Cryptography: Public Key Cryptography; Mathematical Preliminaries

Greg Plaxton
Theory in Programming Practice, Spring 2004
Department of Computer Science
University of Texas at Austin

Secure Communication

- Earlier we discussed the problems associated with XORing the data with a random secret key
- Need a secure method to exchange keys
- Should use a new secret key for each communication ("one-time pad")
- Other simple encryption schemes such as substitution cyphers are easily broken
- Letter (and letter combination) frequencies give clues
- Public key cryptography yields a much more satisfactory solution

Public Key Cryptography (Diffie and Hellman)

- Each user Bob a public key (available to everyone) and a private key (known only to Bob)
- Bob's public key is an encryption function f (specific to Bob) that is to be applied to any message sent to him
- Bob's private key is f^{-1}, so Bob can use this function to decrypt messages that he receives
- Avoids the key exchange problem
- The function f needs to be "one-way"
- Given any message x, it is easy to compute $f(x)$
- Given any encrypted message $f(x)$, it is hard (i.e., requires a prohibitive amount of computational power) to compute x

Public Key Cryptography: RSA (Rivest, Shamir, and Adelman)

- The encryption function is chosen from a specific family of functions that are conjectured to be hard to invert
- If a fast algorithm for factoring were to be found, the "one-wayness" of this family of functions would be broken
- We remark that it is conceivable that RSA could be broken without obtaining a fast factoring algorithm

Hardness of Factoring

- Every positive integer has a unique prime factorization
- How hard is it to determine this factorization?
- On the one hand, this may seem like an easy problem
- Given any positive integer n, we can determine whether n has a nontrivial factor (i.e., a factor other than 1 or n) in $O(\sqrt{n})$ integer divisions
- Why does this simple idea not yield a practical (and polynomial-time) algorithm?

Hardness of Factoring

- An algorithm is said to run in polynomial time if its running time is upper bounded by some polynomial in the input size (measured in bits)
- If the input to a factoring algorithm as an integer n, then the input size is approximately $\log _{2} n$ bits
- Note that \sqrt{n} is exponential in the input size, since

$$
\sqrt{n}=2^{\frac{1}{2} \log _{2} n}
$$

- Factoring a 100 -digit number might take something like 10^{50} operations
- Assume a computer can perform 10^{9} such operations per second
- There are about $3 \cdot 10^{7}<10^{8}$ seconds in a year
- So we would need something like 10^{33} computers to perform such a computation within a year

Factoring: State of the Art

- The fastest (general-purpose) factoring algorithm to date is the number field sieve algorithm of Buhler, Lenstra, and Pomerance
- For d-bit numbers, the running time is

$$
2^{\Theta\left(d^{\frac{1}{3}}\left(\log _{2} d\right)^{\frac{2}{3}}\right)}
$$

- This is a huge improvement over the naive algorithm, which has a running time of $2^{\Theta(d)}$
- In 1999, an implementation of the number field sieve algorithm was used to factor a 155-digit (512 bit) number of the kind (product of two large primes) used in 512-bit implementations of RSA
- The computation was spread across about 200 machines and required about 8000 MIPS years
- This result demonstrates that 512-bit RSA is no longer secure
- Okay, let's use 1024-bit RSA

RSA: Mathematical Preliminaries

- Fermat's Little Theorem
- Extended Euclid algorithm

Fermat's Little Theorem

- For any prime p, and any positive integer a such that p does not divide a,

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

- Proof:
- Note that if i and j are integers between 1 and $p-1$ inclusive and $a \cdot i$ is congruent to $a \cdot j$ modulo p, then $i=j$; furthermore, $a \cdot i$ is not congruent to zero modulo p
- Thus $a^{p-1} \cdot(p-1)$! is congruent to ($p-1$)! modulo p, i.e., p divides $\left(a^{p-1}-1\right) \cdot(p-1)$!
- Since p does not divide $(p-1)$!, p divides $a^{p-1}-1$

Euclid's GCD Algorithm

- Euclid's algorithm computes the greatest common divisor of two nonnegative integers (at least one of which is nonzero)
- Here is an efficient implementation of Euclid's algorithm
- What is the running time of this algorithm as a function of the input size (i.e., the total number of bits in the binary representations of x and y)?
$u, v:=x, y$
$\{u \geq 0, v \geq 0, u \neq 0 \vee v \neq 0, \operatorname{gcd}(x, y)=\operatorname{gcd}(u, v)\}$
while $v \neq 0$ do

$$
u, v:=v, u \bmod v
$$

od
$\{\operatorname{gcd}(x, y)=\operatorname{gcd}(u, v), v=0\}$
$\{\operatorname{gcd}(x, y)=u\}$

Euclid's GCD Algorithm

- Here is a slight modification of the preceding algorithm

$$
\begin{aligned}
& u, v:=x, y \\
& \{u \geq 0, v \geq 0, u \neq 0 \vee v \neq 0, \operatorname{gcd}(x, y)=\operatorname{gcd}(u, v)\} \\
& \text { while } v \neq 0 \text { do } \\
& \quad q:=\lfloor u / v\rfloor \\
& \quad u, v:=v, u-v \times q \\
& \text { od } \\
& \{\operatorname{gcd}(x, y)=u\}
\end{aligned}
$$

A GCD-Like Problem

- Given nonnegative integers x and y, at least one of which is nonzero, our goal is to compute integers a and b such that $a \cdot x+b \cdot y=\operatorname{gcd}(x, y)$
- Note that a and b need not be positive, nor are they unique
- We will now develop an extended Euclid algorithm that can be used to compute such a pair of integers a and b
- The proof of correctness of the algorithm, which we develop along with the algorithm, provides a proof of the existence of such a pair of integers

Towards an Extended Euclid Algorithm

$$
\begin{aligned}
& u, v:=x, y ; a, b:=1,0 ; c, d:=0,1 ; \\
& \text { while } v \neq 0 \text { do } \\
& \quad q:=\lfloor u / v\rfloor \\
& \quad \alpha:\{(a \times x+b \times y=u) \wedge(c \times x+d \times y=v)\} \\
& \quad u, v:=v, u-v \times q ; \\
& \quad a, b, c, d:=a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime} \\
& \beta \quad: \quad\{(a \times x+b \times y=u) \wedge(c \times x+d \times y=v)\} \\
& \text { od }
\end{aligned}
$$

- It remains to determine expressions $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ so that the given annotations are correct

Determining a^{\prime} and b^{\prime}

Using backward substitution, we need to show that the following proposition holds at program point α.

$$
\left(a^{\prime} \times x+b^{\prime} \times y=v\right) \wedge\left(c^{\prime} \times x+d^{\prime} \times y=u-v \times q\right)
$$

We are given that the proposition $(a \times x+b \times y=u) \wedge(c \times x+d \times y=v)$ holds at α. Therefore, we may set

$$
a^{\prime}, b^{\prime}=c, d
$$

Determining c^{\prime} and d^{\prime}

$$
\begin{array}{ll}
& c^{\prime} \times x+d^{\prime} \times y \\
= & \{\text { from the invariant }\} \\
= & u-v \times q \\
= & (a \times x+b \times y=u \text { and } c \times x+d \times y=v\} \\
= & \{\text { algebra }\} \\
& (a-c \times q) \times x+(b-d \times q) \times y
\end{array}
$$

So, we may set

$$
c^{\prime}, d^{\prime}=a-c \times q, b-d \times q
$$

Extended Euclid Algorithm

$$
\begin{aligned}
& u, v:=x, y ; a, b:=1,0 ; c, d:=0,1 \text {; } \\
& \text { while } v \neq 0 \text { do } \\
& \quad q:=\lfloor u / v\rfloor ; \\
& \quad \alpha:\{(a \times x+b \times y=u) \wedge(c \times x+d \times y=v)\} \\
& \quad u, v:=v, u-v \times q ; \\
& \quad a, b, c, d:=c, d, a-c \times q, b-d \times q \\
& \beta \\
& \text { od }
\end{aligned}
$$

- What is the running time of this algorithm?

Extended Euclid Algorithm: Correctness

Upon termination

$$
\begin{gathered}
\quad a \times x+b \times y \\
=\quad\{\text { from the invariant }\} \\
=\quad\{v=0 \text { and } \operatorname{gcd}(u, 0)=u, \text { for } u \neq 0\} \\
=\quad \begin{array}{l}
\operatorname{gcd}(u, v) \\
= \\
\{\operatorname{gcd}(x, y)=\operatorname{gcd}(u, v)\} \\
\\
\operatorname{gcd}(x, y)
\end{array}
\end{gathered}
$$

Extended Euclid Algorithm: Example

Running extended Euclid with $x=157$ and $y=2668$:

a	b	u	c	d	v	q
1	0	157	0	1	2668	
0	1	2668	1	0	157	
1	0	157	-16	1	156	16
-16	1	156	17	-1	1	1
17	-1	1	-2668	157	0	

