
Solving Substitution Ciphers with Genetics

Algorithm

Joe Gester

20th December 2003

Abstract

Genetic algorithms were used in an attempt to generally solve two
classes of simple substitution ciphers. First, the full key space of all possi-
ble substitution ciphers was searched. When this approach was met with
limited success, the simpler approach of searching the more likely used
keyword generated key space was implemented. This yielded somewhat
more results.

1 Background and Motivation

The simple substitution cipher has not been a secure form of communication for
hundreds of years, yet a great deal about statistical analysis of cipher-text can be
learned from investigating these insecure ciphers. Though certainly solvable, an
attack on the general substitution cipher, with spaces and punctuation removed,
is much more difficult than the cryptograms many people solve on the crossword
page of the Sunday paper.

A generic substitution cipher takes as a key a mapping from each cipher-text
character to a plain-text character. This is most easily described as twenty-six
pairs of characters. There exist 26! or 403291461126605635584000000 such keys.
This is a huge search space. Simply trying all possible keys in a brute force
attack is not a viable option. Using first order statistics however and pattern
matching deciphering these ciphers is almost trivial for a person with some time
to work on it. [3]

Particularly interesting is breaking with these ciphers in an automated man-
ner or through unusual means. A novel approach to the problem may reveal
something interesting about cryptography in general or if successful might be
applicable to other more secure ciphers.

2 Genetic Algorithms

A genetic algorithm is general method of solving problems to which no satisfac-
tory, obvious, solution exists. It is based on the idea of emulating the evolution

1



of a species in nature and so the various components of the algorithm are roughly
analogous to aspects of natural evolution.

Common mathematical tasks amenable to genetic solutions include comput-
ing a curve to fit a set of data or approximating NP problems. Creating AI
programs to preform tasks like navigating a room or playing a complex game
have also been addressed using these algorithms with great success [6]. A pro-
gram which was evolved genetically even improvises live jazz with a human
performer. [2]

A population of individuals is generated, typically randomly. Each of these
individuals represents a possible candidate solution to the problem. These so-
lutions usually take the form of a bit or character string, though in some cases
more complex data structures like abstract program trees or multi-dimensional
vectors are used. The representation of the individual solution is the most crit-
ical aspect of the algorithm. For the purposes of this project, several different
individual descriptions were used.

In real evolution mutation and crossover are the driving mechanisms of ge-
netic change. Similar genetic operators must be created to slowly modify the
population of individuals. Often these operators consist of flipping a single ran-
dom bit of one individual or swapping two randomly selected substrings from a
pair of parents to generate a new child.

To simulate Darwinian survival of the fittest some representation of the fit-
ness of the individuals must be generated. This is done by creating a function
which applied to an individual evaluates its performance and assigns it a numer-
ical rating of fitness. For example, when genetically evolving an algorithm to
navigate an obstacle course the fitness function would be how far the individual
makes it through the course in a set amount of time. Or, in trying to fit a curve
with data, the fitness could be amount the curve misses the data by at each
point. In this case, a lower fitness score would be desirable.

The main body of the algorithm is an iterative process of evaluating the fit-
ness of the individuals in the population, selectively applying genetic operators
to the members of the population to create a new generation and repeating.
Each generation is created by randomly selecting members of the previous gen-
eration weighted according to their fitness. [5]

Genetic algorithms can be highly effective for certain types of problems and
less effective in other types. They work well in situations where:

1. Known solutions are unsatisfactory for some reason, be it memory usage,
run time or complexity of implementation.

2. Two very similar solutions have nearly the same fitness. That is, a small
change to an individual in the population will produce a small change in
fitness.

3. There exist multiple good solutions which would be satisfactory.

Violating these guidelines does not mean that a problem cannot be addressed
with this method, it merely makes it more difficult.

2



3 Goal

Use a simple genetic algorithm to search the key space of cryptograms in an
attempt to create a general solver for such problems. If this method is not
satisfying, then attempt to search a smaller problem space by restricting the
key searched to those generated by a keyword.

4 Prior Work

This is a solved problem. There are several good cryptogram solvers available
on the Internet in a variety of languages, for many platforms. Most however rely
on word frequency and dictionary matching to find their solutions. In the more
general case, where spaces are not preserved after encryption these programs
almost always fail. The few that do not use dictionary lookups seem to rely
entirely on digram and trigram frequency to search recursively for a solution
using permutations of the likely matches based on single letter frequencies. It
seems that Genetic Algorithm based solvers have been attempted before as
well.[8] Genetic algorithms have been used successfully to break more complex
ciphers as well such as Enigma [1].

5 Implementation One

5.1 Individual Description

Each individual in the population represents a single guess at the correct key for
the substitution cipher. Each gene represents a translation table mapping the
characters of the cipher-text to the characters of plain-text. Using the key one
can preform a lookup using a character of cipher-text to discover the character
of plain-text it maps to. This is implemented as a list of characters, the first of
which is the character mapped to by ’a’, the second mapped to by ’b’ and so
on. This is simply implemented as a list indexed by the characters ’a’ through
’z’. So, to preform a decryption using an individual is simple, just look up each
character of the plain-text using the key and record the value found.

For example if the key is [n y r f c e t p x s u a w d g i k h q j z o m b v
l] and the cipher-text in question is ”gfqg” we look up ’g’, the seventh letter in
the key and get ’t’. Then look up ’f’, the sixth letter, to get ’e’ and so forth to
reveal the plain-text ”test”.

5.2 Fitness Function

The fitness function for rating the quality of each individual in the population’s
solution is based on trigram and digram counts. A corpus of text must be
supplied. From this a table of the number of times each trigram and diagram
occurs is generated.

3



To apply the fitness function to an individual, the cipher-text is decrypted
using the individual’s gene as it’s key. Then every trigram and digram in the
decrypted text is looked up in the table of how many times it occurs in the
corpus. These numbers are then summed. Thus, trigrams and bigrams that
occur commonly in the corpus are more heavily rewarded than those that do
not.

Single letter frequencies could have been used in the fitness function but
would likely have dominated the trigram and bigram fitness measures without
adding much additional utility.

A convenient aspect of the use of a corpus is that this method should succeed
on text in any language without modification. Moreover, the minor advantage
of having a customized corpus for known subject matter is also realized.

5.3 Mutation and Crossover

Mutation is implemented simply as a random swap between two elements of
the mapping list. This could be differently implemented as a swap between
probable neighbors based on the single letter frequencies of English. That is,
the character ’e’ might be swapped with ’t’ but not with ’v’ or ’x’. This seems,
however, overly restrictive and generally inappropriate.

Crossover is more complex. In this implementation a pair of individuals pro-
duce a single new individual. A copy of one of the parent individuals is selected
and a section of the other parent’s gene/key is chosen. Then the character in
each element of the selected region is found in the child’s key and is swapped
with the character currently in the desired position.

Thus for parents, one and two with keys [a b c d e f] and [b d f e c a] the
section [b c d] is chosen from [a (b c d) e f]. The child is created as a copy of
parent two: [b d f e c a]. Then, [b c d] is swapped into the range it occupied in
the other parent.

1. d b f e c a

2. d b c e f a

3. e b c d f a

Yielding a single child with the key [e b c d f a], which should preserve a max-
imal amount of the structure of both parents while maintaining the uniqueness
of the letters of the key.

The general idea here is to mate two parents and produce an offspring that
has as much of the structure of the two parents as possible while maintaining
the one-to-one and onto mapping of the cipher-text characters to plain-text
characters. To preserve the mapping properly, repeated characters must be
avoided, which means swapping character’s of the key around instead of simply
replacing them.

In theory, as long as less than half of the key is swapped at any one time, at
least the good information from one parent remains in the child and likely the
majority of the good information from the other parent also remains.

4



5.4 Population

Several different population configurations were tested. Using only a single large
population resulted in a very homogeneous solution space at times which slows
or even stops the progress of the algorithm. Consequently, several smaller sub-
populations where used without and interbreeding between them. Typically
about thirty subpopulations of forty or fifty individuals were used though in-
creasing or decreasing the sizes by a factor of two or four made little difference.

5.5 Trials

For each generation of the population, each individual is scored with the fitness
function. Then a new population is constructed by selecting randomly either
mutation or crossover. Then a parent or a pair of parents are selected by
choosing randomly between the members of the previous generation weighted
according to their fitness. Thus a new, random population is built favoring the
heritage of the most successful members of the last generation but still allowing
some of the genetic material of the less successful members to propagate forward.

5.6 Results

This implementation does not work. Very rapidly the populations reach local
maxima or never seem to converge to anything resembling English. Larger
populations might yield more useful results but because of the interpreted nature
of the language the program is implemented in, Python, running times are
already long. Within 500 generations nearly all sub-populations reach stable
states which in no way resemble English text.

The first suspicion is that the fitness function is not adequately distinguishing
between good and bad candidates. A brief investigation shows that this is not
so. The fitness function does indeed do a good job of evaluating the fitness of
a candidate. A correct solution gets a very good fitness score while a random
solution gets a very poor score with a smooth distribution in between.

The method used for crossover is also suspect; it is more of a crossover
coupled with several mutations rather than a simple crossover. Because of the
way space must be created in the destination array for the incoming cross,
swapping the various other elements of the array out of the way adds a good
deal of randomness. This is the problem the next implementation will address.

6 Revised Implementation

6.1 Individual Description

To allow for a simplified crossover mechanism it will be necessary to let the
gene’s have duplicate characters. This will mean that to maintain the necessary
one-to-one mapping the duplicates will have to be removed later. This can be
done by simply modifying the fitness function to replace each duplicate with a

5



letter that does not occur in the key. This should be done in a deterministic,
not random, way so as to keep the calculation of fitness constant for a given
individual.

6.2 Mutation and Crossover

Because, repeated characters are now allowed the crossover function can be
implemented in a very straight-forward way: select a crossover point and copy
everything before that point from one parent into the child and everything after
that point from the other parent into the child. Thus returning to the example
above, the two parents, [a b c d e f] and [b d f e c a], mate. The midpoint of
the two keys is selected as the crossover point and the generated child is [a b c
e c a]. This has two repeats which, when removed by the fitness function will
yield [a b c e d f].

The introduction of duplicates introduces the problem of ”breeding out” a
character from the population. It is possible that a given character will be
completely removed from all of the keys in the population. A simple way to fix
this is to have a second mutation operator which replaces a duplicate character
with one not found in the key.

6.3 Results

This works better but is still not very good. The average fitness does climb
for several generations and occasionally climbs quite high but rarely is a usable
result produced. Approximately one in fifty such results resemble English text
and none were correct decryptions.

This idea is not working. Perhaps something simpler would. If the general
solution is not working, tackling a subset of the problem might be easier.

7 Simplified Implementation

The most common way to implement a substitution cipher is not to use an entire
mapping from a scrambled alphabet to the normally ordered alphabet. More
commonly one remembers a key word and uses it to construct the mapping. For
example using the keyword ”textbook” one would generate the key [t e x b o k
a c d f g h i j k l m n p q r s u v w y z]. This is done by removing the duplicate
letters from the word and then appending the rest of the alphabet in order to
it to generate the key mapping.

7.1 Individual Description

An individual in this case is simply an arbitrary length string of characters.
The population is seeded with random English words of length four to ten
characters. If at anytime the key should grow beyond twenty-six characters
it will be truncated to twenty-six, this is an arbitrary restriction designed to
prevent the strings from exploding to unbounded length.

6



7.2 Mutation and Crossover

Mutation can be done in the same way as in the original implementation. Two
random characters are selected from the key and swapped. Also useful is a means
to introduce new characters into the string by changing one character randomly
into another. This will prevent the problem of ”breeding out” characters from
the population.

Crossover can simply be implemented by selecting a crossover point in each
parent a copying as before. This also allows the lengths of the keys to change
between generations, which is necessary for completeness.

7.3 Results

This final implementation does not work any better than the previous one.
Fitnesses do climb but not to the correct goal but occasionally partially correct
solutions are distinguishable.

8 Conclusions

It is clear based on prior work that this is a viable solution to the general
substitution cipher. Precisely why it did not work in these implementations is
worth exploring further.

Perhaps the fitness function is at fault here. It distinguishes well between
solutions that perform well and those that perform poorly but is perhaps less
well suited to find the differences between very similar solutions. If this were
the case, the algorithm would have a difficult time getting started on finding
a solution but once some progress had been made would more rapidly move
towards higher fitnesses. This is a behavior that was at times observed.

Perhaps the crossover function is still not preserving enough good genetic
information from the parents. This might be remedied by having a new indi-
vidual description that does not use position in the string for any purpose. It
could be an unordered list of pairs of characters.

These are all options worth exploring, however it is most certainly easier to
give up on the genetic algorithm idea and pursue an ad-hoc heuristic approach
to automating this sort of problem.

References

[1] A.J. Bagnall. The applications of genetic algorithms in cryptanalysis, 1996.

[2] J. Biles. Genjam: A genetic algorithm for generating jazz solos, 1994.

[3] Paul Garret. Making, Breaking, Codes. Prentice Hall, Upper Saddle River,
2001.

7



[4] Thomas Jakobsen. A fast method for cryptanalysis of substitution ciphers.
Cryptologia, 19(3):265–274, 1995.

[5] John R. Koza. Genetically breeding populations of computer programs to
solve problems in artificial intelligence. In Proceedings of the Second Interna-
tional Conference on Tools for AI, Herndon, Virginia, USA, pages 819–827.
IEEE Computer Society Press, Los Alamitos, CA, USA, 6-9 1990.

[6] John R. Koza, Martin A. Keane, Jessen Yu, Forrest H Bennett III, and
William Mydlowec. Automatic creation of human-competitive programs and
controllers by means of genetic programming. Genetic Programming and
Evolvable Machines, 1(1/2):121–164, 2000.

[7] Simon Singh. The Code Book. Anchor Books, New York, 1999.

[8] Edward Faldt Sofia Nilsson. Solving simple substitution ciphers using genetic
programming, 2001.

8


