
Cryptography: RSA Encryption and
Decryption

Greg Plaxton
Theory in Programming Practice, Spring 2004

Department of Computer Science
University of Texas at Austin



Joining the RSA Cryptosystem: Quick Review

• First, Bob randomly chooses two large (e.g., 512-bit) primes p and q

• Then, Bob computes n = pq, φ(n) = (p − 1)(q − 1), and a positive
integer d < n such that d and φ(n) are relatively prime

– In particular, any prime exceeding max(p, q) (and less than n) is a
valid choice for d

• Then, Bob computes e such that de is congruent to 1 modulo φ(n)

• Bob’s public key is (e, n) and Bob’s private key is (d, n)

Theory in Programming Practice, Plaxton, Spring 2004



RSA Encryption and Decryption

• Choose the highest block size b such that every b-bit number is less
than n

– Thus b is blog2 nc
– For example, if p and q are 512-bit numbers, then b is either 1022

or 1023

• Suppose Alice wants to send a message to Bob

– She partitions the message into a sequence of b-bit blocks (padding
the last block with zeros if necessary)

– Encryption and decryption is done on a per block basis

– Later we’ll discuss some variations of this basic framework

Theory in Programming Practice, Plaxton, Spring 2004



Encryption of a Single Block

• Suppose Alice wants to send message block X to Bob

– The message block X is a b-bit string

– We interpret X as a nonnegative integer in the usual manner, e.g.,
if X is the 5-bit string 00110 then we interpret X as 6

– By our choice of b, X is less than n

• Alice encrypts X by computing the number Y equal to Xe mod n; note
that Y is less than n and thus has at most b′ = 1+dlog2(n−1)e ≤ b+1
bits in its binary representation

• Alice sends Y to Bob

– Alice could send Y as a b′-bit string (i.e., padded with leading zeros
if necessary)

Theory in Programming Practice, Plaxton, Spring 2004



Decryption of a Single Block

• Bob receives encrypted message block Y and would like to recover the
corresponding plaintext message block X

• Bob computes the number Z equal to Y d mod n; note that Z is less
than n

• We claim that Z = X

– Lemma: For any integers a and b, and any positive integer c,
(ab) mod c equals ((a mod c)b) mod c

– It follows that Y d mod n is equal to Xde mod n

– It remains to prove that Xde mod n equals X

Theory in Programming Practice, Plaxton, Spring 2004



Lemma: Xde mod p equals X mod p

• Recall that e was chosen so that de is congruent to 1 modulo φ(n) =
(p− 1)(q − 1)

• Thus de = t(p− 1) + 1 for some nonnegative integer t

• Thus Xde mod p equals

[(
Xp−1 mod p

)t ·X
]

mod p

• By Fermat’s Little Theorem, Xp−1 mod p is equal to 1 for X 6= 0 (if
X = 0, the lemma holds trivially)

• Hence Xde mod p equals X mod p, as desired

Theory in Programming Practice, Plaxton, Spring 2004



Theorem: Xde mod n equals X

• We have just established that Xde −X is a multiple of p

• A symmetric argument shows that Xde −X is a multiple of q

• Thus Xde −X is a multiple of n, i.e., Xde is congruent to X modulo
n

• The claim of the theorem follows since 0 ≤ X < n

Theory in Programming Practice, Plaxton, Spring 2004



Modular Exponentiation

• It remains to show how to compute ab mod c efficiently

• The naive approach is to compute a2, a3, a4, . . . , ab and then compute
the remainder when the last number in this sequence is divided by c

– If b is a 512-bit number, say, the length of this sequence is
astronomical

– Furthermore, the length of each number in the last half, say, of this
sequence is astronomical

• A slightly less naive approach is to observe that we can compute
a mod c, a2 mod c, a3 mod c, a4 mod c,. . . , ab mod c

– This ensures that we are always working with numbers in the range
{0, . . . , c− 1}

– However, the length of the sequence remains astronomical

Theory in Programming Practice, Plaxton, Spring 2004



Fast Exponentiation

• Suppose we want to compute ab, where a and b are nonnegative
integers, using a small number of multiplications

– For the moment, let us ignore any difficulties associated with
multiplying astronomically large numbers

– We’ll simply charge one unit of time for each multiplication

• What is an efficient way to compute ab when b is of the form 2k for
some nonnegative integer k?

• What about the case of general b?

Theory in Programming Practice, Plaxton, Spring 2004



Fast Exponentiation by Repeated Squaring

• Example: Suppose we want to compute ab where b = 35 = 1000112

• We can compute a2, then a4, then a8, then a16, then a17, then a34,
then a35

– Note that 2 = 102, 4 = 1002, 8 = 10002, 16 = 100002, 17 = 100012,
34 = 1000102, 35 = 1000112

• It is often more convenient to examine the bits of b starting with
the low order position and to compute, e.g., (a, a), (a2, a3), (a4, a3),
(a8, a3), (a16, a3), (a32, a35)

– As above, we use a total of seven multiplications

– At each iteration, we examine the low-order bit of b and then shift b
right (dropping the low order bit)

– The loop terminates when b is zero

Theory in Programming Practice, Plaxton, Spring 2004



Fast Modular Exponentiation

• To compute ab mod c, we proceed as on the previous slide (either
method will work), but every time we compute a product we take the
result modulo c

• Example: Suppose we want to compute 1135 mod 13

• Using the first method from the previous slide, we compute 112 mod
13 = 4, 114 mod 13 = 42 mod 13 = 3, 118 mod 13 = 32 mod 13 = 9,
1116 mod 13 = 92 mod 13 = 3, 1117 mod 13 = 3 · 11 mod 13 = 7,
1134 mod 13 = 72 mod 13 = 10, 1135 mod 13 = 10 · 11 mod 13 = 6

• Using the second method, we compute (11, 11), (4, 5), (3, 5), (9, 5),
(3, 5), (9, 6), so once again we get 6 as the answer

Theory in Programming Practice, Plaxton, Spring 2004



Performance of RSA

• A trick that is often used to speed encryption (but not decryption) is
to choose d and e so that e is small

• RSA encryption and decryption is quite fast, but not sufficiently fast
for many high-speed network applications

– Accordingly, RSA is often only used to exchange a secret key

• This secret key is not a one-time pad of the sort we discussed earlier in
a previous lecture

– Recall that such a one-time pad would have to be as large as the
message we intend to transmit

• Instead, the secret key is often used to determine a block cipher
encryption of the data

Theory in Programming Practice, Plaxton, Spring 2004



Block Cipher

• A block cipher is a function that takes two inputs, a plaintext block
and a key, and produces as output a ciphertext block

– The plaintext and ciphertext blocks are normally of the same size
(e.g., 64 bits is common)

– The key may be a different size; in practice, it is often 64 or 128 bits

• A good block cipher must satisfy the following properties:

– Given the key and the plaintext (resp., ciphertext) block, it is easy
for a computer program to determine the corresponding ciphertext
(resp., plaintext) block

– Given a plaintext block M and the corresponding ciphertext block
C, it is computationally hard to determine a key mapping M to C

Theory in Programming Practice, Plaxton, Spring 2004



Block Cipher Encryption Modes

• Assume that the sender and receiver have agreed on a block cipher and
a secret key

• Electronic codebook encryption mode: Just divide the message into
blocks and apply the block cipher to each block

– A serious disadvantage of this scheme is that multiple copies of the
same plaintext block all map to the same ciphertext block

• Cipher block chaining encryption mode:

– The first ciphertext block is computed as above

– For i > 1, the ith ciphertext block is obtained by applying the block
cipher to the XOR of the ith plaintext block and the (i − 1)th
ciphertext block

– How do we decrypt in this case?

• Other encryption modes exist

Theory in Programming Practice, Plaxton, Spring 2004


