
Design and Implementation of a Crypto Processor
and Its Application to Security System

HoWon Kim1 , YongJe Choi1 and MooSeop Kim1

1 Department of Information Security Basic,
Electronics and Telecommunications Research Institute(ETRI)
161 Gajeong-Dong YuSeong-Gu, DaeJeon, 305-350, KOREA

Tel : +82-42-860-6228, / FAX : +82-42-860-5611
e-mail :khw@etri.re.kr

Abstract: This paper presents the design and
implementation of a crypto processor, a special-purpose
microprocessor optimized for the execution of
cryptography algorithms. This crypto processor can be used
for various security applications such as storage devices,
embedded systems, network routers, etc. The crypto
processor consists of a 32-bit RISC processor block and a
coprocessor block dedicated to the SEED and triple-DES
(data encryption standard) symmetric key crypto
(cryptography) algorithms. The crypto processor has been
designed and fabricated as a single VLSI chip using 0.5 �m
CMOS technology. To test and demonstrate the capabilities
of this chip, a custom board providing real-time data
security for a data storage device has been developed.
Testing results show that the crypto processor operates
correctly at a working frequency of 30MHz and a
bandwidth of 240Mbps

1. Introduction
The expansion of the worldwide communication network
such as the internet and the increased dependency on
digitized information in our society makes information
more vulnerable to abuse. If there are security problems in
these information systems, users will fear that their
sensitive information may be monitored and business
secrets stolen. For these reasons, it is important to make
information systems secure by protecting data and
resources from malicious acts --- crypto algorithms are the
core of such security systems[1].

By encoding a message using crypto algorithms, users
can make information transmitted over communication
systems almost impossible to read, even if such information
is intercepted for malicious purposes. It is fairly easy to
implement crypto algorithms in software, but such
algorithms are typically too slow for real-time applications,
such as storage devices, embedded systems, network
routers, etc. For this reason, it becomes necessary to
implement crypto algorithms in hardware. In our crypto
processor implementation, the dedicated crypto block of the
crypto processor permits fast execution of encryption,
decryption, and key scheduling operations for triple-
DES[14,12] and SEED[13] private key crypto algorithms.
Also, the 32-bit RISC processor block can execute other
crypto algorithms such as RSA and ECC (the Elliptic Curve
Cryptography algorithm) and control the dedicated crypto
block and I/O buffers.

This paper is organized as follows. In Section 2, the
architecture of the crypto processor is briefly described; this
includes the dedicated crypto block for SEED and triple-

DES and the 32-bit RISC processor. In Section 3, the
detailed VLSI design methodology of the crypto processor
is described. In Section 4, the simulation and verification of
the crypto processor design is reported. Section 5 presents
the application of the crypto processor as a means of
providing real time data security for a storage device.
Finally, concluding remarks are presented in Section 6��

2. The Crypto Processor Architecture
2.1 The architecture of the Crypto Processor
The block diagram of our crypto processor is shown in Fig.
1. This single chip crypto processor has a crypto controller
and a dedicated crypto block for the triple-DES and SEED
algorithms. The 32-bit RISC type crypto controller controls
the dedicated crypto block and performs the interface
operations with external devices such as memory and an
I/O bus interface controller. It can also execute various
crypto algorithms such as RSA and ECC and other
application programs such as a user authentication program
and an IC card interface program.

The dedicated crypto block executes encryption,
decryption and key scheduling operations for the SEED and
triple-DES algorithms. The 128-bit plain text data streams
entered into the 128-bit input register are encrypted with a
proper key and control signals based on the SEED
algorithm. After plain text data streams are encrypted, the
128-bit cipher texts are output to the 128-bit output register.
The decryption process is the same as the encryption
process except for the control signals. For the DES
algorithm, 64-bit plain text data streams and 64-bit key
values with 8-bit parity bits are necessary for encryption
and decryption. Our crypto processor supports four
operation modes: ECB(Electronic CodeBook), CBC(Cipher
Block Chaining), OFB(Output FeedBack) and CFB(Cipher
FeedBack) for the SEED and triple-DES algorithms.

�

Figure 1. Block diagram of the Crypto processor

2.2 The dedicated crypto block for the SEED
algorithm
The SEED algorithm[13] is a block cipher that operates on
128-bit blocks of data and uses a 128-bit key. It has a 16
rounded Feistel structure. A Feistel structure takes a block
of length n and divides it into two halves of length n/2, a
left and right block. It is an iterated block cipher in which
the output of the i-th round is determined from the output of
the (i-1)-th round[11]. The SEED algorithm uses two 8 X 8
S-boxes (for substitution), permutations, rotations, and
basic modulo-arithmetic operations such as modulo-2
addition (exclusive OR) and modulo-232 addition. As with
other Feistel ciphers, the SEED algorithm has an F function,
which takes a 64-bit data value and 64-bit key values as
shown in Fig.3.

Figure 3. Block diagram of the F Function of the SEED

algorithm

To implement the SEED algorithm, we have
instantiated one stage and iterated the data through this
stage 16 times. We could also have 16 or more pipeline
stages. But in this case, we would have had high
performance in a non-feedback mode such as ECB, but no
performance gains and much excessive hardware
redundancy for feedback modes such as CBC, OFB, and
CFB. Because we wanted to design a crypto processor with
equally high performance for various modes, we have
selected this iterated method. The key values for encryption
and decryption are pre-computed and stored in internal
buffers. These stored key values are used for encryption or
decryption of the data sequences that follow.

2.3 The dedicated crypto block for a triple-DES
algorithm
DES(Data Encryption Standard) [10], an encryption
algorithm developed in the 1970’s by the National Bureau
of Standards and IBM Corporation, uses a 56-bit key. In the
DES algorithm, there are 16 rounds of identical operations
such as non-linear substitutions and permutations. In each
round, 48-bit subkeys are generated, and substitutions using
S-box, bitwise shift, and XOR (exclusive-OR) operations
are performed. The 56-bit key length is relatively small by
today’s standards. For increased security, the DES operation
can be performed three consecutive times, which expands
the effective key length to 112 bits [11]. Using DES in this
manner is referred to as triple-DES.

 Fig. 4 shows one round of the DES algorithm. The left
and right halves of each 64-bit input data operand are
treated as separate 32-bit data operands, Li-1 and Ri-1. The

32-bit right halves of the data are passed to the next left
halves of the data (Li-1 = Ri-1), and the 32-bit left halves of
the data are processed in the following manner: Ri = Li-1 ⊕
F(Ri-1, Ki). As shown in Fig. 4, the F function of the DES
algorithm is composed of an expansion permutation table
(block E), modulo-2 addition with the i-th round key (Ki),
substitution with the S-box, and permutation with the P
table(block P). Because one round of the DES algorithm is
simpler than the SEED algorithm, we have made 4 rounds
of the DES algorithm executable in one clock cycle. Most
of the latency in one round of the DES algorithm is due to
the S-box operation.

Figure 4. One round of the DES algorithm

2.4 The 32-bit RISC processor block
The block diagram of the 32-bit RISC type crypto
controller is shown in Fig.5 [3]. This controller controls the
operation of the dedicated crypto block during encryption,
decryption and key scheduling, and also performs the
operations required to interface with external devices such
as the input FIFO, output FIFO, memory, and system I/O
bus(address and data bus). Since the crypto controller block
is fully programmable, it can execute various crypto
algorithms, protocols and application programs with a high
degree of freedom. The crypto controller is a 32-bit
processor with a RISC architecture and a 3-stage pipeline.
It has features (such as a barrel shifter, a Booth multiplier
block, register file, and a 16-bit and 32-bit data memory
architecture) that enable it to achieve high performance and
savings in memory when executing crypto algorithms.

The codes for crypto controller generate the control
signals for a dedicated crypto block based on a memory-
mapped method. The crypto controller generates control
signals for the key and initial vector (which are required to
execute the SEED and triple-DES algorithms), an algorithm
selection signal, and a mode selection signal. It also
performs other miscellaneous tasks such as done signal
generation for the encryption or decryption operations.
Then, when the plain text data becomes available, the
dedicated crypto block receives the data and encrypts it
with a proper mode and algorithm. When the encryption
operations are done, the encrypted cipher texts are output to
an output register and the corresponding control signals are
set. Our crypto controller is fully compatible with
ARM7TM [3] and described using Verilog HDL.�

Figure 5. Block diagram of the 32-bit RISC controller block

3. The VLSI Implementation of the Crypto
processor

Our crypto processor was modeled using Verilog HDL
(Hardware Description Language) and implemented as an
ASIC chip. Modeling the processor using Verilog HDL
facilitates quick prototyping and modification of the target
design while considering various possible trade-offs in
different implementations of the crypto algorithms with
differing speed and area characteristics. Next, the crypto
processor’s HDL model was simulated using ModelSim
HDL compiler and simulator [9]. Then, Synopsys Design
Analyzer and Compiler [12] was used to synthesize the
HDL models into gate level designs, and the SDF files were
simulated using Cadence’s SimWave [5]. Because the SDF
file includes fairly accurate delay and load information, the
simulation results are comparable to actual measurement
results after the circuit is fabricated in silicon. The target
process technology is Hynix’s 0.5 �m CMOS technology.

4. The Simulation and Verification of the
Crypto Processor

Simulation was used to validate the Verilog HDL model of
the crypto processor. After validation, the HDL model was
synthesized into a gate level design with a target CMOS
process technology library

Static timing analysis is, however, required in
combination with formal verification to achieve complete
ASIC verification. Thus, we have also performed static
timing analysis from the SDF files. After simulation and
verification of our design, we have layed out and fabricated
the crypto processor using is Hynix’s 0.5 �m CMOS
technology. Fig. 6 shows a photograph of the crypto
processor, and Table 2 summarizes the main features of the
crypto processor. Note that a photograph of the layout is not
presented as the circuit was synthesized using a standard
cell library.

Figure 6: Photograph of the crypto processor.

Table 2 : Main features of the crypto processor.

Technology 0.5�m CMOS

Package Type PQFP

Gate Counts 200K(with I/O PADS)

Chip Size 8.1mm X 8.1mm

Bandwidth
240Mbps(SEED),
160Mbps(triple-DES)

Operating Frequency 30MHz

The number of I/O pins 176 pins

VDD and VSS 5V and 0V

To validate the usability of the 32-bit RISC type

crypto controller in our crypto processor for various
security systems, we have implemented the ECDSA [8] and
ECDH [6] protocols. The ECC algorithm we have
implemented is defined over the field GF(2163), which is a
SEC-2 recommendation [7], with this field being defined by
the field polynomial F(x) = x163 + x7 + x6 + x3 + 1. The
timing results are shown in Table 3. As shown in Table 3,
most of the latency was due to the scalar multiplications kG
in Algorithm 1. The latency of the ECDSA signature
verification algorithm is asymptotically twice the latency of
the signature generation algorithm. The latencies of the
modular reduction and inversion processes are also
negligible when compared to scalar multiplication.

We have also implemented the ECDH key agreement
protocol for the crypto controller. To obtain a common key
for the two participants Alice and Bob, Alice secretly
chooses a random integer kA and computes the factor kAG,
which she sends to Bob. Likewise, Bob secretly chooses a
random integer kB, computes kB G, and sends it to Alice.
The common key is P = kB kB G. As shown in Table 3, the
performance of the crypto controller in the crypto processor
is suitable for embedded system applications, where high
flexibility and performance are a must.

Algorithm 1. ECDSA Signature Generation Algorithm

To sign a message m, a signer A does the following:
Select a random integer k from [1, n – 1]
Compute kG = (x1, y1) and r = x1 mod n
Compute k-1 mod n
Compute e = SHA-1 (m)
Compute s = k-1{e+dr} mod n
If s = 0 then go to step 1
A’s signature for the message m is (r,s)
Where, G is a base point on E(GF(2m)).
d is a random integer from [1, n – 1] and A’s private key.

Table 3 : Performance of the ECDSA and ECDH
algorithms when executed on the crypto controller.

Method Timing

Scalar Multiplication 1.004 sec

ECDSA signature generation 1.032 sec

ECDSA signature generation 2.255 sec

EC Diffie-Hellman 1.920 sec

SHA-1(for 163bit data size) 11.24 �sec

5. A Crypto Processor Application: Real-time
Data Security for a Storage Device

To evaluate the usability of the crypto processor, we have
developed an RTDS (Real Time Data Security) system for
storage devices. The RTDS system is composed of control
and monitoring software with a GUI(Graphical User
Interface) environment, a device driver, and an RTDS
board. Fig.7 shows the block diagram of the RTDS system,
and Fig.8 shows a photograph of the RTDS board with the
crypto processor. The main operations of the RTDS system
are described as follows.

�� A user process wants to write data into the secure
area of a hard disk (a)

�� The CPU reads data form a certain area of the
memory and sends it to the hard disk via the I/O
bus (b).

�� The device driver, which is a part of a RTDS
system, catches the hard disk write event, and
forwards data to the crypto processor (c).

�� In the crypto processor, an encryption task is
performed in real-time (d).

�� The crypto processor, which has completed its
encryption task, sends the encrypted data to the
hard disk(e).

�� The hard disk receives the encrypted data and
completes the write procedure (f).

Figure 7: Block diagram of the Real Time Data Security

System for storage devices.

The RTDS board, shown in Fig. 8, is mainly
composed of a PCI interface controller, an SRAM buffer,
an IC card interface controller, and a crypto processor. An
Altera FPGA chip is used for the PCI interface controller,
and the ASIC chip, located in the right upper part of the
board, is the crypto processor. The performance of the
crypto processor and the PCI interface controller is high ---
240 Mbps and 1056 Mbps, respectively --- and the average
access time of the hard disk (a Quantum FireBall 15 device)
is low --- 12 msec in our system. Therefore, the RTDS
system operates in real-time.

Figure 7:Photograph of the RTDS board.

6. Concluding Remarks
In this paper, we have presented the design and
implementation of a crypto processor composed of a 32-bit
RISC processor and a coprocessor block dedicated to the
triple-DES and SEED algorithms. The dedicated block of
the crypto processor accelerates private key crypto
algorithms and the programmability of the crypto controller
makes possible fast execution of various crypto algorithms
(such as RSA, ECC, etc.) and security applications. The
crypto processor was implemented as an ASIC chip using
Hynix’s 0.5 �m CMOS technology. Simulations, formal
verification, and static timing analysis were used to fully
verify the ASIC design before fabrication. The fabricated
chip was found to have a 30MHz operating frequency and a
data rate of 240Mbps for all modes of operation (ECB,
CBC, OFB, CFB) of the SEED algorithm. The crypto
processor was evaluated by constructing an RTDS (Real-
Time Data Security) system for storage devices. This
application board was used to thoroughly test and verify the
functionality of the crypto processor. The crypto processor
in the RTDS system performs data encryption and
decryption in real-time. The high performance and high
flexibility of the crypto processor design makes it
applicable to various security applications such as storage
devices, embedded systems, network routers, firewalls, etc.

References
[1] Paul C. van Oorschot Alfred J. Menezes and Scott A.

Vanstone, Handbook of applied cryptography, CRC
press Inc., Florida, 1996.

[2] Analog Devices, VMS115 IPSec Coprocessor Data
Sheet, Rev. 2.0, January 1999.

[3] ARM corp., ARM7 Data Sheet, 1996.
[4] H.B. Bakoglue, Circuits, interconnects, and packaging

for VLSI, Addison-Wesley Publishers Ltd., 1990.
[5] Cadence Corp., SimWave, may 1999.
[6] Certicom Corp., SEC 1: Elliptic curve cryptography,

September 2000.
[7] Certicom Corp., SEC 2: Recommendation elliptic curve

domain parameters, September 2000.
[8] Don B. Johnson, Alfred J.Menezes,and Scott Vanstone,

Elliptic curve digital signature algorithm(ECDSA),
available at http://www.certicom.com

[9] Modeltech Corp., Modelsim Compiler, May 1999.
[10] National Institute of Standards and Technology, FIPS

publication 46-2: Data Encryption Standard, MD,
USA, December 1993.

[11] Bruce Schneier, Applied cryptography(2nd ed.), John
Wiley and Sons, Inc., New York, 1996.

[12] Synopsys Corp., Design Compiler Reference Manual,
February 1998.

[13] TTA, 128-bit Symmetric Block Cipher(SEED),
Telecommunications Technology Association(TTA), Seoul,
Korea, June 1999.�

