
Cryptography: Public Key Cryptography;
Mathematical Preliminaries

Greg Plaxton
Theory in Programming Practice, Spring 2004

Department of Computer Science
University of Texas at Austin



Secure Communication

• Earlier we discussed the problems associated with XORing the data
with a random secret key

– Need a secure method to exchange keys

– Should use a new secret key for each communication (“one-time
pad”)

• Other simple encryption schemes such as substitution cyphers are easily
broken

– Letter (and letter combination) frequencies give clues

• Public key cryptography yields a much more satisfactory solution

Theory in Programming Practice, Plaxton, Spring 2004



Public Key Cryptography (Diffie and Hellman)

• Each user Bob a public key (available to everyone) and a private key
(known only to Bob)

– Bob’s public key is an encryption function f (specific to Bob) that
is to be applied to any message sent to him

– Bob’s private key is f−1, so Bob can use this function to decrypt
messages that he receives

• Avoids the key exchange problem

• The function f needs to be “one-way”

– Given any message x, it is easy to compute f(x)

– Given any encrypted message f(x), it is hard (i.e., requires a
prohibitive amount of computational power) to compute x

Theory in Programming Practice, Plaxton, Spring 2004



Public Key Cryptography: RSA (Rivest, Shamir, and
Adelman)

• The encryption function is chosen from a specific family of functions
that are conjectured to be hard to invert

• If a fast algorithm for factoring were to be found, the “one-wayness”
of this family of functions would be broken

– We remark that it is conceivable that RSA could be broken without
obtaining a fast factoring algorithm

Theory in Programming Practice, Plaxton, Spring 2004



Hardness of Factoring

• Every positive integer has a unique prime factorization

• How hard is it to determine this factorization?

• On the one hand, this may seem like an easy problem

– Given any positive integer n, we can determine whether n has a
nontrivial factor (i.e., a factor other than 1 or n) in O(

√
n) integer

divisions

– Why does this simple idea not yield a practical (and polynomial-time)
algorithm?

Theory in Programming Practice, Plaxton, Spring 2004



Hardness of Factoring

• An algorithm is said to run in polynomial time if its running time is
upper bounded by some polynomial in the input size (measured in bits)

• If the input to a factoring algorithm as an integer n, then the input
size is approximately log2 n bits

• Note that
√

n is exponential in the input size, since

√
n = 2

1
2 log2 n

• Factoring a 100-digit number might take something like 1050 operations

– Assume a computer can perform 109 such operations per second

– There are about 3 · 107 < 108 seconds in a year

– So we would need something like 1033 computers to perform such a
computation within a year

Theory in Programming Practice, Plaxton, Spring 2004



Factoring: State of the Art

• The fastest (general-purpose) factoring algorithm to date is the number
field sieve algorithm of Buhler, Lenstra, and Pomerance

– For d-bit numbers, the running time is

2Θ(d
1
3(log2 d)

2
3)

– This is a huge improvement over the naive algorithm, which has a
running time of 2Θ(d)

• In 1999, an implementation of the number field sieve algorithm was
used to factor a 155-digit (512 bit) number of the kind (product of two
large primes) used in 512-bit implementations of RSA

– The computation was spread across about 200 machines and required
about 8000 MIPS years

– This result demonstrates that 512-bit RSA is no longer secure

– Okay, let’s use 1024-bit RSA

Theory in Programming Practice, Plaxton, Spring 2004



RSA: Mathematical Preliminaries

• Fermat’s Little Theorem

• Extended Euclid algorithm

Theory in Programming Practice, Plaxton, Spring 2004



Fermat’s Little Theorem

• For any prime p, and any positive integer a such that p does not divide
a,

ap−1 ≡ 1 (mod p)

• Proof:

– Note that if i and j are integers between 1 and p− 1 inclusive and
a · i is congruent to a · j modulo p, then i = j; furthermore, a · i is
not congruent to zero modulo p

– Thus ap−1 · (p− 1)! is congruent to (p− 1)! modulo p, i.e., p divides
(ap−1 − 1) · (p− 1)!

– Since p does not divide (p− 1)!, p divides ap−1 − 1

Theory in Programming Practice, Plaxton, Spring 2004



Euclid’s GCD Algorithm

• Euclid’s algorithm computes the greatest common divisor of two
nonnegative integers (at least one of which is nonzero)

• Here is an efficient implementation of Euclid’s algorithm

– What is the running time of this algorithm as a function of the input
size (i.e., the total number of bits in the binary representations of x
and y)?

u, v := x, y
{u ≥ 0, v ≥ 0, u 6= 0 ∨ v 6= 0, gcd(x, y) = gcd(u, v)}
while v 6= 0 do

u, v := v, u mod v
od
{gcd(x, y) = gcd(u, v), v = 0}
{gcd(x, y) = u}

Theory in Programming Practice, Plaxton, Spring 2004



Euclid’s GCD Algorithm

• Here is a slight modification of the preceding algorithm

u, v := x, y
{u ≥ 0, v ≥ 0, u 6= 0 ∨ v 6= 0, gcd(x, y) = gcd(u, v)}
while v 6= 0 do

q := bu/vc;
u, v := v, u− v × q

od
{gcd(x, y) = u}

Theory in Programming Practice, Plaxton, Spring 2004



A GCD-Like Problem

• Given nonnegative integers x and y, at least one of which is nonzero,
our goal is to compute integers a and b such that a ·x+b ·y = gcd(x, y)

– Note that a and b need not be positive, nor are they unique

• We will now develop an extended Euclid algorithm that can be used to
compute such a pair of integers a and b

– The proof of correctness of the algorithm, which we develop along
with the algorithm, provides a proof of the existence of such a pair
of integers

Theory in Programming Practice, Plaxton, Spring 2004



Towards an Extended Euclid Algorithm

u, v := x, y; a, b := 1, 0; c, d := 0, 1;
while v 6= 0 do

q := bu/vc;
α : {(a× x + b× y = u) ∧ (c× x + d× y = v) }
u, v := v, u− v × q;
a, b, c, d := a′, b′, c′, d′

β : {(a× x + b× y = u) ∧ (c× x + d× y = v) }
od

• It remains to determine expressions a′, b′, c′, d′ so that the given
annotations are correct

Theory in Programming Practice, Plaxton, Spring 2004



Determining a′ and b′

Using backward substitution, we need to show that the following
proposition holds at program point α.

(a′ × x + b′ × y = v) ∧ (c′ × x + d′ × y = u− v × q)

We are given that the proposition (a×x+b×y = u) ∧ (c×x+d×y = v)
holds at α. Therefore, we may set

a′, b′ = c, d

Theory in Programming Practice, Plaxton, Spring 2004



Determining c′ and d′

c′ × x + d′ × y
= {from the invariant}

u− v × q
= {a× x + b× y = u and c× x + d× y = v}

(a× x + b× y)− (c× x + d× y)× q
= {algebra}

(a− c× q)× x + (b− d× q)× y

So, we may set

c′, d′ = a− c× q, b− d× q

Theory in Programming Practice, Plaxton, Spring 2004



Extended Euclid Algorithm

u, v := x, y; a, b := 1, 0; c, d := 0, 1;
while v 6= 0 do

q := bu/vc;
α : {(a× x + b× y = u) ∧ (c× x + d× y = v) }
u, v := v, u− v × q;
a, b, c, d := c, d, a− c× q, b− d× q
β : {(a× x + b× y = u) ∧ (c× x + d× y = v) }

od

• What is the running time of this algorithm?

Theory in Programming Practice, Plaxton, Spring 2004



Extended Euclid Algorithm: Correctness

Upon termination

a× x + b× y
= {from the invariant}

u
= {v = 0 and gcd(u, 0) = u, for u 6= 0}

gcd(u, v)
= {gcd(x, y) = gcd(u, v)}

gcd(x, y)

Theory in Programming Practice, Plaxton, Spring 2004



Extended Euclid Algorithm: Example

Running extended Euclid with x = 157 and y = 2668:

a b u c d v q
1 0 157 0 1 2668

0
0 1 2668 1 0 157

16
1 0 157 −16 1 156

1
−16 1 156 17 −1 1

156
17 −1 1 −2668 157 0

Theory in Programming Practice, Plaxton, Spring 2004


