Cryptography: Public Key Cryptography; Mathematical Preliminaries

Greg Plaxton Theory in Programming Practice, Spring 2004 Department of Computer Science University of Texas at Austin

Secure Communication

- Earlier we discussed the problems associated with XORing the data with a random secret key
 - Need a secure method to exchange keys
 - Should use a new secret key for each communication ("one-time pad")
- Other simple encryption schemes such as substitution cyphers are easily broken
 - Letter (and letter combination) frequencies give clues
- Public key cryptography yields a much more satisfactory solution

Public Key Cryptography (Diffie and Hellman)

- Each user Bob a public key (available to everyone) and a private key (known only to Bob)
 - Bob's public key is an encryption function f (specific to Bob) that is to be applied to any message sent to him
 - Bob's private key is f^{-1} , so Bob can use this function to decrypt messages that he receives
- Avoids the key exchange problem
- The function *f* needs to be "one-way"
 - Given any message x, it is easy to compute f(x)
 - Given any encrypted message f(x), it is hard (i.e., requires a prohibitive amount of computational power) to compute x

Public Key Cryptography: RSA (Rivest, Shamir, and Adelman)

- The encryption function is chosen from a specific family of functions that are conjectured to be hard to invert
- If a fast algorithm for factoring were to be found, the "one-wayness" of this family of functions would be broken
 - We remark that it is conceivable that RSA could be broken without obtaining a fast factoring algorithm

Hardness of Factoring

- Every positive integer has a unique prime factorization
- How hard is it to determine this factorization?
- On the one hand, this may seem like an easy problem
 - Given any positive integer n, we can determine whether n has a nontrivial factor (i.e., a factor other than 1 or n) in $O(\sqrt{n})$ integer divisions
 - Why does this simple idea not yield a practical (and polynomial-time) algorithm?

Hardness of Factoring

- An algorithm is said to run in polynomial time if its running time is upper bounded by some polynomial in the input size (measured in bits)
- If the input to a factoring algorithm as an integer n, then the input size is approximately $\log_2 n$ bits
- Note that \sqrt{n} is exponential in the input size, since

$$\sqrt{n} = 2^{\frac{1}{2}\log_2 n}$$

- Factoring a 100-digit number might take something like 10^{50} operations
 - Assume a computer can perform 10^9 such operations per second
 - There are about $3 \cdot 10^7 < 10^8$ seconds in a year
 - So we would need something like 10^{33} computers to perform such a computation within a year

Factoring: State of the Art

- The fastest (general-purpose) factoring algorithm to date is the number field sieve algorithm of Buhler, Lenstra, and Pomerance
 - For *d*-bit numbers, the running time is

$2^{\Theta(d^{\frac{1}{3}}(\log_2 d)^{\frac{2}{3}})}$

- This is a huge improvement over the naive algorithm, which has a running time of $2^{\Theta(d)}$
- In 1999, an implementation of the number field sieve algorithm was used to factor a 155-digit (512 bit) number of the kind (product of two large primes) used in 512-bit implementations of RSA
 - The computation was spread across about 200 machines and required about 8000 MIPS years
 - This result demonstrates that 512-bit RSA is no longer secure
 - Okay, let's use 1024-bit RSA

RSA: Mathematical Preliminaries

- Fermat's Little Theorem
- Extended Euclid algorithm

Fermat's Little Theorem

• For any prime p, and any positive integer a such that p does not divide a,

 $a^{p-1} \equiv 1 \pmod{p}$

- Proof:
 - Note that if i and j are integers between 1 and p-1 inclusive and $a \cdot i$ is congruent to $a \cdot j$ modulo p, then i = j; furthermore, $a \cdot i$ is not congruent to zero modulo p
 - Thus $a^{p-1} \cdot (p-1)!$ is congruent to (p-1)! modulo p, i.e., p divides $(a^{p-1}-1) \cdot (p-1)!$
 - Since p does not divide (p-1)!, p divides $a^{p-1}-1$

Euclid's GCD Algorithm

- Euclid's algorithm computes the greatest common divisor of two nonnegative integers (at least one of which is nonzero)
- Here is an efficient implementation of Euclid's algorithm
 - What is the running time of this algorithm as a function of the input size (i.e., the total number of bits in the binary representations of x and y)?

$$\begin{array}{l} u, v := x, y \\ \{u \geq 0, \ v \geq 0, \ u \neq 0 \ \lor \ v \neq 0, \ \gcd(x, y) = \gcd(u, v)\} \\ \textbf{while} \ v \neq 0 \ \textbf{do} \\ u, v := v, u \ \text{mod} \ v \\ \textbf{od} \\ \{\gcd(x, y) = \gcd(u, v), \ v = 0\} \\ \{\gcd(x, y) = u\} \end{array}$$

Euclid's GCD Algorithm

• Here is a slight modification of the preceding algorithm

$$\begin{array}{l} u, v := x, y \\ \{u \geq 0, \ v \geq 0, \ u \neq 0 \ \lor \ v \neq 0, \ \gcd(x, y) = \gcd(u, v)\} \\ \textbf{while} \ v \neq 0 \ \textbf{do} \\ q := \lfloor u/v \rfloor; \\ u, v := v, u - v \times q \\ \textbf{od} \\ \{\gcd(x, y) = u\} \end{array}$$

A GCD-Like Problem

- Given nonnegative integers x and y, at least one of which is nonzero, our goal is to compute integers a and b such that $a \cdot x + b \cdot y = gcd(x, y)$
 - Note that a and b need not be positive, nor are they unique
- We will now develop an extended Euclid algorithm that can be used to compute such a pair of integers a and b
 - The proof of correctness of the algorithm, which we develop along with the algorithm, provides a proof of the existence of such a pair of integers

Towards an Extended Euclid Algorithm

$$\begin{array}{l} u,v:=x,y;\,a,b:=1,0;\,c,d:=0,1;\\ \text{while } v\neq 0 \,\,\text{do}\\ q:=\lfloor u/v \rfloor;\\ \alpha:\, \{(a\times x+b\times y=u) \ \land \ (c\times x+d\times y=v) \,\,\}\\ u,v:=v,u-v\times q;\\ a,b,c,d:=a',b',c',d'\\ \beta:\, \{(a\times x+b\times y=u) \ \land \ (c\times x+d\times y=v) \,\,\}\\ \text{od} \end{array}$$

 \bullet It remains to determine expressions $a^\prime,b^\prime,c^\prime,d^\prime$ so that the given annotations are correct

Determining a' and b'

Using backward substitution, we need to show that the following proposition holds at program point α .

$$(a' \times x + b' \times y = v) \land (c' \times x + d' \times y = u - v \times q)$$

We are given that the proposition $(a \times x + b \times y = u) \land (c \times x + d \times y = v)$ holds at α . Therefore, we may set

$$a', b' = c, d$$

Determining c' and d'

$$c' \times x + d' \times y$$

$$= \{ \text{from the invariant} \}$$

$$u - v \times q$$

$$= \{ a \times x + b \times y = u \text{ and } c \times x + d \times y = v \}$$

$$(a \times x + b \times y) - (c \times x + d \times y) \times q$$

$$= \{ \text{algebra} \}$$

$$(a - c \times q) \times x + (b - d \times q) \times y$$

So, we may set

$$c', d' = a - c \times q, b - d \times q$$

Extended Euclid Algorithm

$$\begin{array}{l} u, v := x, y; \ a, b := 1, 0; \ c, d := 0, 1; \\ \text{while } v \neq 0 \ \text{do} \\ q := \lfloor u/v \rfloor; \\ \alpha : \ \{(a \times x + b \times y = u) \ \land \ (c \times x + d \times y = v) \ \} \\ u, v := v, u - v \times q; \\ a, b, c, d := c, d, a - c \times q, b - d \times q \\ \beta : \ \{(a \times x + b \times y = u) \ \land \ (c \times x + d \times y = v) \ \} \\ \text{od} \end{array}$$

• What is the running time of this algorithm?

Extended Euclid Algorithm: Correctness

Upon termination

$$a \times x + b \times y$$

$$= \{ \text{from the invariant} \}$$

$$u$$

$$= \{ v = 0 \text{ and } \gcd(u, 0) = u, \text{ for } u \neq 0 \}$$

$$\gcd(u, v)$$

$$= \{ \gcd(x, y) = \gcd(u, v) \}$$

$$\gcd(x, y)$$

Extended Euclid Algorithm: Example

Running extended Euclid with x = 157 and y = 2668:

a	b	u	С	d	v	q
1	0	157	0	1	2668	
						0
0	1	2668	1	0	157	
						16
1	0	157	-16	1	156	
						1
-16	1	156	17	-1	1	
						156
17	-1	1	-2668	157	0	

Theory in Programming Practice, Plaxton, Spring 2004