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Secure Communication

• Earlier we discussed the problems associated with XORing the data
with a random secret key

– Need a secure method to exchange keys

– Should use a new secret key for each communication (“one-time
pad”)

• Other simple encryption schemes such as substitution cyphers are easily
broken

– Letter (and letter combination) frequencies give clues

• Public key cryptography yields a much more satisfactory solution
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Public Key Cryptography (Diffie and Hellman)

• Each user Bob a public key (available to everyone) and a private key
(known only to Bob)

– Bob’s public key is an encryption function f (specific to Bob) that
is to be applied to any message sent to him

– Bob’s private key is f−1, so Bob can use this function to decrypt
messages that he receives

• Avoids the key exchange problem

• The function f needs to be “one-way”

– Given any message x, it is easy to compute f(x)

– Given any encrypted message f(x), it is hard (i.e., requires a
prohibitive amount of computational power) to compute x
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Public Key Cryptography: RSA (Rivest, Shamir, and
Adelman)

• The encryption function is chosen from a specific family of functions
that are conjectured to be hard to invert

• If a fast algorithm for factoring were to be found, the “one-wayness”
of this family of functions would be broken

– We remark that it is conceivable that RSA could be broken without
obtaining a fast factoring algorithm
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Hardness of Factoring

• Every positive integer has a unique prime factorization

• How hard is it to determine this factorization?

• On the one hand, this may seem like an easy problem

– Given any positive integer n, we can determine whether n has a
nontrivial factor (i.e., a factor other than 1 or n) in O(

√
n) integer

divisions

– Why does this simple idea not yield a practical (and polynomial-time)
algorithm?
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Hardness of Factoring

• An algorithm is said to run in polynomial time if its running time is
upper bounded by some polynomial in the input size (measured in bits)

• If the input to a factoring algorithm as an integer n, then the input
size is approximately log2 n bits

• Note that
√

n is exponential in the input size, since

√
n = 2

1
2 log2 n

• Factoring a 100-digit number might take something like 1050 operations

– Assume a computer can perform 109 such operations per second

– There are about 3 · 107 < 108 seconds in a year

– So we would need something like 1033 computers to perform such a
computation within a year

Theory in Programming Practice, Plaxton, Spring 2004



Factoring: State of the Art

• The fastest (general-purpose) factoring algorithm to date is the number
field sieve algorithm of Buhler, Lenstra, and Pomerance

– For d-bit numbers, the running time is

2Θ(d
1
3(log2 d)

2
3)

– This is a huge improvement over the naive algorithm, which has a
running time of 2Θ(d)

• In 1999, an implementation of the number field sieve algorithm was
used to factor a 155-digit (512 bit) number of the kind (product of two
large primes) used in 512-bit implementations of RSA

– The computation was spread across about 200 machines and required
about 8000 MIPS years

– This result demonstrates that 512-bit RSA is no longer secure

– Okay, let’s use 1024-bit RSA
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RSA: Mathematical Preliminaries

• Fermat’s Little Theorem

• Extended Euclid algorithm
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Fermat’s Little Theorem

• For any prime p, and any positive integer a such that p does not divide
a,

ap−1 ≡ 1 (mod p)

• Proof:

– Note that if i and j are integers between 1 and p− 1 inclusive and
a · i is congruent to a · j modulo p, then i = j; furthermore, a · i is
not congruent to zero modulo p

– Thus ap−1 · (p− 1)! is congruent to (p− 1)! modulo p, i.e., p divides
(ap−1 − 1) · (p− 1)!

– Since p does not divide (p− 1)!, p divides ap−1 − 1
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Euclid’s GCD Algorithm

• Euclid’s algorithm computes the greatest common divisor of two
nonnegative integers (at least one of which is nonzero)

• Here is an efficient implementation of Euclid’s algorithm

– What is the running time of this algorithm as a function of the input
size (i.e., the total number of bits in the binary representations of x
and y)?

u, v := x, y
{u ≥ 0, v ≥ 0, u 6= 0 ∨ v 6= 0, gcd(x, y) = gcd(u, v)}
while v 6= 0 do

u, v := v, u mod v
od
{gcd(x, y) = gcd(u, v), v = 0}
{gcd(x, y) = u}
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Euclid’s GCD Algorithm

• Here is a slight modification of the preceding algorithm

u, v := x, y
{u ≥ 0, v ≥ 0, u 6= 0 ∨ v 6= 0, gcd(x, y) = gcd(u, v)}
while v 6= 0 do

q := bu/vc;
u, v := v, u− v × q

od
{gcd(x, y) = u}
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A GCD-Like Problem

• Given nonnegative integers x and y, at least one of which is nonzero,
our goal is to compute integers a and b such that a ·x+b ·y = gcd(x, y)

– Note that a and b need not be positive, nor are they unique

• We will now develop an extended Euclid algorithm that can be used to
compute such a pair of integers a and b

– The proof of correctness of the algorithm, which we develop along
with the algorithm, provides a proof of the existence of such a pair
of integers
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Towards an Extended Euclid Algorithm

u, v := x, y; a, b := 1, 0; c, d := 0, 1;
while v 6= 0 do

q := bu/vc;
α : {(a× x + b× y = u) ∧ (c× x + d× y = v) }
u, v := v, u− v × q;
a, b, c, d := a′, b′, c′, d′

β : {(a× x + b× y = u) ∧ (c× x + d× y = v) }
od

• It remains to determine expressions a′, b′, c′, d′ so that the given
annotations are correct
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Determining a′ and b′

Using backward substitution, we need to show that the following
proposition holds at program point α.

(a′ × x + b′ × y = v) ∧ (c′ × x + d′ × y = u− v × q)

We are given that the proposition (a×x+b×y = u) ∧ (c×x+d×y = v)
holds at α. Therefore, we may set

a′, b′ = c, d
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Determining c′ and d′

c′ × x + d′ × y
= {from the invariant}

u− v × q
= {a× x + b× y = u and c× x + d× y = v}

(a× x + b× y)− (c× x + d× y)× q
= {algebra}

(a− c× q)× x + (b− d× q)× y

So, we may set

c′, d′ = a− c× q, b− d× q
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Extended Euclid Algorithm

u, v := x, y; a, b := 1, 0; c, d := 0, 1;
while v 6= 0 do

q := bu/vc;
α : {(a× x + b× y = u) ∧ (c× x + d× y = v) }
u, v := v, u− v × q;
a, b, c, d := c, d, a− c× q, b− d× q
β : {(a× x + b× y = u) ∧ (c× x + d× y = v) }

od

• What is the running time of this algorithm?
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Extended Euclid Algorithm: Correctness

Upon termination

a× x + b× y
= {from the invariant}

u
= {v = 0 and gcd(u, 0) = u, for u 6= 0}

gcd(u, v)
= {gcd(x, y) = gcd(u, v)}

gcd(x, y)
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Extended Euclid Algorithm: Example

Running extended Euclid with x = 157 and y = 2668:

a b u c d v q
1 0 157 0 1 2668

0
0 1 2668 1 0 157

16
1 0 157 −16 1 156

1
−16 1 156 17 −1 1

156
17 −1 1 −2668 157 0
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