
Are Crypto-Accelerators Really Inevitable?

20 bit zero-knowledge in less than a second on simple 8-bit

microcontrollers

[Published in L.C. Guillou and J.-J. Quisquater, Eds., Advances in Cryptology

– EUROCRYPT ’95, vol. 921 of Lecture Notes in Computer Science,

pp. 404–409, Springer-Verlag, 1995.]

David Naccache1, David M’Räıhi1, William Wolfowicz2, and Adina di Porto2

1 Gemplus Card International, 1 place de Navarre, F-95208, Sarcelles, France
{100142.3240, 100145.2261}@compuserve.com

2 Fondazione Ugo Bordoni, via Baldassare Castiglione 59, I-00142, Rome, Italy
cripto@itcaspur.bitnet

Abstract. This paper describes in detail a recent smart-card prototype
that performs a 20-bit zero-knowledge identification in less than one
second on a simple 8-bit microcontroller without any dedicated crypto-
engine aboard.
A curious property of our implementation is its inherent linear complex-
ity: unlike all the other protocols brought to our knowledge, the overall
performance of our prover (computation and transmission) is simply pro-
portional to the size of the modulus (and not to its square).
Therefore (as paradoxical as this may seem...) there will always exist a
modulus size ` above which our software-coded prover will be faster than
any general-purpose hardware accelerator.
The choice of a very unusual number representation technique (partic-
ularly adapted to Fischer-Micali-Rackoff’s protocol) combined with a
recent modulo delegation scheme, allows to achieve a complete 20-bit

zero-knowledge interaction in 964 ms (with a 4 MHz clock). The micro-
controller (ST16623, the prover), which communicates with a PC via an
ISO 7816-3 (115,200 baud) interface, uses only 400 EEPROM bytes for
storing its 64-byte keys.
An overhead video-projected demonstration will be done at the end of
our talk.

1 Introduction, Context and Basic Bricks

Although crypto-dedicated smart-cards are an industrial reality since several
years, the price of these components is still too high for their massive gener-
alization. As a result, the coding of public-key primitives in simple 8-bit mi-
crocontrollers is an important commercial issue with a wide gamut of practical
applications.



2 David Naccache, David M’Räıhi, William Wolfowicz, and Adina di Porto

In the past, several software-only implementations were proposed: the first
(and probably the best known) is the Fiat-Shamir implementation in the pay-TV
system Videocrypt. In Eurocrypt’94, Naccache, M’räıhi, Vaudenay and Raphaeli
[7] described a DSA variant based on the pre-computation of ready-to-use sig-

nature coupons. The NIST has an implementation of the DSA on an 8-bit mi-
crocontroller and other remarkable developments in this domain were achieved
by Quisquater, Chaum and Fiat’s company Algorithmic Research Limited.

1.1 Fischer-Micali-Rackoff’s Protocol

In Eurocrypt’84, Fischer, Micali and Rackoff [4], presented a factoring-based
zero-knowledge protocol for proving the knowledge of a secret s (which modular
square v is published by the prover).

In itself, this protocol (actually a Fiat-Shamir [3] with k = 1) is very simple:

1. The prover picks a random r, computes and sends to the verifier x = r2 mod
n.

2. The verifier replies with a random challenge bit b.
3. – If b = 0, the prover replies with y = r

– If b = 1, the prover replies with y = rs mod n

4. and the verifier makes sure that y2 ≡ xvb mod n

The security of this perfect zero-knowledge protocol is formally established
under the sole assumption that factoring n is impossible (we incite the reader
to consult [2], [3] and [4] for more details about this method and its numerous
generalizations).

1.2 The Brugia-di Porto-Filipponi (BPF) Number Representation
System

Denoting by {pi} a set of c co-prime integers, any positive integer x < g =
c
∏

i=1

pi

can be uniquely represented by the list {x mod p1, x mod p2, . . . , x mod pc}.
This representation [1] has the distinct advantage of allowing to perform a

multiplication in linear (instead of square) complexity: if x and y are represented
by the lists {x1, x2, . . . , xc} and {y1, y2, . . . , yc} then their product z = xy will
correspond to:

{z1 = x1y1 mod p1, z2 = x2y2 mod p2, . . . , zc = xcyc mod pc}

Note that addition (or subtraction) is still linear in this notation (replace the
elementwise multiplication by additions or subtractions modulo pi) but modulo
reduction is unfortunately far from being easy (the simplest method seems to be
a Chinese remaindering followed by a conventional division). However, a partic-
ular property of Fischer-Micali-Rackoff’s protocol allows the prover to skip the
modular reduction as will be seen later.



Are Crypto-Accelerators Really Inevitable? 3

Note that if the co-primes are very different from the maximum capacity of
the machine words (for instance the first c primes), a considerable redundancy is
introduced in each number, a more subtle coding allows to limit this redundancy
to it’s strict minimum (only 2 bytes are “ lost ” in each 128-byte value represented
on 130 bytes). By choosing p1 = 64811 and p2 = 65521 (the biggest possible two-
byte prime), most of the most (and this is not a typographic error) significant
bits of pi are ones.1

After a BPF list-multiplication (scalar product), the terms of the resulting
list are reduced modulo pi with Montgomery’s algorithm [5] (this operation,
which consists in reducing each 4-byte coordinate modulo a 2-byte pi requires
eight byte-by-byte multiplications per co-ordinate and does not affect the overall
time linearity).

In our particular implementation, the Montgomery parasite factors (2−16 mod
pi) are not eliminated by the card as this operation can be trivially subcontracted
to the verifier.

1.3 Randomized Modular Multiplication

In the European patent application EP 91402958.2, Naccache [6] describes how
to delegate the modular reduction of the product of two integers to a powerful
verifier. In this procedure (the exact parameter sizes and a complete security
proof can be found in Shamir’s Eurocrypt’94 paper [8]), the sender simply adds
to the product a random multiple of the modulus which is eliminated by the
receiver. In other words, instead of sending z = xy mod n, the prover sends
z′ = xy + rn (where r’s role is to mask the non-reduced product xy)2 and the
receiver computes z = z′ mod n.

This technique is applied by our prover in the following way: after the scalar
product, n (pre-recorded in the card’s EEPROM in BPF format) is multiplied
by a random r and added on-the-fly (as there is no carry propagation in BPF
format) to the product (r2 or sr) which is sent to the verifier.3

2 The Protocol

Given these building bricks, implementation is straightforward:

1. The card picks a random r, computes and sends to the PC x = r2 + r′n.
r′ is an on-the-fly randomizer and x is represented in BPF format.

1 with this setting, g ∼= 8.1 × 10312 is the hexadecimal number:
b0306dfa10d2bac63339d5fe274fc9ea61d4938dd4c706ea747307fc4ef1465ea49214e

30352470531fde44942461730afeca91c365bc9d867be7e06a46ceeb01ef910a4716759

2b6b3c8b837f690cc0affcb706ac22de64bc8d3f78fc90a3505d10ea547c63e86983f98

68d78084b5533044d865c1cd6f40053396ec2f7783f4d61.
2 r should normally be bigger than n by about ten bytes.
3 The generation of a pseudo-random r, both in BPF and such that:

⌈√
g
⌉

≤ r ≤
280 +

⌈√
g
⌉

is done, in O(log(n)), by a proprietary algorithm.



4 David Naccache, David M’Räıhi, William Wolfowicz, and Adina di Porto

2. The PC:

(a) eliminates the Montgomery constants in each coordinate of x

(b) re-codes x in the conventional format (Chinese remaindering)

(c) replies with the bit b.

3. – If b = 0, the card replies with y = r

– If b = 1, the card replies with y = rs + r′′n (r′′ is an on-the-fly random-
izer).

4. The PC:

(a) eliminates the Montgomery constants in each coordinate of y

(b) re-codes y as a conventional number and checks that y2 = xvb mod n

Note that the verifier can easily check the prover’s answer in linear time when
b = 0 (the prover can then reveal r′ which would allow to the verifier to check
the responsive in BPF). The linear-time verification of the prover’s answer if
b = 1 is still an open problem (a positive answer will mean that factoring-based
zero-knowledge identification and verification are both feasible in linear time).

Although very low, the complexity attained by our prover is not a provable
minimum: it is tempting to imagine that a sub-linear complexity would simply
mean that some of the modulus bits are not read by the prover but (surprisingly)
such may be the case if the modulus is voluntarily chosen to be redundant (for in-
stance, n can be generated to be compression-suitable). Also, and as paradoxical
as this may seem, there exists a modulus size ` above which our software-coded
verifier will be faster than any general-purpose hardware accelerator.

3 Implementation and Performances

The communication amount requested by our prototype is 285 bytes per round
(5700 for jumping over “ mystic ” 1/1000,000 security level barrier). When trans-
mitted according to the ISO 7816-3 standard at 115,200 bauds this transmission
takes 0.6 seconds).

An EEPROM option allows to halve the communication by allocating 128
additional bytes and using 3 different secrets (without multiplying them by each
other as done in the Fiat-Shamir: after the commitment phase, the verifier simply
“ points ” the secret key he wants to be used in the round).

The code size (approximately 900 bytes), breaks down as follows:

ROM constants:
compressed prime table 102 bytes

Montgomery constants 256 bytes

ROM code:
communication routines 200 bytes

BPF multiplication 120 bytes

Montgomery 4-byte reduction 30 bytes

randomized multiplication core 200 bytes



Are Crypto-Accelerators Really Inevitable? 5

EEPROM data
n 130 bytes

s 130 bytes

card ID 64 bytes

other ‘‘ bookkeeping ’’ data 64 bytes

The following table illustrates four of the possible trade-offs of our mask:

number of secrets transmission protocol time

1 5700 bytes 964 ms

3 2850 bytes 658 ms

7 1420 bytes 432 ms

15 710 bytes 314 ms

Table 1. Possible trade-offs for a security level of 2−20 and 4 MHz clock

4 Further Extensions: Two-Way Authentication

As explained in [6], the randomized multiplication can be applied to Rabin’s
scheme as well.

This can be applied to implement a very quick two-way authentication (not
implemented in our prototype) where the card authenticates the PC as well:

1. The card picks a random r, and sends x = r2+r′n (in BPF) and y = CRC (r).
2. The PC:

– remainders x, reduces it modulo n and computes its roots modulo n

– discards the roots which CRC s do not correspond to y

– encodes the remaining root w in BPF and sends it to the card
3. The card compares w and r.

⇒ Different ns should be used for sections 2 and 4 and w should not be
randomized before being sent to the card. . .

5 Acknowledgments

The first author would like to acknowledge Jacques Stern’s suggestions and im-
provements regarding the randomized multiplication.

6 Note

This paper does not represent a complete product description, nor does it reflect
or represent, in any manner, Gemplus’ intention to mass-produce cards using



6 David Naccache, David M’Räıhi, William Wolfowicz, and Adina di Porto

the features herein described. Availability of such final products may depend
on commercial agreements between Gemplus and third parties. Gemplus offers
no guarantee that such cards will be free of licensing rights belonging to third
parties or related to Gemplus’ patented technologies.

References

1. O. Brugia, A. di Porto & P. Filiponi, Un metodo per migliorare l’efficienza degli
algoritmi di generazione delle chiavi crittografiche basati sull’impiego di grandi
numeri primi, Note Recesioni e Notizie, Ministero Poste e Telecommunicazioni,
vol. 33, no. 1-2, 1984, pp. 15-22.

2. U. Feige, A. Fiat & A. Shamir, Zero-knowledge proofs of identity, Proc. 19th. ACM
Symp. Theory of Computing, 210-217, (1987) and J. Cryptology, 1 (1988), 77-95.

3. A. Fiat & A. Shamir, How to prove yourself: Practical solutions to identification
and signature problems, Proc. of Crypto’86, Lecture notes in computer science 263,
181-187.

4. M. Fischer, S. Micali & C. Rackoff, A secure protocol for oblivious transfer, pre-
sented at Eurocrypt’84 but missing in the proceedings.

5. P. Montgomery, Modular multiplication without trial division, Mathematics of com-
putation, vol. 44, 1985, pp. 519-521.

6. D. Naccache, Method, sender apparatus and receiver apparatus for modulo opera-
tion, European patent application no. 91402958.2, November 5, 1991.

7. D. Naccache, D. M’räıhi, S. Vaudenay & D. Raphaeli, Can DSA be Improved ?,
Proceedings of Eurocrypt’94, to appear.

8. A. Shamir, How to implement public-key schemes with 16,000 bit moduli on a
smart-card with 36 bytes of RAM, presented at the rump session of Eurocrypt’94
(05-10-1994 at 20h11).


