Cryptography: RSA Encryption and Decryption

Greg Plaxton
Theory in Programming Practice, Spring 2004
Department of Computer Science University of Texas at Austin

Joining the RSA Cryptosystem: Quick Review

- First, Bob randomly chooses two large (e.g., 512-bit) primes p and q
- Then, Bob computes $n=p q, \phi(n)=(p-1)(q-1)$, and a positive integer $d<n$ such that d and $\phi(n)$ are relatively prime
- In particular, any prime exceeding $\max (p, q)$ (and less than n) is a valid choice for d
- Then, Bob computes e such that $d e$ is congruent to 1 modulo $\phi(n)$
- Bob's public key is (e, n) and Bob's private key is (d, n)

RSA Encryption and Decryption

- Choose the highest block size b such that every b-bit number is less than n
- Thus b is $\left\lfloor\log _{2} n\right\rfloor$
- For example, if p and q are 512-bit numbers, then b is either 1022 or 1023
- Suppose Alice wants to send a message to Bob
- She partitions the message into a sequence of b-bit blocks (padding the last block with zeros if necessary)
- Encryption and decryption is done on a per block basis
- Later we'll discuss some variations of this basic framework

Encryption of a Single Block

- Suppose Alice wants to send message block X to Bob
- The message block X is a b-bit string
- We interpret X as a nonnegative integer in the usual manner, e.g., if X is the 5 -bit string 00110 then we interpret X as 6
- By our choice of b, X is less than n
- Alice encrypts X by computing the number Y equal to $X^{e} \bmod n$; note that Y is less than n and thus has at most $b^{\prime}=1+\left\lceil\log _{2}(n-1)\right\rceil \leq b+1$ bits in its binary representation
- Alice sends Y to Bob
- Alice could send Y as a b^{\prime}-bit string (i.e., padded with leading zeros if necessary)

Decryption of a Single Block

- Bob receives encrypted message block Y and would like to recover the corresponding plaintext message block X
- Bob computes the number Z equal to $Y^{d} \bmod n$; note that Z is less than n
- We claim that $Z=X$
- Lemma: For any integers a and b, and any positive integer c, $(a b) \bmod c$ equals $((a \bmod c) b) \bmod c$
- It follows that $Y^{d} \bmod n$ is equal to $X^{d e} \bmod n$
- It remains to prove that $X^{d e} \bmod n$ equals X

Lemma: $X^{d e} \bmod p$ equals $X \bmod p$

- Recall that e was chosen so that $d e$ is congruent to 1 modulo $\phi(n)=$ $(p-1)(q-1)$
- Thus $d e=t(p-1)+1$ for some nonnegative integer t
- Thus $X^{d e} \bmod p$ equals

$$
\left[\left(X^{p-1} \bmod p\right)^{t} \cdot X\right] \bmod p
$$

- By Fermat's Little Theorem, $X^{p-1} \bmod p$ is equal to 1 for $X \neq 0$ (if $X=0$, the lemma holds trivially)
- Hence $X^{d e} \bmod p$ equals $X \bmod p$, as desired

Theorem: $X^{d e} \bmod n$ equals X

- We have just established that $X^{d e}-X$ is a multiple of p
- A symmetric argument shows that $X^{d e}-X$ is a multiple of q
- Thus $X^{d e}-X$ is a multiple of n, i.e., $X^{d e}$ is congruent to X modulo n
- The claim of the theorem follows since $0 \leq X<n$

Modular Exponentiation

- It remains to show how to compute $a^{b} \bmod c$ efficiently
- The naive approach is to compute $a^{2}, a^{3}, a^{4}, \ldots, a^{b}$ and then compute the remainder when the last number in this sequence is divided by c
- If b is a 512-bit number, say, the length of this sequence is astronomical
- Furthermore, the length of each number in the last half, say, of this sequence is astronomical
- A slightly less naive approach is to observe that we can compute $a \bmod c, a^{2} \bmod c, a^{3} \bmod c, a^{4} \bmod c, . \ldots, a^{b} \bmod c$
- This ensures that we are always working with numbers in the range $\{0, \ldots, c-1\}$
- However, the length of the sequence remains astronomical

Fast Exponentiation

- Suppose we want to compute a^{b}, where a and b are nonnegative integers, using a small number of multiplications
- For the moment, let us ignore any difficulties associated with multiplying astronomically large numbers
- We'll simply charge one unit of time for each multiplication
- What is an efficient way to compute a^{b} when b is of the form 2^{k} for some nonnegative integer k ?
- What about the case of general b ?

Fast Exponentiation by Repeated Squaring

- Example: Suppose we want to compute a^{b} where $b=35=100011_{2}$
- We can compute a^{2}, then a^{4}, then a^{8}, then a^{16}, then a^{17}, then a^{34}, then a^{35}
- Note that $2=10_{2}, 4=100_{2}, 8=1000_{2}, 16=10000_{2}, 17=10001_{2}$, $34=100010_{2}, 35=100011_{2}$
- It is often more convenient to examine the bits of b starting with the low order position and to compute, e.g., $(a, a),\left(a^{2}, a^{3}\right),\left(a^{4}, a^{3}\right)$, $\left(a^{8}, a^{3}\right),\left(a^{16}, a^{3}\right),\left(a^{32}, a^{35}\right)$
- As above, we use a total of seven multiplications
- At each iteration, we examine the low-order bit of b and then shift b right (dropping the low order bit)
- The loop terminates when b is zero

Fast Modular Exponentiation

- To compute $a^{b} \bmod c$, we proceed as on the previous slide (either method will work), but every time we compute a product we take the result modulo c
- Example: Suppose we want to compute $11^{35} \bmod 13$
- Using the first method from the previous slide, we compute $11^{2} \mathrm{mod}$ $13=4,11^{4} \bmod 13=4^{2} \bmod 13=3,11^{8} \bmod 13=3^{2} \bmod 13=9$, $11^{16} \bmod 13=9^{2} \bmod 13=3,11^{17} \bmod 13=3 \cdot 11 \bmod 13=7$, $11^{34} \bmod 13=7^{2} \bmod 13=10,11^{35} \bmod 13=10 \cdot 11 \bmod 13=6$
- Using the second method, we compute $(11,11),(4,5),(3,5),(9,5)$, $(3,5),(9,6)$, so once again we get 6 as the answer

Performance of RSA

- A trick that is often used to speed encryption (but not decryption) is to choose d and e so that e is small
- RSA encryption and decryption is quite fast, but not sufficiently fast for many high-speed network applications
- Accordingly, RSA is often only used to exchange a secret key
- This secret key is not a one-time pad of the sort we discussed earlier in a previous lecture
- Recall that such a one-time pad would have to be as large as the message we intend to transmit
- Instead, the secret key is often used to determine a block cipher encryption of the data

Block Cipher

- A block cipher is a function that takes two inputs, a plaintext block and a key, and produces as output a ciphertext block
- The plaintext and ciphertext blocks are normally of the same size (e.g., 64 bits is common)
- The key may be a different size; in practice, it is often 64 or 128 bits
- A good block cipher must satisfy the following properties:
- Given the key and the plaintext (resp., ciphertext) block, it is easy for a computer program to determine the corresponding ciphertext (resp., plaintext) block
- Given a plaintext block M and the corresponding ciphertext block C, it is computationally hard to determine a key mapping M to C

Block Cipher Encryption Modes

- Assume that the sender and receiver have agreed on a block cipher and a secret key
- Electronic codebook encryption mode: Just divide the message into blocks and apply the block cipher to each block
- A serious disadvantage of this scheme is that multiple copies of the same plaintext block all map to the same ciphertext block
- Cipher block chaining encryption mode:
- The first ciphertext block is computed as above
- For $i>1$, the i th ciphertext block is obtained by applying the block cipher to the XOR of the i th plaintext block and the $(i-1)$ th ciphertext block
- How do we decrypt in this case?
- Other encryption modes exist

