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Abstract: This paper presents the design and 
implementation of a crypto processor, a special-purpose 
microprocessor optimized for the execution of 
cryptography algorithms. This crypto processor can be used 
for various security applications such as storage devices, 
embedded systems, network routers, etc. The crypto 
processor consists of a 32-bit RISC processor block and a 
coprocessor block dedicated to the SEED and triple-DES 
(data encryption standard) symmetric key crypto 
(cryptography) algorithms. The crypto processor has been 
designed and fabricated as a single VLSI chip using 0.5 �m 
CMOS technology. To test and demonstrate the capabilities 
of this chip, a custom board providing real-time data 
security for a data storage device has been developed. 
Testing results show that the crypto processor operates 
correctly at a working frequency of 30MHz and a 
bandwidth of 240Mbps 
 

1.  Introduction 
The expansion of the worldwide communication network 
such as the internet and the increased dependency on 
digitized information in our society makes information 
more vulnerable to abuse. If there are security problems in 
these information systems, users will fear that their 
sensitive information may be monitored and business 
secrets stolen. For these reasons, it is important to make 
information systems secure by protecting data and 
resources from malicious acts --- crypto algorithms are the 
core of such security systems[1]. 

By encoding a message using crypto algorithms, users 
can make information transmitted over communication 
systems almost impossible to read, even if such information 
is intercepted for malicious purposes. It is fairly easy to 
implement crypto algorithms in software, but such 
algorithms are typically too slow for real-time applications, 
such as storage devices, embedded systems, network 
routers, etc. For this reason, it becomes necessary to 
implement crypto algorithms in hardware. In our crypto 
processor implementation, the dedicated crypto block of the 
crypto processor permits fast execution of encryption, 
decryption, and key scheduling operations for triple-
DES[14,12] and SEED[13] private key crypto algorithms. 
Also, the 32-bit RISC processor block can execute other 
crypto algorithms such as RSA and ECC (the Elliptic Curve 
Cryptography algorithm) and control the dedicated crypto 
block and I/O buffers.  

This paper is organized as follows. In Section 2, the 
architecture of the crypto processor is briefly described; this 
includes the dedicated crypto block for SEED and triple-

DES and the 32-bit RISC processor. In Section 3, the 
detailed VLSI design methodology of the crypto processor 
is described. In Section 4, the simulation and verification of 
the crypto processor design is reported.  Section 5 presents 
the application of the crypto processor as a means of 
providing real time data security for a storage device. 
Finally, concluding remarks are presented in Section 6��
 

2.  The Crypto Processor Architecture 
2.1  The architecture of the Crypto Processor 
The block diagram of our crypto processor is shown in Fig. 
1. This single chip crypto processor has a crypto controller 
and a dedicated crypto block for the triple-DES and SEED 
algorithms. The 32-bit RISC type crypto controller controls 
the dedicated crypto block and performs the interface 
operations with external devices such as memory and an 
I/O bus interface controller. It can also execute various 
crypto algorithms such as RSA and ECC and other 
application programs such as a user authentication program 
and an IC card interface program. 

The dedicated crypto block executes encryption, 
decryption and key scheduling operations for the SEED and 
triple-DES algorithms. The 128-bit plain text data streams 
entered into the 128-bit input register are encrypted with a 
proper key and control signals based on the SEED 
algorithm.  After plain text data streams are encrypted, the 
128-bit cipher  texts are output to the 128-bit output register. 
The decryption process is  the same as the encryption 
process except for the control signals. For the DES 
algorithm, 64-bit plain text data streams and 64-bit key 
values with 8-bit parity bits are necessary for encryption 
and decryption. Our crypto processor supports four 
operation modes: ECB(Electronic CodeBook), CBC(Cipher 
Block Chaining), OFB(Output FeedBack) and CFB(Cipher 
FeedBack) for the SEED and triple-DES algorithms. 
 

�

Figure 1. Block diagram of the Crypto processor 
 



2.2 The dedicated crypto block for the SEED 
algorithm 
The SEED algorithm[13] is a block cipher that operates on 
128-bit blocks of data and uses a 128-bit key. It has a 16 
rounded Feistel structure. A Feistel structure takes a block 
of length n and divides it into two halves of length n/2, a 
left and right block. It is an iterated block cipher in which 
the output of the i-th round is determined from the output of 
the (i-1)-th round[11]. The SEED algorithm uses two 8 X 8 
S-boxes (for substitution), permutations, rotations, and 
basic modulo-arithmetic operations such as modulo-2 
addition (exclusive OR) and modulo-232 addition. As with 
other Feistel ciphers, the SEED algorithm has an F function, 
which takes a 64-bit data value and 64-bit key values as 
shown in Fig.3. 

 
Figure 3. Block diagram of the F Function of the SEED 

algorithm 
 

To implement the SEED algorithm, we have 
instantiated one stage and iterated the data through this 
stage 16 times. We could also have 16 or more pipeline 
stages. But in this case, we would have had high 
performance in a non-feedback mode such as ECB, but no 
performance gains and much excessive hardware 
redundancy for feedback modes such as CBC, OFB, and 
CFB. Because we wanted to design a crypto processor with 
equally high performance for various modes, we have 
selected this iterated method. The key values for encryption 
and decryption are pre-computed and stored in internal 
buffers. These stored key values are used for encryption or 
decryption of the data sequences that follow. 
 
2.3 The dedicated crypto block for a triple-DES 
algorithm 
DES(Data Encryption Standard) [10], an encryption 
algorithm developed in the 1970’s by the National Bureau 
of Standards and IBM Corporation, uses a 56-bit key. In the 
DES algorithm, there are 16 rounds of identical operations 
such as non-linear substitutions and permutations. In each 
round, 48-bit subkeys are generated, and substitutions using 
S-box, bitwise shift, and XOR (exclusive-OR) operations 
are performed. The 56-bit key length is relatively small by 
today’s standards. For increased security, the DES operation 
can be performed three consecutive times, which expands 
the effective key length to 112 bits [11]. Using DES in this 
manner is referred to as triple-DES. 

 Fig. 4 shows one round of the DES algorithm. The left 
and right halves of each 64-bit input data operand are 
treated as separate 32-bit data operands, Li-1 and Ri-1. The 

32-bit right halves of the data are passed to the next left 
halves of the data (Li-1 = Ri-1), and the 32-bit left halves of 
the data are processed in the following manner: Ri = Li-1  ⊕ 
F(Ri-1, Ki). As shown in Fig. 4, the F function of the DES 
algorithm is composed of an expansion permutation table 
(block E), modulo-2 addition with the i-th round key (Ki), 
substitution with the S-box, and permutation with the P 
table(block P). Because one round of the DES algorithm is 
simpler than the SEED algorithm, we have made 4 rounds 
of the DES algorithm executable in one clock cycle. Most 
of the latency in one round of the DES algorithm is due to 
the S-box operation. 

 
Figure 4. One round of the DES algorithm 

 
2.4 The 32-bit RISC processor block 
The block diagram of the 32-bit RISC type crypto 
controller is shown in Fig.5 [3]. This controller controls the 
operation of the dedicated crypto block during encryption, 
decryption and key scheduling, and also performs the 
operations required to interface with external devices such 
as the input FIFO, output FIFO, memory, and system I/O 
bus(address and data bus). Since the crypto controller block 
is fully programmable, it can execute various crypto 
algorithms, protocols and application programs with a high 
degree of freedom. The crypto controller is a 32-bit 
processor with a RISC architecture and a 3-stage pipeline. 
It has features (such as a barrel shifter, a Booth multiplier 
block, register file, and a 16-bit and 32-bit data memory 
architecture) that enable it to achieve high performance and 
savings in memory when executing crypto algorithms. 

The codes for crypto controller generate the control 
signals for a dedicated crypto block based on a memory-
mapped method. The crypto controller generates control 
signals for the key and initial vector (which are required to 
execute the SEED and triple-DES algorithms), an algorithm 
selection signal, and a mode selection signal. It also 
performs other miscellaneous tasks such as done signal 
generation for the encryption or decryption operations. 
Then, when the plain text data becomes available, the 
dedicated crypto block receives the data and encrypts it 
with a proper mode and algorithm. When the encryption 
operations are done, the encrypted cipher texts are output to 
an output register and the corresponding control signals are 
set. Our crypto controller is fully compatible with 
ARM7TM [3] and described using Verilog HDL.�



 
Figure 5. Block diagram of the 32-bit RISC controller block 
 

3. The VLSI Implementation of the Crypto 
processor 

Our crypto processor was modeled using Verilog HDL 
(Hardware Description Language) and implemented as an 
ASIC chip. Modeling the processor using Verilog HDL 
facilitates quick prototyping and modification of the target 
design while considering various possible trade-offs in 
different implementations of the crypto algorithms with 
differing speed and area characteristics. Next, the crypto 
processor’s HDL model was simulated using ModelSim 
HDL compiler and simulator [9]. Then, Synopsys Design 
Analyzer and Compiler [12] was used to synthesize the 
HDL models into gate level designs, and the SDF files were 
simulated using Cadence’s SimWave [5]. Because the SDF 
file includes fairly accurate delay and load information, the 
simulation results are comparable to actual measurement 
results after the circuit is fabricated in silicon. The target 
process technology is Hynix’s 0.5 �m CMOS technology. 
 

4. The Simulation and Verification of the 
Crypto Processor 

Simulation was used to validate the Verilog HDL model of 
the crypto processor. After validation, the HDL model was 
synthesized into a gate level design with a target CMOS 
process technology library  

Static timing analysis is, however, required in 
combination with formal verification to achieve complete 
ASIC verification. Thus, we have also performed static 
timing analysis from the SDF files. After simulation and 
verification of our design, we have layed out and fabricated 
the crypto processor using is Hynix’s 0.5 �m CMOS 
technology. Fig. 6 shows a photograph of the crypto 
processor, and Table 2 summarizes the main features of the 
crypto processor. Note that a photograph of the layout is not 
presented as the circuit was synthesized using a standard 
cell library. 

 
Figure 6: Photograph of the crypto processor. 

 
Table 2 : Main features of the crypto processor. 

Technology 0.5�m CMOS 

Package Type PQFP 

Gate Counts 200K(with I/O PADS) 

Chip Size 8.1mm X 8.1mm 

Bandwidth 
240Mbps(SEED), 
160Mbps(triple-DES) 

Operating Frequency 30MHz 

The number of I/O pins 176 pins 

VDD and VSS 5V and 0V 

 
To validate the usability of the 32-bit RISC type 

crypto controller in our crypto processor for various 
security systems, we have implemented the ECDSA [8] and 
ECDH [6] protocols. The ECC algorithm we have 
implemented is defined over the field GF(2163), which is a 
SEC-2 recommendation [7], with this field being defined by 
the field polynomial F(x) = x163 + x7 + x6 + x3 + 1. The 
timing results are shown in Table 3. As shown in Table 3, 
most of the latency was due to the scalar multiplications kG 
in Algorithm 1. The latency of the ECDSA signature 
verification algorithm is asymptotically twice the latency of 
the signature generation algorithm. The latencies of the 
modular reduction and inversion processes are also 
negligible when compared to scalar multiplication. 

We have also implemented the ECDH key agreement 
protocol for the crypto controller. To obtain a common key 
for the two participants Alice and Bob, Alice secretly 
chooses a random integer kA and computes the factor kAG, 
which she sends to Bob. Likewise, Bob secretly chooses a 
random integer kB, computes kB G, and sends it to Alice. 
The common key is P = kB kB G. As shown in Table 3, the 
performance of the crypto controller in the crypto processor 
is suitable for embedded system applications, where high 
flexibility and performance are a must. 

Algorithm 1. ECDSA Signature Generation Algorithm 

To sign a message m, a signer A does the following: 
Select a random integer k from [1, n – 1 ] 
Compute kG = (x1, y1) and r = x1 mod n 
Compute k-1 mod n 
Compute e = SHA-1 (m) 
Compute s = k-1{e+dr} mod n 
If s = 0 then go to step 1 
A’s signature for the message m is (r,s) 
Where, G is a base point on E(GF(2m)). 
d is a random integer from [1, n – 1] and A’s private key. 
 
Table 3 : Performance of the ECDSA and ECDH 
algorithms when executed on the crypto controller. 

Method Timing 

Scalar Multiplication 1.004 sec 

ECDSA signature generation 1.032 sec 

ECDSA signature generation 2.255 sec 

EC Diffie-Hellman 1.920 sec 

SHA-1(for 163bit data size) 11.24 �sec 

 



5. A Crypto Processor Application: Real-time 
Data Security for a Storage Device 

To evaluate the usability of the crypto processor, we have 
developed an RTDS (Real Time Data Security) system for 
storage devices. The RTDS system is composed of control 
and monitoring software with a GUI(Graphical User 
Interface) environment, a device driver, and an RTDS 
board. Fig.7 shows the block diagram of the RTDS system, 
and Fig.8 shows a photograph of the RTDS board with the 
crypto processor. The main operations of the RTDS system 
are described as follows. 

�� A user process wants to write data into the secure 
area of a hard disk (a) 

�� The CPU reads data form a certain area of the 
memory and sends it to the hard disk via the I/O 
bus (b). 

�� The device driver, which is a part of a RTDS 
system, catches the hard disk write event, and 
forwards data to the crypto processor (c). 

�� In the crypto processor, an encryption task is 
performed in real-time (d). 

�� The crypto processor, which has completed its 
encryption task, sends the encrypted data to the 
hard disk(e). 

�� The hard disk receives the encrypted data and 
completes the write procedure (f).  

 

 
Figure 7: Block diagram of the Real Time Data Security 

System for storage devices. 
 

The RTDS board, shown in Fig. 8, is mainly 
composed of a PCI interface controller, an SRAM buffer, 
an IC card interface controller, and a crypto processor. An 
Altera FPGA chip is used for the PCI interface controller, 
and the ASIC chip, located in the right upper part of the 
board, is the crypto processor. The performance of the 
crypto processor and the PCI interface controller is high --- 
240 Mbps and 1056 Mbps, respectively --- and the average 
access time of the hard disk (a Quantum FireBall 15 device) 
is low --- 12 msec in our system. Therefore, the RTDS 
system operates in real-time.  

 
Figure 7:Photograph of the RTDS board. 

6.  Concluding Remarks 
In this paper, we have presented the design and 
implementation of a crypto processor composed of a 32-bit 
RISC processor and a coprocessor block dedicated to the 
triple-DES and SEED algorithms. The dedicated block of 
the crypto processor accelerates private key crypto 
algorithms and the programmability of the crypto controller 
makes possible fast execution of various crypto algorithms 
(such as RSA, ECC, etc.) and security applications. The 
crypto processor was implemented as an ASIC chip using 
Hynix’s 0.5 �m CMOS technology. Simulations, formal 
verification, and static timing analysis were used to fully 
verify the ASIC design before fabrication. The fabricated 
chip was found to have a 30MHz operating frequency and a 
data rate of 240Mbps for all modes of operation (ECB, 
CBC, OFB, CFB) of the SEED algorithm. The crypto 
processor was evaluated by constructing an RTDS (Real-
Time Data Security) system for storage devices. This 
application board was used to thoroughly test and verify the 
functionality of the crypto processor. The crypto processor 
in the RTDS system performs data encryption and 
decryption in real-time. The high performance and high 
flexibility of the crypto processor design makes it 
applicable to various security applications such as storage 
devices, embedded systems, network routers, firewalls, etc. 
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