefully balanced) advantage of hardware and software resources.
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2 The Algorithm

2.1 Basic operations

xmx is an iterated cipher, where a keyed primitive f is applied r times to an
`-bit cleartext m and a key k to produce a ciphertext c.

Definition 1. Let fa,b(m) = (m ◦ a) · b mod n where:

x ◦ y =

{

x ⊕ y if x ⊕ y < n
x otherwise

and n is an odd modulus.

Property: a ◦ b is equivalent to a ⊕ b in most cases (when n ≤ 2`, and {a, b}
is uniformly distributed, Pr[a ◦ b = a ⊕ b] = n/2`).

Property: For all a and b, a ◦ b ◦ b = a.

f can therefore be used as a simply invertible building-block (a < n implies
a ◦ b < n) in iterated ciphers :

Definition 2. Let n be an `-bit odd modulus, m ∈ ZZn and k be the key-array

k = {a1, b1, . . . , ar, br, ar+1} where ai, bi ∈ ZZ∗

n and gcd(bi, n) = 1.

The block-cipher xmx is defined by:

xmx(k, m) = (far ,br
(far−1,br−1

(. . . (fa1,b1(m)) . . .))) ◦ (ar+1)

and:

xmx
−1(k, c) = (f−1

a1,b1
(f−1

a2,b2
(. . . (f−1

ar,br

(c ◦ ar+1)) . . .)))

2.2 Symmetry

A crucially practical feature of xmx is the symmetry of encryption and decryp-
tion. Using this property, xmx and xmx

−1 can be computed by the same proce-
dure:

Lemma 1.

k−1 = {ar+1, b
−1
r mod n, ar, . . . , b

−1
1 mod n, a1} ⇒ xmx

−1(k, x) = xmx(k−1, x) .

Since the storage of k requires (2r + 1)` bits, xmx schedules the encryption
and decryption arrays k and k−1 from a single `-bit key s:

k(s) = {s, s, . . . , s, s, s ⊕ s−1, s, s−1, . . . , s, s−1}

where k−1(s) = k(s−1).

For a couple of security reasons (explicited infra) s must be generated by the
following procedure (where w(s) denotes the Hamming weight of s):
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1. Pick a random s ∈ ZZ?
n such that `

2 − log2 ` < w(s) < `
2 + log2 `

2. If gcd(s, n) 6= 1 or ` − log2 s ≥ 2 go to 1.

3. output the key-array k(s) = {s, s, . . . , s, s, s ⊕ s−1, s, s−1, . . . , s, s−1}

Although equally important, the choice of n is much less restrictive and
can be conducted along three engineering criteria: prime moduli will greatly
simplify key generation (gcd(bi, n) = 1 for all i), RSA moduli used by existing
applications may appear attractive for memory management reasons and dense
moduli will increase the probability Pr[a ◦ b = a ⊕ b].

As a general guideline, we recommend to keep n secret in all real-life appli-
cations but assume its knowledge for the sake of academic research.

3 Security

xmx’s security was evaluated by targeting a weaker scheme (wxmx) where ◦ ∼= ⊕
and k = (s, s, s, . . . , s, s, . . . , s, s, s).

Using the trick u ⊕ v = u + v − 2 (u ∧ v) for eliminating xors and defining:

hi(x) = ((. . . (x ⊕ a1) · b1 mod n . . .) ⊕ ai−1) · bi−1 mod n

we get by induction:

wxmx(k, x) = b′1 · x + a1 · b
′

1 . . . + ar+1 − 2 (g1(x) · b′1 + . . . + gr+1(x)) mod n

where b′i = bi · · · br mod n and gi(x) = hi(x) ∧ ai .

Consequently,

wxmx(k, x) = b′1 · x + b − 2 g(x) mod n where b = a1 · b
′

1 + a2 · b
′

2 . . . + ar+1

and g(x) = g1(x) · b′1 + g2(x) · b′2 + . . . + gr+1(x) mod n .

3.1 The number of rounds

When r = 1, the previous formulae become g2(x) = h2(x) ∧ s and

wxmx(k, x) = ((x ⊕ s) · s mod n) ⊕ s = x s + s2 + s − 2 (g1(x) s + g2(x)) mod n

Assuming that w(δ) is low, we have (with a significantly high probability):

g1(x + δ) = (x + δ) ∧ s = g1(x) mod n .

Therefore, selecting δ such that s ∧ δ = 0 ⇒ g1(x ⊕ δ) = g1(x), we get

wxmx(k, x⊕δ)−wxmx(k, x) = (x⊕δ−x) ·s−2 (s∧h2(x⊕δ)−s∧h2(x)) mod n .
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Plugging δ = 2 and an x such that x ∧ δ = 0 into this equation, we get:

wxmx(k, x ⊕ δ) − wxmx(k, x) = 2 (s − s ∧ h2(x + 2) + s ∧ h2(x)) mod n .

Since h2(x) = s ·x+ s2 − 2 g1(x) mod n (where g1(x) = x∧ s), it follows that
h2(x) and h2(x + 2) differ only by a few bits. Consequently, information about
s leaks out and, in particular, long sequences of zeros or ones (with possibly the
first and last bits altered) can be inferred from the difference wxmx(k, x ⊕ δ) −
wxmx(k, x).

In the more general setting (r > 1), we have

wxmx(k, x ⊕ δ) − wxmx(k, x) = (x ⊕ δ − x)sr + 2 e(x, δ, s) mod n

where e(x, δ, s) is a linear form with coefficients of the form α ∧ s − β ∧ s.

Defining ∆ = {wxmx(k, x ⊕ δ) − wxmx(k, x)}, we get ‖∆‖ < 2rw(s) since ∆
is completely characterized by s.

The difference will therefore leak again whenever:

2rw(s) < 2` ⇒ r <
`

w(s)
. (1)

3.2 Key-generation

The weight of s: Since g(x) is a polynomial which coefficients (b′i) are all bit-
wise smaller than s, the variety of g(x) is small when w(s) is small. In particular,
when w(s) < 80

r+1 , less than 280 such polynomials exist.

A 240-pair known plaintext attack would therefore extract sr from:

wxmx(k, y) − wxmx(k, x) = (y − x) · sr mod n

using the birthday paradox (the same g(x) should have been used twice). One
can even obtain collisions on g with higher probability by simply choosing pairs
of similar plaintexts. Using [7] (refined in [6]), these attacks require almost no
memory.

Since a similar attack holds for s when w(s) is big (x⊕y = x+2 (x∧y)−y),
w(s) must be rather close to `/2 and (1) implies that r must at least equal three
to avoid the attack described in section 3.1.

The size of s: Chosen plaintext attacks on wxmx are also possible when s is
too short: if s m < n after r iterations, s can be recovered by encrypting m = 0`

since wxmx(k, 0`) = b − 2 g(x) and g’s coefficients are all bounded by s.

Observing that 0 ≤ wxmx(k, 0`) − sr+1 ≤ s · 2r, we have:

0 ≤ s − r+1
√

wxmx(k, 0`) <
1

r + 1
⇒ s =

⌈

r+1
√

wxmx(k, 0`)
⌉

.

More generally, encrypting short messages with short keys may also reveal s.
As an example, let ` = 256, r = 4, s = 0176|s

′ and m = 0176|m
′ where s′ and m′

are both 80-bit long. Since Pr[x ⊕ s = x + s] = (3/4)80 ∼= 2−33 when s is 80-bit
long, a gcd between ciphertexts will recover s faster than exhaustive search.
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3.3 Register size

Since the complexity of section 3.1’s attack must be at least 280, we have:

√

2r·w(s) > 280

and considering that w(s) ∼= `/2, the product r` must be at least 320.

r = 4 typically requires ` > 80 (brute force resistance implies ` > 80 anyway)
but an inherent 2`/2-complexity attack is still possible since wxmx is a (keyed)
permutation over `-bit numbers, which average cycle length is 2`/2 (given an iter-
ation to the order 2`/2 of wxmx(k, x), one can find x with significant probability).

` = 160 is enough to thwart these attacks.

4 Implementation

Standard implementations should use xmx with r = 8, ` = 512, n = 2512 −1 and

k = {s, s, s, s, s, s, s, s, s ⊕ s−1, s, s−1, s, s−1, s, s−1, s, s−1}

while high and very-high security applications should use {r = 12, ` = 768, n =
2786 − 1} and {r = 16, ` = 1024, n = 21024 − 1}.

A recent prototype on a Siemens SLE44CR80s results in a tiny (136 bytes)
and performant code (121 kilo-bits/second throughput with a 5 MHz oscillator)
and uses only a couple of 64-byte buffers.

The algorithm is patent-pending and readers interested in test-patterns or a
copy of the patent application should contact the authors.

5 Further Research

As most block-ciphers xmx can be adapted, modified or improved in a variety
of ways: the round output can be subjected to a constant permutation such as
a circular rotation or the chunk permutation π(ABCD) → BADC where each
chunk is 128-bit long (since π(π(x)) = x, xmx’s symmetry will still be preserved).
Other variants replace modular multiplications by point additions on an elliptic
curve (ecxmx) or implement protections against [3] (taxmx).

It is also possible to define f on two `-bit registers L and R such that:

f(L1, R1) = {L2, R2}

where
L2 = R1 and R2 = L1 ⊕ ((R1 ⊕ k2) · k1 mod n).

and the inverse function is:

R1 = L2, L1 = R2 ⊕ ((R1 ⊕ k2) · k1 mod n) = R2 ⊕ ((L2 ⊕ k2) · k1 mod n)

Since such designs modify only one register per round we recommend to
increase r to at least twelve and keep generating s with xmx’s original key-
generation procedure.
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6 Challenge

It is a tradition in the cryptographic community to offer cash rewards for suc-
cessful cryptanalysis. More than a simple motivation means, such rewards also
express the designers’ confidence in their own schemes. As an incentive to the
analysis of the new scheme, we therefore offer (as a souvenir from FSE’97...) 256
Israeli Shkalim and 80 Agorot (n is the smallest 256-bit prime starting with 80
ones) to the first person who will degrade s’s entropy by at least 56 bits in the
instance:

r = 8, ` = 256 and n = (280 − 1) · 2176 + 157

but the authors are ready to carefully evaluate and learn from any feedback they
get.
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