
Facilitating the Modelling and Automated
Analysis of Cryptographic Protocols

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF

COMPUTER SCIENCE FOR THE DEGREE OF MASTER OF SCIENCE

AT THE UNIVERSITY OF CAPE TOWN

July 2001

Written by
Elton Saul

Supervised by

Dr Andrew Hutchison

Data Network Architectures Laboratory
Department of Computer Science

University of Cape Town
South Africa



c Copyright 2001
by

Elton Saul

Electronic versions of this thesis, published conference and journal papers as well as the SPEAR II appli-
cation can all be downloaded from the SPEAR II website at http://www.cs.uct.ac.za/Research/DNA/SPEAR2.
The author, Elton Saul, can be e-mailed at esaul@cs.uct.ac.za, while his supervisor, Dr Andrew Hutchi-
son, can be contacted at hutch@cs.uct.ac.za.



Dedicated to my Father, who has always been
there to guide me in every situation

I have found myself.



iv



Abstract

Multi-dimensional security protocol engineering is effective for creating cryptographic protocols since it
encompasses a variety of design, analysis and deployment techniques, thereby providing a higher level
of confidence than individual approaches. SPEAR II, the Security Protocol Engineering and Analysis
Resource II, is a protocol engineering tool built on the foundation of previous experience garnered during
the SPEAR I project in 1997. The goal of the SPEAR II tool is to facilitate cryptographic protocol
engineering and aid users in distilling the critical issues during an engineering session by presenting
them with an appropriate level of detail and guiding them as much as possible. The SPEAR II tool
currently consists of four components that have been created as part of this dissertation and integrated
into one consistent and unified graphical interface: a protocol specification environment (GYPSIE), a
GNY statement construction interface (Visual GNY), a Prolog-based GNY analysis engine (GYNGER)
and a message rounds calculator.

The GYPSIE environment is specifically geared towards the rapid, effective and accurate construction
of cryptographic protocols and functions as the core enabling interface of the SPEAR II application. By
utilizing three levels of abstraction presented through different views, the GYPSIE environment is able to
present a protocol engineer with an appropriate impression of a cryptographic protocol and its operation.
The High-Level View describes the overall flow of messages, using a formalism based on MSCs and SDL
to represent the message passing specification, while the Navigator View appears adjacent to the High-
Level View and summarizes the contents and structure of a protocol. The Component View is invoked
from the High-Level View and allows a user to view and edit the contents of protocol messages, each
message being displayed as a hierarchical tree. Among other features, GYPSIE includes support for
subprotocols, features extensive undo and redo capabilities, is able to export a specification to text, LATEX
and Prolog, and includes an API set that allows for the incorporation of further engineering modules
within the SPEAR II application.

GYNGER is a Prolog-based analyzer that performs automated analysis of protocols by using the GNY
modal logic. The analysis engine improves on previous automation efforts and employs a forward-
chaining approach to mechanize the tedious application of GNY inference rules, allowing all derivable
GNY statements to be generated quickly, accurately and efficiently. To conduct an analysis with GY-
NGER a protocol engineer needs to specify a protocol’s messages, initial assumptions and target goals
in a Prolog-style GNY syntax. The GNY rule set is then imported and employed in the analysis, after
which a proof is generated in an English-style GNY syntax for every successful goal that was speci-
fied. This English-style proof lists all of the statements involved in the derivation of the successful goal,
indicating the postulates that were used and the premises which were employed in the postulate’s ap-
plication. Some advantages of GYNGER include the fact that it implements seventy-two of the GNY
inference rules, incorporates syntax to represent shared secrets being used as identifiers, supports the
‘never-originated-here’ binary operator and features a flexible syntax for representing functions.

v



vi

The Visual GNY environment was created to facilitate GNY-based protocol analysis and works in close
conjunction with GYPSIE. In essence, Visual GNY functions as a user-friendly interface to the GYN-
GER analyzer. GNY statements necessary for an analysis are constructed using the Visual GNY interface
and then passed on to GYNGER. Results from GYNGER are then returned to the Visual GNY environ-
ment and displayed appropriately. The novel aspect of the Visual GNY environment is that it represents
GNY statements using a tree-like approach. All statements of the same type form part of the same tree
structure, a heterogeneous set of GNY statements being represented by a collection of separate trees.
This representation technique combined with pop-up menus which aid in statement construction, helps
users to easily create GNY statements which are always syntactically correct. To use the Visual GNY
environment, users do not need to be acquainted with the GNY syntax and notation, however, they must
be familiar with the semantics and concepts underlying the logic to use it effectively. Some advantages
of the Visual GNY environment include the ability to export structured trees to LATEX, text and Prolog
and view them as English-style text, suggested GNY statement completion and grouping of related sets
of GNY statements by principal.

The message rounds calculator receives a message passing specification from GYPSIE and then returns
the messages that can be sent together in parallel. This information helps to ensure that the most efficient
protocol design in terms of message rounds can be deployed at the implementation stage, since the num-
ber of rounds resulting from the protocol model can be compared to the optimal number required for the
protocol class into which the specification falls. The SPEAR I tool carried out limited synchronous mes-
sage rounds calculations. Synchronous rounds calculations assume that a principal can only transmit a
given message once he has received all of the previous messages in the specification which were destined
for him. Optimal rounds calculations assume that message transmission can take place asynchronously.
SPEAR II implements both synchronous and optimal message rounds calculations and is thus able to
assist protocol engineers to a greater degree in bridging the gap from design to actual implementation.

All of the tools incorporated within the SPEAR II application have been tested to ensure that they fulfil
their objectives. In experiments conducted with the GYPSIE environment, it was found that 75% of
the protocol specifications created by users were completely error free, and that each of the individual
specifications took approximately ten minutes to construct. The specifications used in these experiments
contained four messages and twenty-eight components on average. When using the Visual GNY envi-
ronment to create GNY statements, users had a 98% accuracy rate and all of the created statements were
syntactically correct. GYNGER and the rounds calculator were both tested on various protocols and
found to work as expected. In total, fifteen published protocols have been analyzed with the SPEAR II
application. These analyses include well-known protocols such as the Yahalom, Wide-Mouth Frog,
Needham-Schroeder Public-Key, Otway-Rees, Kerberos and Andrew Secure RPC Handshake Protocols.
In essence, this dissertation has resulted in the creation of a graphically-based application that implements
a multi-dimensional framework incorporating cryptographic protocol modelling, automated GNY-based
analysis and message rounds performance analysis. The focus has been to remove as much of the com-
plexity and tedium surrounding protocol engineering as possible and to provide a user-friendly, effective
and powerful environment that can be used to facilitate the creation of secure cryptographic protocols.



Acknowledgements

This work would not have been possible, or nearly as much fun, without the support and assistance of a
number of individuals and organizations:

� My supervisor, Dr Andrew Hutchison, for his expert supervision, guidance, motivation, patience
and support throughout the past two years.

� The head of the DNA Research Group, Prof. Pieter Kritzinger, for his generosity and support of
this work, associated travels and conferences.

� My mother, father and brother for their constant support, culinary supplies, encouragement and
love, especially in the face of late nights and irregular working hours.

� Tracey, for your support, encouragement, friendship and dancing lessons lavished on me through-
out the past two years. You made the time spent on this thesis pass very quickly indeed!

� Colin, Rita and Simon for your friendship and standing out among the rest in your support and
genuineness. I’m glad to count you as my good friends.

� The friends from my cell group for their commitment and steadfastness. Caragh, Cristan, Kelly
and Shaun, I really appreciate it!

� All of the Masters students for being such a great bunch of guys to work with and providing an
environment conducive to quality and creativity. I’d especially like to thank the DNA boys, Mike,
Ian, Lourens, Farrel, Andy, Yakomba and Thomas, for their friendship, criticism and fresh ideas.

� All of the anonymous referees and organizers associated with the ISMSSS 1999, SATNAC 1999,
SEC 2000, SATNAC 2000, SACSIT 2000, WISE 2 and ISMSSS 2001 conferences and workshops
for affording me the opportunity to present portions of this work to my peers.

� All of the willing and unwilling forty or so SPEAR II beta testers who helped to stress the system
and put it through its paces.

� The Computer Science system administrators, Sam and Matthew, for constantly keeping our ma-
chines and network up and running. Let’s also not forget the hard-working secretaries, Eve, Mary,
Bernie and Zubaida for shielding me from paperwork and administrative activities.

� The National Research Foundation and Center of Excellence for sponsoring this work.

To all of you, I would like to express my sincere thanks and appreciation! It has been a pleasure working
with every one of you.

vii



viii



Table of Contents

1 Introduction 1

1.1 Multi-Dimensional Protocol Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The SPEAR II Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Security Protocol Modelling Environments 9

2.1 The Convince Toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Software Through Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Interfacing with the HOL Theorem Prover . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Specifying and Analysing a Protocol . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The Interrogator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 The Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 The Display Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 SPEAR I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 An Overview of the User Interface . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Specifying a Security Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2.1 Declaring Protocol Components . . . . . . . . . . . . . . . . . . . . . 18

2.3.2.2 Specifying Principals and Messages . . . . . . . . . . . . . . . . . . 20

2.4 The CAPSL Specification Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Operators and Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.4 Subprotocol Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.5 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Security Protocol Modelling with GYPSIE 29

ix



x TABLE OF CONTENTS

3.1 Requirements for a Security Protocol Design Environment . . . . . . . . . . . . . . . . 30

3.2 Overview of the GYPSIE Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 High-Level Protocol View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1.1 Selection of a Formalism . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1.2 Fundamental Building Blocks . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1.3 Accessing High-Level View Features . . . . . . . . . . . . . . . . . . 35

3.2.1.4 Working with Specifications in the High-Level View . . . . . . . . . . 38

3.2.1.5 Dealing with Duplicate Components in a Specification . . . . . . . . . 40

3.2.1.6 Flattening a Protocol Specification . . . . . . . . . . . . . . . . . . . 40

3.2.1.7 Undo and Redo Operations . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1.8 Highlighting the Position of Components . . . . . . . . . . . . . . . . 42

3.2.1.9 Setting Protocol Properties . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Component View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2.1 Using the Component View . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2.2 Fundamental Component View Types . . . . . . . . . . . . . . . . . . 46

3.2.2.3 Exporting Messages and Components . . . . . . . . . . . . . . . . . . 49

3.2.3 Navigator View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Calculating Message Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Experiments with the GYPSIE Environment . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 Class Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1.1 Storing Message Components . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1.2 High-Level View Objects . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1.3 Representing the Structure of a Message . . . . . . . . . . . . . . . . 63

3.5.1.4 Managing Protocol Design . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.2 Saving and Loading Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.3 Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.4 Functions Provided by GYPSIE . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 GNY-Based Protocol Analysis 73

4.1 Model of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 A Protocol Description Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.2 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.3 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



TABLE OF CONTENTS xi

4.3 Protocol Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 Being-Told Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.2 Possession Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.3 Eligibility Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.4 Recognizability Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.5 Freshness Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.6 Conveyance Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.7 Jurisdiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.8 Rationality Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Determining Final Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.1 Authentication Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.2 Information Exchange Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Modifications to the Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.1 Possession Premises in Freshness and Recognizability Rules . . . . . . . . . . . 86

4.6.2 An Unsound Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6.3 A Redundant Premise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6.4 Unsound Rule Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6.5 Rules Regarding Identifying Secrets . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6.6 Dropping Formula Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Example Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7.1 An Information Exchange Protocol . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7.2 An Authentication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.8 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Automated GNY Analysis with GYNGER 95

5.1 Preliminary Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.1 Removal of Existing GNY Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.2 Finiteness of Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Implementing the Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1 Representing GNY Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1.1 Formulae and Statements . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1.2 Storing Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.2 The Forward-Chaining Inference Engine . . . . . . . . . . . . . . . . . . . . . 102

5.2.3 Coding the GNY Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.3.1 Being-Told and Possession Rules . . . . . . . . . . . . . . . . . . . . 103



xii TABLE OF CONTENTS

5.2.3.2 Freshness and Recognizability Rules . . . . . . . . . . . . . . . . . . 106

5.2.3.3 Conveyance Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.3.4 Jurisdiction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.4 Coding the Proof Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.4.1 Converting Prolog-Based GNY Statements into English . . . . . . . . 113

5.2.4.2 Converting Prolog-Based GNY Formulae into GYPSIE Representation 115

5.2.4.3 Generating a Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.5 Running the Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Experiments with the Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.1 A Voting Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.2 An Information Exchange Protocol . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.3 An Authentication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.4 The Needham-Schroeder Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Visual GNY 125

6.1 GNY Analysis Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Graphically Representing GNY Statements . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.1 Objectives of a Graphical GNY Representation . . . . . . . . . . . . . . . . . . 128

6.2.2 Environments for Constructing BAN and GNY Statements . . . . . . . . . . . . 129

6.2.2.1 SPEAR I BAN Builder . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.2.2 Tabbed Pane Dialog for Specifying GNY Statements . . . . . . . . . . 130

6.2.3 Using a Structured Tree to Represent GNY Statements . . . . . . . . . . . . . . 131

6.2.4 Completeness of the Structured Tree Representation . . . . . . . . . . . . . . . 134

6.3 Overview of the Visual GNY Environment . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3.1 The Visual GNY Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3.2 Contextualized Pop-Up Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3.3 Enforcing Syntactic and Semantic Correctness . . . . . . . . . . . . . . . . . . 140

6.3.4 Exporting Visual GNY Statements . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3.5 Organizing and Managing Statement Construction . . . . . . . . . . . . . . . . 143

6.3.6 Suggested Statement Completion . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3.7 Integration within the SPEAR II Framework . . . . . . . . . . . . . . . . . . . 145

6.4 Conducting an Analysis with the Visual GNY Environment . . . . . . . . . . . . . . . . 146

6.4.1 A Typical Analysis Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4.2 Issues Introduced by Subprotocols . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.5 Experiments with the Visual GNY Environment . . . . . . . . . . . . . . . . . . . . . . 148



TABLE OF CONTENTS xiii

6.6 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.6.1 Class Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.6.1.1 Representing Structured Trees . . . . . . . . . . . . . . . . . . . . . . 151

6.6.1.2 Storing GNY Statements . . . . . . . . . . . . . . . . . . . . . . . . 152

6.6.1.3 Storing GNY Information . . . . . . . . . . . . . . . . . . . . . . . . 152

6.6.2 Saving and Loading Structured Trees . . . . . . . . . . . . . . . . . . . . . . . 153

6.6.3 Exporting Structured Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.6.4 Conducting an Analysis with GYNGER . . . . . . . . . . . . . . . . . . . . . . 157

6.6.5 Interaction with GYPSIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.7 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 Conclusion 163

7.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.1.1 Security Protocol Modelling with GYPSIE . . . . . . . . . . . . . . . . . . . . 164

7.1.2 Calculating Message Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.1.3 Automated GNY Analysis with GYNGER . . . . . . . . . . . . . . . . . . . . 166

7.1.4 Visual GNY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.3 Contributions of This Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A GNY Inference Rules 173

A.1 Being Told Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.2 Possession Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.3 Eligibility Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.4 Recognizability Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.5 Freshness Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.6 Conveyance Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.7 Jurisdiction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B Proofs Generated by GYNGER 179

B.1 Voting Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.2 Information Exchange Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

B.3 Authentication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.4 Needham-Schroeder Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C GYPSIE Specification Experiment 193



xiv TABLE OF CONTENTS

D Visual GNY Comprehension Experiment 197

E Further GNY Analyses with SPEAR II 201

E.1 Wide-Mouthed Frog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

E.2 Kerberos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

E.3 Needham-Schroeder Public-Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

E.4 Yahalom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

E.5 Otway-Rees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

E.6 Andrew Secure RPC Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

E.7 Gong Rounds Paper Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

E.8 Gong Rounds Paper Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Bibliography 207

Index 213



List of Figures

1.1 SPEAR I conceptual overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The current scope and ambitions of the SPEAR II Framework. . . . . . . . . . . . . . . 4

2.1 The StP Event Trace and Dynamic Model editors. . . . . . . . . . . . . . . . . . . . . . 11

2.2 An StP annotation editor representing a principal’s start state. . . . . . . . . . . . . . . . 12

2.3 The Interrogator window showing a normal message history. . . . . . . . . . . . . . . . 15

2.4 The SPEAR I user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 The Possession and Function Declaration dialogs. . . . . . . . . . . . . . . . . . . . . . 19

2.6 The Macro Declaration and BAN Builder dialogs. . . . . . . . . . . . . . . . . . . . . . 20

2.7 The Expression and Statement Builder dialogs. . . . . . . . . . . . . . . . . . . . . . . 22

3.1 The GYPSIE protocol design environment shown in a SPEAR II screenshot. . . . . . . . 32

3.2 Components used to represent a protocol in the High-Level View. . . . . . . . . . . . . . 34

3.3 Graphical components used to work in the High-Level View. . . . . . . . . . . . . . . . 35

3.4 Dialog boxes used in conjunction with subprotocols. . . . . . . . . . . . . . . . . . . . 38

3.5 An explanation of how the history queue is used for undo and redo operations. . . . . . . 41

3.6 The Component Tracker being used to highlight a Kerberos ticket. . . . . . . . . . . . . 42

3.7 The tabbed-pane dialog used to configure communications settings. . . . . . . . . . . . 43

3.8 The Component View and its associated pop-up menu. . . . . . . . . . . . . . . . . . . 44

3.9 Some dialogs used in the Component View. . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 The Navigator View and associated pop-up menus. . . . . . . . . . . . . . . . . . . . . 51

3.11 C++-style pseudocode for determining the synchronous rounds in a protocol. . . . . . . 53

3.12 Pseudocode for determining the optimal rounds in a protocol. . . . . . . . . . . . . . . . 54

3.13 Time taken and number of mistakes made when participants specified protocols. . . . . . 57

3.14 Diagram of selected classes used in the GYPSIE implementation. . . . . . . . . . . . . . 61

3.15 Two ways of representing message contents. . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 A finite state machine showing chains that can be formed for the � relation. . . . . . . . 99

xv



xvi LIST OF FIGURES

6.1 The SPEAR I BAN Builder dialog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Two views from a tabbed pane-based GNY specification environment. . . . . . . . . . . 130

6.3 Relative hierarchy of tree nodes within our structured GNY tree representation. . . . . . 131

6.4 GNY statements specified in our structured tree-view. . . . . . . . . . . . . . . . . . . . 132

6.5 The Goals, Extensions and Results Panes from the Visual GNY environment. . . . . . . 135

6.6 Pop-up menus and a dialog used in the Visual GNY environment. . . . . . . . . . . . . 136

6.7 Illustration of the dynamic update of pop-up menus. . . . . . . . . . . . . . . . . . . . . 139

6.8 The View as Text facility and Visual GNY tooltip cue in action. . . . . . . . . . . . . . . 143

6.9 Pull-down menu commands and GNY statements being viewed as text. . . . . . . . . . . 145

6.10 Steps undertaken when conducting a GNY protocol analysis. . . . . . . . . . . . . . . . 146

6.11 A GYPSIE specification including subprotocols and the resultant being-told statements. . 148

6.12 Diagram of the classes used in the Visual GNY implementation. . . . . . . . . . . . . . 151

6.13 Two representations of a structured GNY tree. . . . . . . . . . . . . . . . . . . . . . . . 152

C.1 A SPEAR II screenshot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



List of Tables

2.1 An overview of the Convince Toolset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Comparative evaluation of the modelling tools discussed in this chapter. . . . . . . . . . 27

3.1 Icons used for representing cryptographic types in the GYPSIE environment. . . . . . . 46

3.2 The distribution of cryptographic types in the protocols specified in the experiments. . . 56

3.3 Results of tests pertaining to GYPSIE protocol construction. . . . . . . . . . . . . . . . 56

6.1 Icons and captions used for representing nodes in the structured tree. . . . . . . . . . . . 133

6.2 Results of tests pertaining to the accuracy of GNY statement construction. . . . . . . . . 149

xvii



xviii LIST OF TABLES



Chapter 1

Introduction

“It is hard to simulate the behaviour of the devil; one can always check that a protocol does not commit the old familiar sins, but every so often

someone comes up with a new and pernicious twist.”

— Ross Anderson and Roger Needham, “Programming Satan’s Computer”

The use of open and unreliable computer networks is rapidly increasing as more companies and individ-
uals connect to local and global networks. Internet applications such as the World Wide Web, instant
messaging and e-mail have been rapidly adopted in the past few years to facilitate business processes and
personal communication. At the time of writing, Internet research firm Jupiter Media Metrix1 estimated
that about 18.4 million people in the United States use Microsoft’s instant messenging service, about 25.5
million people use AOL’s free service, while Yahoo! Messenger has 11.8 million users. Although such
growth is generally viewed as a beneficial trend, the associated security issues have often been ignored or
simply lagged behind the expansion of network usage. In particular, the advancement and confidence in
key technologies such as electronic banking, secure communication and electronic commerce has often
been hindered by security problems associated with open networks. As a result of the development and
construction currently taking place in the networking field, it is an opportune time to develop tools to
support in the creation, analysis and maintenance of secure communication infrastructures.

Nua Surveys2 estimates that the number of internet users in November 2000 numbered approximately
407.1 million, and more specifically within selected regions: 3.11 million in Africa, 113.14 million in
Europe and 167.12 million in Canada and the United States. It has been estimated that business-to-
consumer e-commerce will generate 52, 76 and 108 billion US dollars in the years 2001, 2002 and
2003 respectively. Business-to-business e-commerce will generate 499, 843 and 1331 billion US dollars
over the same period. Within the next decade, the vast majority of companies will be forced onto the
Internet by competitors who are reducing costs and expanding their customer base by exploiting this
market. Market sectors such as financial services, computer hardware and software, travel, books, music
and flowers are experiencing rapid growth in online sales [58]. For example, in January 1999, Dell
Computer Corporation was selling an average of 14 million US dollars of equipment online per day [7],
while Amazon.com has become the third largest bookseller in the United States, despite only being
in business since 1995 [7]. Such enormous growth, scope and finance create a huge imperative for
secure communication between companies and their customers, especially in light of the fact that security
concerns have forced consumers to be cautious of using the Internet for electronic commerce [82].

1http://www.jmm.com
2http://www.nua.ie/surveys

1



2 CHAPTER 1. INTRODUCTION

Cryptographic protocols are used to provide security during communication sessions. Since messages
that are sent across open networks are vulnerable to interception and manipulation by unknown entities,
the security of these networked systems is crucial to protect the interests of all of its users. One of the
most important characteristics of a networked system is the distributed nature of the communicating en-
tities, also known as principals. A protocol is a set of rules that is used to define an exchange of messages
between two or more of these principals. In particular, cryptographic protocols make use of security tech-
niques to achieve goals such as confidentiality, authentication, integrity and non-repudiation. However,
the fact that strong cryptographic algorithms exist does not guarantee the security of a communications
system [75]. In fact, it is widely recognized that the engineering of security protocols is a very challeng-
ing task, since protocols which appear secure can contain subtle flaws and vulnerabilities that attackers
can exploit [2]. Some examples of well-known protocols that have been found to be insecure include
Microsoft’s PPTP protocol [62], an early version of Netscape’s SSL Protocol [2], the CCITT X.509 Pro-
tocol [1] and the Needham-Schroder Public Key Protocol [55]. Essentially, what is needed are tools and
techniques that can effectively aid designers in creating, verifying and implementing solid, secure and
reliable cryptographic protocols.

A number of proven and workable techniques currently exist to aid in the protocol engineering pro-
cess [31, 56]. Inference-construction methods utilize modal logics similar to those which have been
developed to monitor the evolution of belief and knowledge in distributed systems. Some popular modal
logics are BAN [1], GNY [33] and SVO [79]. Attack-construction methods construct probable attack sets
based on the algebraic properties of the algorithms employed in a protocol. These methods have to exam-
ine large state spaces to isolate possible attacks. Discussions and implementations of this approach can
be found in [57, 24, 29, 46, 52]. Proof-construction methods attempt to avoid the exponential searches
of attack construction methods by formally modelling the actual computations performed in protocols
and then proving theorems about these computations. Information related to this approach can be found
in [76, 66, 65, 9]. Besides the development of formal analysis methods, individuals have also put for-
ward practical principals which govern how a protocol should be effectively designed and implemented
to avoid certain types of attacks and flaws [2, 37, 40].

1.1 Multi-Dimensional Protocol Engineering

Specialized tool support for formal methods can significantly aid protocol engineers in creating and
implementing cryptographic protocols which do not leak information, achieve their goals and are immune
to replay attacks. In fact, protocol design and analysis has become so advanced and complex that we
cannot perform certain analyses by hand as they take too long and tend to become tedious and error-prone
over time. Tool support would also aid in the automatic generation of source code, thus helping to prevent
careless errors that often creep into protocol implementations. Each of the techniques currently available
to the security community is not capable of detecting every possible flaw or attack against a protocol when
used in isolation. However, when used in combination with other formal methods, these techniques all
complement each other and allow a protocol engineer to obtain a more accurate overview of the security
of a protocol which she has designed. In effect, what we require is a unified approach to protocol
engineering, one which combines a number of protocol engineering dimensions into one application
that is consistent and easy to use, aids in the rapid construction, analysis and implementation of security
protocols, and helps designers to distil and focus on the critical issues in the engineering process [5]. Such
a multi-dimensional approach would fulfil a useful and fundamental role as an integrator and enabler in
the discipline of security protocol design.



1.1 Multi-Dimensional Protocol Engineering 3

There will always be a need to design new protocols or integrate and upgrade existing ones. As e-
commerce becomes more pervasive, we will witness the creation of even more cryptographic protocols
which seek to facilitate the secure negotiation and exchange of goods and finances, as well as the au-
thentication of individuals involved in these transactions. By supplying protocol engineers with a multi-
dimensional protocol engineering tool, we equip them with an easily accessible array of proven tech-
niques with which they can construct, test and deploy cryptographic protocols in a controlled, orderly
and carefully planned manner. Such a tool would also be able to aid in the analysis and verification of
existing protocols. Each of the engineering dimensions would realize a given technique and would also
be appropriately automated, receiving the necessary input to begin its operation from the user or other en-
gineering modules embedded within the tool. A benefit of multi-dimensional protocol engineering is that
it would make protocol engineering and analysis operations accessible to a wider range of individuals,
since it would remove the requirement that protocol designers need to experts in a large number of spe-
cialized engineering techniques. For example, in the case of automatic code generation the tool would be
able to produce high-quality Java source code for each principal involved in the protocol without having
the requirement that the user be proficient in the Java programming language.

SPEAR

Algebras

State Space 
Exploration

Modal Logics

GNY

BAN

JavaC++

SDL

MSC

SDL

Petri-nets

Formal Protocol Specification

Code Generation Meta-Execution

Security Analysis

Performance Evaluation

Scenario
Simulation

SPECS-II

Correctness

Analysis

Estelle

Figure 1.1: SPEAR I conceptual overview.

We believe that by encouraging protocol designers to make use of proven construction and analysis tech-
niques throughout the protocol engineering process, the number of flawed security protocols that are
produced could be significantly reduced. Multi-dimensional security protocol engineering is an effective
approach for creating and deploying cryptographic protocols, since it encompasses a variety of analysis
techniques, thereby providing a higher security confidence than individual approaches can achieve. A
tool that employs a multi-dimensional engineering approach should be consistent and easy to use so that
the techniques it implements are straightforward to apply. An example of a multi-dimensional protocol
engineering tool is the SPEAR I application [5]. SPEAR I provides developers of cryptographic proto-
cols with an environment in which to design, analyze and generate security protocols. In order to provide
multi-dimensional support, SPEAR I enables protocol specification via a graphical interface in the style
of Message Sequence Charts (MSCs) [44] and SDL [43], security analysis based on the BAN crypto-
graphic logic [1], simple performance analysis using synchronous message rounds calculations [35] and
Java source code generation. The fusion of these approaches allows the user to create cryptographic pro-
tocols from within the controlled environment of SPEAR I, with the specific aims of producing secure
and efficient protocol designs and supporting the ‘production’ process.



4 CHAPTER 1. INTRODUCTION

Figure 1.1 contains a conceptual overview of the SPEAR I Framework, illustrating the dimensions in-
corporated therein, as well as the techniques within these dimensions that have been proposed and im-
plemented. To use the SPEAR I application in a protocol engineering project, a user must first specify
the protocol using the Formal Protocol Specification dimension. Once the specification is complete, Java
source code can be automatically generated by using the Code Generation dimension. Scenario simu-
lation that helps one to model the execution of the protocol is part of the Meta-Execution dimension,
while performance analysis is carried out with synchronous round calculations. To determine whether a
protocol achieves its goals, simple analysis may be conducted using the BAN modal logic, which is part
of the Security Analysis dimension. All of the different techniques within each dimension work together
and in some cases obtain information from each other. For example, the code generation engine requires
details about the format, structure, source and destination of messages to create the message passing
routines. This information is obtained from the Formal Protocol Specification dimension. The SPEAR I
project was essentially a proof-of-concept implementation carried out over an eight month period and
served to illustrate the viability and usefulness of a multi-dimensional approach. However, as a result of
its prototypical nature, it was not solid or robust enough for commercial or academic use.

Security Logics

...

Security Protocol Design

Code Generation Attack Analysis Meta−Execution Performance Analysis

Java Code

Scenario
Simulation

SPEAR II

Engine

Message
Rounds

Calculator

Attack Multiclass
Queuing

Network Model

Construction

Analyzer

Prolog−based
GYNGER

Generator

Visual GNY
Interface Java Libraries

GYPSIE Specification Environment

Figure 1.2: The current scope and ambitions of the SPEAR II Framework.

1.2 The SPEAR II Framework

The SPEAR II Framework [71] is based on concepts developed during the SPEAR I project and is essen-
tially the continuation of this work. In Figure 1.2 we present a layered view of the SPEAR II Framework.
Completed modules within this framework are indicated by solid outlines, while future modules are de-
noted by dotted outlines. The diagram clearly shows that the Security Protocol Design dimension serves
as a basis for the other dimensions and that all of the SPEAR I dimensions are incorporated within the
SPEAR II Framework. Notice that an Attack Analysis dimension has been added to the framework and
there is also a separate Performance Analysis dimension. Within each dimension a collection of en-
gineering techniques that have been included within the framework are shown. As an addition to the
Performance Analysis dimension, we anticipate the use of multiclass queuing networks to carry out per-
formance analysis, much like what was done in [8] for the SET protocol. If a code generation dimension
is present, then this further opens up the possibility for controlled protocol executions either for the pur-
pose of actual performance measurements (complementing the Performance Analysis dimension) or the
re-creation of possible attacks (augmenting the Attack Analysis dimension). We have omitted a num-
ber of SPEAR I modules from the diagram due to space considerations, but these aspects can still be
incorporated within the SPEAR II Framework when required.



1.3 Scope and Objectives 5

Because of architectural and language differences between the SPEAR I and SPEAR II applications,
the Java code generation, BAN analysis and scenario simulation features are not available in the current
SPEAR II implementation. In fact, the SPEAR II project is a complete rewrite and reformulation of the
SPEAR I application and aims to develop an extensive and commercially viable multi-dimensional secu-
rity protocol engineering tool. As part of this dissertation, we have developed the GYPSIE [72] module,
which is part of the Security Protocol Design dimension, the Visual GNY [73, 74] and GYNGER3 mod-
ules, which are both part of the Security Logics dimension, and the message rounds calculator, which
is part of the Performance Analysis dimension. The GYPSIE module is a graphical protocol specifica-
tion environment that is similar to the SPEAR I interface, but incorporates a number of enhancements.
Specifications created in GYPSIE are used as input to the Visual GNY, GYNGER and rounds calculator
modules. The Visual GNY module is a graphical environment that can be used to construct GNY logic
statements [33] which are used by the Prolog-based GYNGER GNY analyzer. Results from a GNY anal-
ysis conducted by GYNGER are returned to the Visual GNY environment and appropriately displayed.
The message rounds calculator can determine both synchronous and optimal rounds in a protocol.

1.3 Scope and Objectives

The primary objective of this dissertation is to develop tools and techniques which will facilitate rapid,
accurate and rigorous engineering of cryptographic protocols. Essentially, our aim is to distance protocol
engineers from the syntactical element of protocol design and analysis, so that they can focus more on
the associated semantics and distil any critical issues that may arise. Our work will take place in the
context of the SPEAR II Framework, and all of the concepts that we develop will be implemented and
incorporated therein. In essence, we will be working on and expanding the Security Protocol Design,
Security Logics and Performance Analysis dimensions of the SPEAR II Framework. The framework will
be realized through the creation of the SPEAR II application. The primary goals which we have set out
to achieve are as follows:

1. Develop a graphically-based protocol specification environment that will allow protocol designers
to easily construct extensible models of security protocols. Since this design environment is part
of the SPEAR II Security Protocol Design dimension, these models will have to be able to serve
as a basis for a number of diverse protocol-engineering operations which will be implemented by
other SPEAR II modules. The graphical environment has been named ‘GYPSIE’, which stands for
‘Graphical Protocol Specification Environment’. Besides the obvious user interface requirements
of the design environment, GYPSIE will also include an extensive API set that can be used to
query a number of issues related to a protocol model. This API set will be crucial for integrating
other SPEAR II engineering modules within the SPEAR II application.

2. Incorporate and implement a message rounds calculator within the SPEAR II Framework. This
calculator will determine both synchronous and optimal rounds, each round consisting of the set
of messages which can be sent and received in parallel. The rounds calculator will be embedded
within the SPEAR II application and will use the GYPSIE API to obtain the message passing
specification. No other information besides the messages and their embedded components will be
required for this calculation. The resultant rounds will be displayed in an appropriately constructed
dialog box within the SPEAR II graphical user interface.

3Named after Dean Kamen’s top-secret GINGER invention (see http://ginger.patentcafe.com).



6 CHAPTER 1. INTRODUCTION

3. Integrate another graphically-based environment within the SPEAR II application which protocol
engineers can use to construct and collate GNY logic statements applicable to a given security
protocol. These statements will be used to specify the initial and target beliefs and possessions of
principals as well as extensions to be appended to message components. An environment of this
nature has not yet been created within the security community and the challenge in this case is to
create it so that individual users do not get bogged down in the GNY syntax while using it. Instead,
it must function as an enabler, freeing protocol engineers to focus on the important issues in an
analysis. This environment will be known as ‘Visual GNY’ and will work in close conjunction with
GYPSIE to facilitate the exchange of information in the protocol specification.

4. Implement a GNY-based protocol analyzer to derive all possible GNY statements applicable to
a given protocol and to determine whether a given protocol achieves its design objectives. The
analyzer will be a standalone program, however in the context of the SPEAR II Framework it will
work in close conjunction with the Visual GNY environment, receiving all of the input needed for
analysis from it. When an analysis is complete, the results will be output to file, allowing the Visual
GNY environment to retrieve, parse and display the results so that a user can view the outcome
of the analysis. There are a number of implementation languages which can be used to create the
analyzer, however we have decided to settle with Prolog [30], since it is simple to use and well
suited for creating the forward-chaining [70] analysis system that we envisage. The analyzer has
been given the name ‘GYNGER’.

5. Conduct experiments with users to ascertain the suitability of the GYPSIE and Visual GNY en-
vironments. These experiments will seek to determine the extent to which protocol engineers are
able to easily use the environments and be productive therein. Experiments with the GYPSIE
environment will focus on determining whether it does indeed facilitate accurate, efficient and ef-
fective protocol modelling, while the Visual GNY experiments will seek to examine how well its
graphical metaphor aids users in constructing GNY statements. The GYNGER environment will
be examined by carrying out analyses on well-known protocols and then comparing the results to
what we expect. The message rounds calculator will be examined in a similar manner. In total,
we expect to test the Security Logics dimension of the completed SPEAR II application on fifteen
published cryptographic protocols.

To a large extent, the major thrust of this dissertation is the development of a completely graphically-
based environment that will facilitate the GNY-based analysis of cryptographic protocols. There are a
number of other security logics available, such as BAN [1], AT [3] and SVO [79]. However, for the
purpose of this project, we have specifically selected the GNY modal logic. In part, this choice is due to
the existing investment and interest that we already have in GNY-based analysis. The GNY logic is used
extensively in postgraduate security courses offered by the University of Cape Town’s Computer Science
Department, and we had already spent time priming it for automation and inclusion in SPEAR II. While
lecturing GNY principles, we have found that many students considered it to be tedious and cumbersome.
However, these opinions were mainly derived from wrestling with the syntax and manually applying
the eighty-eight inference rules to develop proofs. In this regard, GNY is a logic system in need of
automation and a graphical approach to facilitate its effective use and application. The choice of security
logic does not affect the integration of future logics within the Security Logics dimension of the SPEAR II
Framework. In fact, we wish to encourage future work that will integrate more logics within the system,
perhaps even harmonizing the input environments for each logic in the process.



1.4 Dissertation Outline 7

Thus, at the conclusion of this dissertation we will have developed a graphically-based application
(SPEAR II) based on the SPEAR II Multi-Dimensional Protocol Engineering Framework within which
a security protocol engineer can easily model a security protocol (using the GYPSIE environment) and
specify its associated GNY logic preconditions and target goals (using the Visual GNY environment).
When using the SPEAR II application, a protocol engineer will be able to seamlessly interface with a
custom-built Prolog-based GNY analyzer (GYNGER), which will be employed to determine whether the
protocol specified in the GYPSIE environment attains all of the cryptographic goals which the engineer
requires. GYNGER will also generate all possible GNY statements that can be derived to describe the
protocol’s final state. Results from GYNGER will be appropriately displayed in the Visual GNY envi-
ronment. SPEAR II will also incorporate a message rounds calculator that will be able to generate the
synchronous and optimal rounds for any given cryptographic protocol. This rounds calculation will aid in
performance measurements. Finally, SPEAR II will be written so that it is extensible and allows further
protocol analysis, engineering and design techniques to be incorporated.

1.4 Dissertation Outline

This dissertation is essentially divided into two parts. The first focuses on the background and devel-
opment of the GYPSIE protocol design environment, while the second focuses on the specification and
automation of the GNY analysis process. These two parts are covered by five chapters, the first two
chapters discussing the facilitation of protocol design and modelling, and the last three describing the
facilitation of automated protocol analysis. A brief summary of each of the chapters appears below:

Chapter 2 presents a background to the field of security protocol modelling environments. In particular,
we discuss four well-known modelling environments and then present a comparative summary of their
salient features. The main aim of this chapter is to familarize the reader with some of the different
protocol engineering tools that are available within the security community.

The GYPSIE protocol modelling environment is described in Chapter 3. We begin this chapter by de-
veloping a set of requirements that we believe that a flexible and generic security protocol modelling
environment should implement. Thereafter we describe the core features of GYPSIE and the message
rounds calculator. User experiments which we conducted are then described and the results are discussed.
The questionnaire that was used during the experiments can be found in Appendix C. We will also elab-
orate on some of the implementation details related to the GYPSIE portion of the SPEAR II application
by describing the class hierarchy, file formats, memory management and the API set.

A GNY logic primer is presented in Chapter 4. The aim of this chapter is to introduce the GNY modal
logic. We will sketch the fundamental assumptions underlying GNY and introduce core definitions and
concepts related to the syntax and semantics. Thereafter we will describe the inference rules, give hints
for determining protocol goals and discuss modifications which have been made to the GNY postulate
set. We will also work through two example analyses to show how useful results can be achieved from
an analysis. All eight-eight of the GNY inference rules are listed in Appendix A.

The aim of Chapter 5 is to describe the automated GYNGER analysis tool which we have developed
using Prolog. We will describe how the analyzer uses the inference rule set and then present an informal
proof to show that a finite number of conclusions will always be derived in a finite number of steps. The
implementation details pertaining to the analyzer will then be described using fragments of source code.
Four sample analyses that were first used to test the analyzer will be described and the results that GYN-
GER derived will be presented. The proofs generated during these analyses are listed in Appendix B.



8 CHAPTER 1. INTRODUCTION

Chapter 6 describes the Visual GNY environment which has been created to facilitate GNY-based pro-
tocol analysis. We briefly introduce the problems associated with manual GNY analysis, before moving
on to describe some existing graphical approaches to BAN and GNY-based analysis. Thereafter, we de-
scribe the graphical metaphor which we have developed, followed by an overview of the Visual GNY
environment. User experiments that were conducted in the environment will then be discussed. The
questionnaire used in these experiments is available in Appendix D. This is followed by a discussion
of key portions of the Visual GNY implementation, such as the class hierarchy, file formats and selected
algorithms.

We conclude this dissertation in Chapter 7 by summarizing the contributions of this work and proposing
projects for future work. The highlights of the chapters pertaining to GYPISE, GYNGER and Visual
GNY are all presented. Furthermore, in this chapter we allude to Appendix E which contains summa-
rized results from eight GNY-based protocol analyses that were all conducted using only the SPEAR II
application.



Chapter 2

Security Protocol Modelling Environments

“We’ve realized that the fundamental problems in security are no longer about technology; they’re about how to use the technology. Security is

a process, not a product.”

— Bruce Schneier, Counterpane Internet Security

Security protocol designers often need to implement and analyze security protocols using modelling or
engineering tools. In order to be of any use, these tools must have an interface or environment which
the designers can use to specify the protocol under examination. Certain environments are specifically
designed to work with a fixed set of analysis techniques or tools. These environments are not generic and
cannot be used to create protocol specifications for tools outside of their intended scope. However, other
environments exist which can create more general protocol specifications that are of use to a broader
range of applications.

There are currently no standardized graphical environments or techniques for specifying security proto-
cols so that they can be used as input to any formal analysis tools. Standardized formal techniques such
as Estelle [18], SDL [43] and Message Sequence Charts (MSCs) [44] do exist, however, these are not
specifically geared towards the rapid specification of security protocols. The aim of this chapter is to in-
troduce a number of security protocol modelling environments and then present a comparative evaluation
of these systems. The environments that will be examined are the Convince Toolset [39, 17, 50, 51], the
Interrogator [24], SPEAR I [5] and CAPSL [28], since they are in our opinion the most prominent and
well-referenced security protocol modelling environments available at present.

2.1 The Convince Toolset

Convince is an automated toolset developed by Steve Brackin in 1995 to facilitate the modelling and
analysis of cryptographic protocols, particularly those supporting authentication. An analyst can use
Convince to construct a model of a protocol and then verify whether it meets user-specified security
goals through the application of the BGNY modal logic [13]. The toolset consists of a combination of
commercial and public-domain software. The commercial Software Through Pictures (StP) system [42]
serves as a front-end to the system, allowing an analyst to model a protocol using a combination of
graphical and textual notations. The analysis process is implemented by a freely-available Higher Order
Logic (HOL) [38] theorem prover from Cambridge University. The exchange of information between
these two components is facilitated by the LEX and YACC parser construction tools [4].

9



10 CHAPTER 2. SECURITY PROTOCOL MODELLING ENVIRONMENTS

An overview of the three significant modules of the Convince toolset is presented in Table 2.1. This table
illustrates the purpose of each module, the theory and programming that was required to create it, and
the output that it produces. By leveraging existing software and technologies, the creators of Convince
were able to construct it within one person-year.

Application Purpose Programming Output
StP/OMT Graphical Interface Scripts to Produce ISL Protocol Model and

ISL Specifications
LEX/YACC Translation from ISL ISL to HOL Translator HOL Specifications

to HOL
HOL Formal Theorem Prover BGNY Belief Logic Theory Proven and Failed

and Proof Procedure Goals

Table 2.1: An overview of the Convince Toolset.

The Convince toolset has been used, amongst other purposes, to model and analyze three SPX proto-
cols [80], Tatebayeshi-Matsuzaki-Newman (TMN) [50] and three versions of Kerberos [78, 49]. Three
simple protocols involving key-exchange functions have also been modelled. Each of these protocols
were reportedly analyzed in a relatively short time. The four-principal version of the Kerberos protocol
was modelled in about an hour and then had its properties proved in five minutes.

2.1.1 Software Through Pictures

The StP/OMT object modelling tool is a Computer Aided Software Engineering (CASE) tool that fa-
cilitates the development of software systems using the Object Modelling Technique (OMT) methodol-
ogy [41]. This methodology was originally developed by James Rumbaugh in the late 1980s and has
recently been enhanced through the efforts of Jacobson, Booch and Rumbaugh. The focus of OMT is
primarily on the development of custom software implementations, however, the creators of Convince
have adapted the methodology to facilitate the modelling and analysis of authentication protocols. The
application of the OMT methodology is automated by StP/OMT through the provision of a set of graph-
ical editors which can each be used to create OMT software models. Convince utilises the Use Case,
Event Trace and Dynamic Model StP/OMT editors, each of which provide different levels of abstraction.

Use Case models are an extension to the original OMT formalism. Within Convince, Use Case models
are used to provide a structure for organizing protocol specifications. A Use Case consists of one or more
actors connected to one or more processes. Each process can be associated with one or more Event Trace
models, each representing a specific protocol scenario. In Convince, actors within a Use Case represent
principals in an authentication protocol.

The sequence of message transfers that comprise an authentication protocol are described using Event
Trace diagrams. Each Event Trace consists of a context object, a set of object classes, and a set of directed
line segments denoting message transfers between the classes. Each message transfer is labelled with a
text string stating the nature of the message and the stage of the protocol at which the transfer occurs. In
Convince, an object class is considered equivalent to a principal in an authentication protocol.

The manner in which a principal responds to the receipt of messages is defined by a Dynamic Model.
This model takes the form of a finite-state machine which defines how an object class responds to input
events. A Dynamic Model can be represented as a set of concurrent sequences of state transitions, or as a
single state transition sequence. Message transfers that are produced by a class are represented as output



2.1.2 Interfacing with the HOL Theorem Prover 11

Figure 2.1: The StP Event Trace and Dynamic Model editors.

events.

In order to completely describe and verify the correctness of authentication protocols, the notation pro-
vided by StP/OMT was extended through the use of annotations. Each annotation provides additional
protocol information related to the StP/OMT model elements. In Convince, the model elements which
require annotations include principals, message transfers, context objects and principal states. A prin-
cipal annotation denotes initial conditions, goal statements and the name to be used for the principal in
message descriptions. This allows one to use longer and more descriptive principal names in OMT di-
agrams while using shorter, equivalent names in formulae. For message transfers, annotations represent
the structure of messages conveyed between principals. Annotations associated with a principal’s state
correspond to statements in a belief logic. Finally, annotations associated with a context object within
an Event Trace identify the names of principals, keys, cryptographic functions, hash functions and other
functions and data referenced in other annotations.

2.1.2 Interfacing with the HOL Theorem Prover

The Interface Specification Language (ISL) [15] is a textual language whose syntax is a superset of
the annotation syntax employed within StP/OMT. To generate the ISL specification of a protocol, the
command option within the StP/OMT interface is used to extract the information specified in the model
and produce the ISL output. The generated ISL specification has four major sections:

1. A set of definitions for data types.

2. A set of initial conditions.

3. The protocol description, described as a sequence of message transfers.

4. A set of goals detailing what the protocol should achieve.

In Convince, verification of an authentication protocol uses a HOL theorem prover. This necessitates
translating the ISL specification into a HOL-compatible form prior to the proof process. A translator that
was created with the LEX and YACC tools is used to perform this translation task before initiating the
automatic proof process.



12 CHAPTER 2. SECURITY PROTOCOL MODELLING ENVIRONMENTS

2.1.3 Specifying and Analysing a Protocol

To conduct a protocol analysis, a user first requires a description of the protocol. From this description,
which is usually in text form, the user creates a protocol model by first defining the protocol elements
within StP/OMT. The user then creates a Use Case diagram and associates it with a specific protocol
scenario. This scenario is edited by using the Event Trace tool, which automatically creates a context
object. In the Event Trace tool, the user adds vertical bars to represent principals, and labels them
accordingly. A set of labelled directed line segments is added to denote the set of message transfers that
occur as part of the protocol scenario.

After completing the Event Trace diagram, the user constructs a Dynamic Model for each of the prin-
cipals. The start state is represented as a solid circle, intermediate states as rounded rectangles, and the
end state as a bull’s eye. Transitions between states are represented by directed lines whose labels denote
the received events responsible for triggering the transitions. Message transfers that are initiated by the
principal are represented as output events. These are associated with directed lines connecting a state
transition to the principal who is the recipient of the message.

Figure 2.2: An StP annotation editor representing a principal’s start state.

Generally speaking, the start state of a Dynamic Model corresponds to a subset of the initial conditions
for the protocol. Accordingly, for each start state, the user provides annotations that represent the initial
conditions of the corresponding principal. After adding the initial conditions to the model, the user
provides annotations for the intermediate and end states. The annotations represent goals for the protocol
which should become true once the protocol reaches a specific state.

Once the initial conditions, transactions, and goals have been input, the user directs Convince to convert
the model to an ISL specification. This specification is then translated into a HOL-compatible form and
the proof process is then invoked. The translator and HOL subsystems of Convince can also be invoked
without the StP interface. In this case, the user must prepare or already possess an ISL specification in a
text file. The name of this file is then passed to the translator as a command-line argument and the proof
process is invoked.

Upon completing the proof process, Convince produces screen output, indicating whether it managed to
prove all of the desired user-goals. If it cannot automatically prove a goal, it displays the goal to the
user and then terminates the theorem proving process. ISL output files are produced describing proven
and unproven goals. A goal failure can indicate that either the protocol’s specified initial conditions
are insufficient, or there is some other error in the formal description of the protocol, or the protocol is
flawed. The user can repeat the modelling and analysis process, making changes to the model until he is
satisfied that the protocol is flawed or does not have a flaw detectable by the HOL implementation of the
BGNY logic.



2.2 The Interrogator 13

2.2 The Interrogator

The Interrogator is a Prolog [25] program developed by Jonathan Millen, Sidney Clark and Sheryl Freed-
man in 1985. Using the Interrogator, a protocol engineer can search for security vulnerabilities in network
protocols for automatic cryptographic key distribution. Given a formal specification of a protocol, the
Interrogator searches for message modification attacks that defeat the protocol objective and reveal secret
information. The current version of the Interrogator assumes that the penetrator is trying to learn private
information, and the only way in which he can get that information is by reading a message in which
it is transmitted as a data item. A black-box view of the Interrogator is simple: for input it receives a
protocol specification and a target data item; its output is a message history, consistent with the protocol
specification, showing how the penetrator could obtain the data item, if this is possible.

The Interrogator and its associated graphical interface were implemented using LM-Prolog on a LISP
machine. The user interface takes advantage of the windowing, graphics and mouse capabilities of the
LISP machine. Within the Interrogator, protocols are modelled using a state-transition approach, prin-
cipals being represented as communicating finite-state machines. This method allows a wider class of
protocols to be supported and permits variations in message sequencing. The Interrogator interface has
two main components: a preprocessor that converts textual protocol specifications into an internal Prolog
form, and a display interface for graphical user interaction. To conduct an analysis, a protocol is specified
in a textual format, edited with normal LISP machine facilities, parsed and loaded. The interactive graph-
ical display is then used to establish penetration objectives. If a vulnerability is found, it is displayed in
the form of a message sequence, showing messages before and after modification by a penetrator.

The Interrogator has been developed to the extent where it has succeeded in finding a multiple-modification
penetration of the Needham-Schroeder protocol [63] and some others with known vulnerabilities. Given
a protocol specification and a target component to uncover, the Interrogator searches for a scenario involv-
ing penetrator actions which reveal the target. The history of messages sent and modified is displayed,
allowing the user to examine how the penetration was carried out and evaluate it for feasibility and possi-
ble counter-measures. The search for penetrations is exhaustive within the allowed possibilities, but is it
goal-directed and avoids search paths which are clearly futile. Execution times vary considerably depend-
ing on the initial assumptions and guidance given to the program. For example, the Needham-Schroeder
example can take as little as thirty seconds or as long as two minutes to execute using uncompiled LM-
Prolog on a Symbolics 3670.

2.2.1 The Preprocessor

The preprocessor carries out a straight-forward file-to-file conversion. Its input file is a textual protocol
specification, while the output file contains transmit and receive clauses defining the finite state machine
for each party in the protocol. A protocol specification is essentially a list of messages preceded by
declarations of the symbolic constants used in the messages. Specifying a protocol with a message list
means that one is specifying it by giving a normal history. Although this is common practice when
describing protocols, it should be kept in mind that some protocols cannot be specified in this way. In
particular, this approach would be inadequate for any protocol that offers a choice of responses at some
point, where the decision does not depend on information deducible from the protocol.

The textual protocol specification consists of a number of fields which stipulate protocol data items,
relations that exist between these items, data items that are known to an attacker, and the messages that
are transmitted through the network. A sample specification is shown in the following example:



14 CHAPTER 2. SECURITY PROTOCOL MODELLING ENVIRONMENTS

PROTOCOL example
CONSTANTS

a, b, x, kdc : address
ka, kb, kx, ck, oldck : key
d : data

RELATIONS
a, kdc : secret_key(a, ka)
b, kdc : secret_key(b, kb)
x, kdc : secret_key(x, kx)

KNOWNS
a, b, x, kx, oldck, kb[oldck, a]

MESSAGES
(* request ck *) a -> kdc: b
(* generate ck *) kdc -> a: ka[ck, kb[ck]]
(* forward ck *) a -> b: kb[ck]
(* send data *) b -> a: ck[d]

END

The intent of most of the sections of the specification above are obvious, but two will be explained more
clearly, namely KNOWNS and RELATIONS. Constants and expressions listed as KNOWNS are assumed to
be known to the penetrator prior to the penetration attempt. Besides routine items such as the addresses
of all principals and various data belonging to the penetrator as a legitimate network user, this list also
contains any data that the penetrator might have recorded from some previous use of the protocol, such
as the encrypted field kb[oldck, a], and any data that is assumed to have been compromised, such
as the old encryption key oldck. RELATIONS declarations are used to indicate relationships that are
assumed to hold between certain pairs of constants, implying that if one value is known, the other can be
calculated or looked up. Some relations are private and this is indicated by prefixing the relation with a
list of addresses of those parties knowing it.

The parsing phase of the preprocessor is a rapid prototype, implemented with the help of the definite
clause grammar facility supported by both the Edinburgh and the Uppsala implementations of Prolog.
The conversion phase of the preprocessor takes the parse tree produced by the preprocessor and creates a
state machine representation of the protocol, one machine per principal participating in the protocol. The
preprocessor works its way through the messages in the protocol, constructing a transmit and a receive
clause for each one. Besides the transmit and receive clauses for the protocol, the preprocessor also
adds other clauses needed to complete the internal form of the protocol specification. It carries over the
type declarations, relations and initial knowledge, and creates clauses for format declarations, and for the
initial and final network state of the normal history.

2.2.2 The Display Interface

The display interface is a vehicle for setting up Interrogator runs and viewing the results. It provides
a mouse-sensitive window for displaying protocol histories, selecting a message field as a penetration
objective, and invoking the Interrogator. The window creation, manipulation, and display functions are
written in Zetalisp. A facility exists for accessing LM-Prolog from Zetalisp and vice-versa, so that the
display interface and Interrogator code can call each other. The following discussion will illustrate the
capabilities of the user interface by tracing through a typical Interrogator session.

The display interface consists of a window which contains two subwindows within a larger frame. The
upper window is a narrow command menu pane, while the lower window is a large display pane which is



2.2.2 The Display Interface 15

Figure 2.3: The Interrogator window showing a normal message history.

initially empty. The mouse-sensitive commands displayed in the upper window are listed and described
below:

� Go: Invokes the Interrogator after the protocol and penetration objective have been indicated.

� Select: Displays a menu of protocols to analyse.

� Redisplay: Clears the display pane and redisplays the normal message history.

� Exit: Returns to LISP.

To use the Interrogator, the user first chooses a protocol via the Select command. If Go or Redisplay is
picked first, a warning is displayed. The menu displayed by the Select command lists all of the files in a
given directory that should only contain protocol files in internal Prolog form. Once the user has clicked
on a file, the normal message history is determined and stored for later use in subsequent Interrogator
activity. The display pane shows the normal message history in a graphical format. Each principal in
the protocol is represented by a labelled column. Numbers inside each column indicate the state label
for that principal, which changes as messages are transmitted or received. Messages are represented as
labels on solid arrows showing the sequencing and direction of messages. Sometimes an arrow has to
cross over a column between its source and destination. The columns are automatically ordered in the
display so as to minimize such crossings.

After a normal message history has been depicted, the user must choose a message field as a penetration
objective. Each message is mouse-sensitive and appears in reverse video when the mouse hovers over it.
When the user clicks on a message, a temporary menu of the data fields within that message is created.
This menu repeats the full message as its label. After the user has selected the penetration field, it is



16 CHAPTER 2. SECURITY PROTOCOL MODELLING ENVIRONMENTS

displayed beneath the Go command. Once the user clicks on Go, the Interrogator searches for a solution
message history by which it can obtain the penetration objective. During this processing phase, tentative
and partial solution histories are shown in the display pane.

Some differences between the normal and penetrator message histories should be noted. No state
numbers appear in the columns representing each principal and the messages are not mouse-sensitive.
Vertically-orientated dashed lines drawn between each pair of communicating principals indicate the
points of potential penetrator action in the protocol, when messages are travelling through the network
between transmission and reception. Sent messages are drawn to the penetrator lines, while received
messages are drawn from the penetrator lines. Message labels that are too lengthy to fit in the space
provided are split into as many as three lines, where backslashes indicate the the last and first actual
characters of the message’s pieces. Message splitting also occurs when necessary in the normal history
view.

At this point in the Interrogator session, the user has a number of options for further activity. He may
click on Go and the Interrogator will continue to search for alternative penetrator solutions using the
current data and state. The user may, instead, click on the Redisplay command, whereupon the display
pane will be cleared and the normal message history for the protocol will be displayed once more. The
messages will again be mouse-sensitive and the current state will be indicated in the columns. Here the
user could click on Go again for a new solution with the same initial conditions, using Redisplay only to
refresh his memory of the normal history. Alternatively, the user could select a new penetration objective,
a new final state or a new protocol to analyse.

2.3 SPEAR I

SPEAR I, the Security Protocol Engineering and Analysis Resource, was developed by Paul de Goede,
J.P. Bekmann and Andrew Hutchison in 1997 to aid in the design and analysis of cryptographic pro-
tocols. The two primary goals of SPEAR I are to enable secure and efficient protocol designs and to
support the generation of protocol source code. SPEAR I offers developers of cryptographic protocols an
environment in which to design, analyze and generate security protocols. Protocols are specified using
a graphical user interface in the style of Event Trace diagrams. Security analysis based on the BAN
cryptographic logic [1] is facilitated, while a meta-execution facility provides for the performance eval-
uation of cryptographic protocols from within a controlled environment. Java [45] production code can
be generated once a protocol design has been analyzed.

2.3.1 An Overview of the User Interface

The SPEAR I interface consists of four main areas. The design canvas is used to create and specify a
security protocol graphically. The control area consists of a menu-bar along the top of the application
window and toolbars above and to the right of the design canvas. The menu-bar contains all the functions
that are available to SPEAR I users, while the side toolbar contains all the protocol elements that are
required to design a protocol. The information canvas on the right of the design canvas is used to display
BAN beliefs and meta-execution data. Both the design canvas and the information canvas are scrollable
and the amount of space that each canvas occupies can be adjusted by horizontally by moving the centre
bar separating these two areas. Lastly, the status bar at the bottom of the application window is used
to indicate which mode is currently selected when designing protocols. Most aspects of the SPEAR I
interface can be customized by using the configuration option within the Options menu.



2.3.2 Specifying a Security Protocol 17

Figure 2.4: The SPEAR I user interface.

Items embedded within the pull-down menu-bar include the File, Protocol, Layout, Analysis, Compila-
tion and Meta-Execution menus. The File menu allows users to start a new protocol and to load and save
a protocol’s possession declarations, function declarations and macro declarations. The Protocol menu
allows users to switch between the modes that allow for the creation of principals, comments, messages
and statements on the design canvas. This menu also allows a user to set the protocol name and declare
all the possessions, functions, macros and initial BAN beliefs related to the protocol. The Layout menu is
used to arrange the protocol elements on the design canvas in an aesthetic and easy-to-read format. The
Analysis menu contains functions for security and performance analysis. Initial performance evaluation
is performed by generating synchronous round information, while security analysis is performed by exe-
cuting a BAN compilation of the entire protocol. The Compilation menu is used to generate Java source
code, and lastly, the Meta-Execution menu provides facilities for simulating protocol runs from within
the SPEAR I environment.

2.3.2 Specifying a Security Protocol

There are a number of steps which are necessary to implement a protocol design. SPEAR I provides
guidelines to govern the order in which these steps should be carried out when working in the design
environment. For example, an operation such as declaring a message sent between two principals cannot
be performed until the principals have been declared. For this reason, it is often easier to generate
messages, macros and perform other tasks if the associated possessions, functions and principals have
already been defined. Operations which are not dependent on others can be performed at any time.

The SPEAR I interface makes extensive use of dialogs which contain lists of possible protocol elements to
use at a given point during the construction of the protocol specification. For example, lists of previously
declared possessions and functions are provided when defining macros and messages. This approach
reduces confusion between function and possession names, and limits typographical errors and function
usage problems. The optimum order for specifying a protocol using the SPEAR I interface is as follows:



18 CHAPTER 2. SECURITY PROTOCOL MODELLING ENVIRONMENTS

1. Set the protocol’s name. The name of a protocol will appear in the title of the SPEAR I window
for quick identification.

2. The possessions that are to be used in the protocol should be declared at this point. Any amend-
ments can be made at a later stage.

3. Function declarations that are specific to Java are declared at this point so that the code generation
module will have enough information to call user code.

4. Macros that are to be used in the protocol can now be declared. These macros can then be used
from within list boxes to quickly and easily generate declarations which are syntactically correct.

5. The principals involved in the protocol are defined.

6. The definition of initial BAN beliefs is only required if BAN analysis of the protocol is to be per-
formed. The BAN builder dialog contains helpful constructs and lists of principals and possessions
to aid in the quick and easy generation of BAN beliefs.

7. The possessions that each principal will need during the run of the protocol are initialized.

8. The actual communication between the principals is modelled by adding messages to the protocol
and statement blocks to execute functions at certain stages of the protocol.

At this point the user will have fully defined a security protocol. Other engineering and analysis functions
which SPEAR I provides can now be applied. This would include modifying the layout of the protocol
on the canvas, carrying out performance evaluation using synchronous rounds and meta-execution, and
conducting a BAN analysis. Once the user is satisfied with the protocol, he can generate fully functioning
Java source code.

2.3.2.1 Declaring Protocol Components

The Possession Declaration dialog illustrated in Figure 2.5 is used to specify possessions that will be
used during the protocol run. This dialog contains a list box on its right-hand side which enumerates
all of the currently defined possessions. The left-hand side of the dialog lists information about the
possession being edited. A given possession can either be an asymmetric key, a symmetric key, entity
information, fixed length data, variable length data or delimited data. An entity information possession is
an abstract notion used to represent a communicating principal and contains a name, an IP address and a
port number. Delimited data is provided for use with existing protocols such as SMTP [67], which sends
data delimited by particular characters. The other possession types are straight-forward.

Once a user is satisfied with the information specified for a possession, he can add it to the possession
list. If any possession has the same name, then the user is given the option of replacing the existing
possession’s information with the newly specified information. Functions, possessions and macros may
not have the same name. The dialog also presents the user with the option of removing possessions that
have already been specified. To edit an existing possession, the user can double-click on a possession in
the list and its information will be displayed on the left-hand area of the Possession Declaration dialog.
The ability to load and save lists of possessions is very useful at this stage since a large number of
protocols have similar types of possessions and the time needed to define these possessions can be saved.

Functions are declared by using the Function Declaration dialog which is shown in Figure 2.5. Since
SPEAR I generates Java source code, the function declarations are specific to Java and are defined so that



2.3.2 Specifying a Security Protocol 19

the generated source code has access to user information. For example, the source code needs to look up
a principal’s IP address before transmitting it. The Function Declaration dialog operates in a similar way
to the Possession Declaration dialog. The currently defined functions are enumerated on the left-hand
side of the dialog and these are added and removed in the same manner as possessions.

Each function is given a name that SPEAR I will use to identify it in an expression. The notion of
‘crypto-operands’ and ‘inputs’ are used to distinguish keys and data. The normal method of writing data

encrypted with a key K is fdatagK . However, this formatting is not possible in textual representations.
Instead, SPEAR I formats this example as DES:K(data), with the crypto-operand being K and the
input being data. In practice the Java compiler requires function calls to contain the crypto-operands
followed by the inputs. In this case, the actual function call for the above example would be something
similar to DES encrypt(K, data). The user-provided Java class and method names are used to
generate source code to call the actual methods which implement this abstract notion of a function. The
return type of the function must also be specified by the user. The user must also specify the type of
function and whether or not it has an inverse. If the function has an inverse, then the user is required
to enter the inverse function name and the corresponding Java method details. For generality this is
required, even if the same function is used to encrypt and decrypt data. As with possessions, the ability
to load and save functions saves time normally taken by declaring functions for every protocol.

Figure 2.5: The Possession and Function Declaration dialogs.

SPEAR I macros are essentially the same as #define statements in C/C++. They are used to simplify
the protocol by performing straight substitution, the macro name for the macro value when the protocol
is compiled. This approach makes the protocol specification more readable and helps to avoid common
errors. For example, it can be used in the Kerberos Ticket Granting Service protocol to simplify messages
containing tickets. As with other protocol declarations, a special Macro Declaration dialog, shown in
Figure 2.6, is used to facilitate macro generation. Adding and removing macros is done in a similar fash-
ion to possessions and functions. The list of macros on the right-hand side of the dialog are those that are
already defined, and the information on the left-hand side is for defining new macros. A user is required
to enter a name for the macro and its real value. The macro name can then be used interchangeably
throughout the protocol for the macro value. As with possessions and functions, double-clicking on a
macro-definition in the right-hand list will display that macro’s information in the left-hand information
area. To further aid the specification of macros, the Macro Declaration dialog contains two list boxes
which list functions and possessions which have already been defined. As in the case of functions and
possessions, the macro declaration can be saved for use in other protocol specifications.

Initial BAN beliefs which are held prior to the commencement of a protocol run are entered using the BAN



20 CHAPTER 2. SECURITY PROTOCOL MODELLING ENVIRONMENTS

Builder dialog which is illustrated in Figure 2.6. This dialog works in a similar manner to the function,
possession and macro declaration dialogs — the area on the right contains the list of currently defined
BAN beliefs, and the area on the left contains information about the belief currently being constructed.
Double-clicking on a belief already defined in the right-hand list allows one to edit the belief. Along
the top of the Belief Builder dialog are three lists containing already defined principals, BAN constructs
and existing possessions. Double-clicking on these lists adds the selected element to the BAN belief
currently being constructed. When entering the BAN belief, SPEAR I does not ensure that the belief
is syntactically correct. Only once the BAN beliefs have been compiled can syntactic correctness be
examined. The semantic meaning of beliefs is left to the designer to check.

Figure 2.6: The Macro Declaration and BAN Builder dialogs.

2.3.2.2 Specifying Principals and Messages

To place communicating principals, the Add Entity mode is selected. At this point, a user can click
anywhere on the design canvas and a principal will be added to the model. The initial placement of
principals is automatic and the user has no control over the positioning. All the principals are placed
along the top of the design canvas, with their axes extending downwards. These axes are automatically
extended as more elements are added to each principal. By right-clicking on the black square at the top
right-hand corner of the principal, the user can reposition the principal on the canvas by selecting the
Move option from the displayed pop-up menu. The principal box can also be resized by clicking on
the same black square and selecting the Resize option. A size restriction is placed on the principal box,
ensuring that the user does not make it too small.

Messages that are created or edited have to be entered in a textual format using the Expression Builder
dialog. SPEAR I uses the following grammar for specifying messages:

item �! IDENTIFIER j function call j list
list �! f item more items g

function call �! function name optional crypto operand ( function items )
function items �! item more items j 2

more items �! , item more items j 2

optional crypto operand �! : crypto operand j 2

As can be seen from the above summary, a list can be specified by placing one or more items, delimited
by commas, between curly brackets. A list may contain any number and type of items and essentially
operates as a way of combining these items into a set. A function call is indicated by the function name,



2.3.2 Specifying a Security Protocol 21

and if there is a cryptographic operator associated with that function call, it is stipulated with a colon after
the function name. This is followed by the data for the function call placed in brackets. Thus, examples
of valid expressions are:

1. fKabg
2. DES:Kab(Message, SHA(Message))
3. fKab, MD5(Message, Key)g

Possessions need to be initialized with values before they can be transmitted. This initialization step
is normally done at the beginning of the protocol, but it can also be done in any statement block by
using the assignment operator. If the possessions will be initialized at the start of the protocol run, then
the designer can use the principal popup menu to select the Initialize Possessions option. The user is
then presented with the Statement Builder dialog, shown in Figure 2.7, which he can use to specify the
assignment statements that will initialize the possessions. Typical examples of possession initialization
statements include:

1. IDa = getEntityInformationOfA()
2. IDa = getServerInformation()
3. Kas = getSharedKey(IDa, IDs)

If possessions are not initialized before being used, then a compilation error will result when performing
meta-execution or code generation of the protocol.

Messages are sent from a sender to a receiver. When the Add Message mode is engaged, the user must
click on the originating principal axis to add a new message. At this point the Expression Builder dialog
box, illustrated in Figure 2.7, will be shown and the user can type the entire message or use the supplied
list boxes which enumerate all the possessions and functions that have already been defined. By double-
clicking these functions and possessions, a user can add them to the message being defined. If the
protocol has been compiled, then the user is able to check the syntactic correctness of the message
specification. However, if the protocol has not yet been compiled, then this option is not available. Since
compilation may be a lengthy and taxing process, the user must decide when to compile the protocol
after making sufficient changes. For instance, it is best, but not essential, to compile after altering the
declarations of functions, possessions and macros.

Once the user is satisfied with the message definition, he can press the OK button and indicate the receiver
of the message by clicking the relevant principal axis. Senders are denoted by convex arrows on the right-
hand side of the message text, while receivers have a concave section on the right-hand side. When either
the sender or receiver is deleted then its corresponding messages are also removed from the protocol.
This ensures the correctness of a protocol, by ensuring that messages are only sent to defined principals.

Statement blocks are primarily used for two purposes. One of these is to initialize possessions at specific
points during the protocol run. For instance, a server may have to look up the information for a print
server based on the information the client sends it. This could be written as follows:

IDpserver = getInfo(ClientInfo)

The second use of statement block is to perform arbitrary function calls to the user-defined code. This
could, for example, be used for logging information the user wants to keep regarding service requests.
The format of such a call would be as follows:



22 CHAPTER 2. SECURITY PROTOCOL MODELLING ENVIRONMENTS

Log(IDclient, ServiceType)

Statements are placed on principal axes by clicking on the axis at the point where the block of code to
be defined should be executed. The user is then prompted by the Statement Builder dialog to enter the
desired statements. The user may enter as many statements as he want to in a statement box. As with
other dialogs of this nature, the statements are listed in a list box on the right-hand side of the protocol
and information regarding components that can be added to the statement appear on the left-hand side. If
the protocol has been compiled and a valid Java compiler exists, then the user can also check the syntax
of the statement. The order in which the statements are enumerated in the right-hand list box is the order
in which they are executed. Once the user accepts the statement, it is placed on the canvas at the point
where the user clicked the axis.

Figure 2.7: The Expression and Statement Builder dialogs.

2.4 The CAPSL Specification Language

CAPSL, the Common Authentication Protocol Specification Language, is a high-level language intended
to support the analysis of cryptographic protocols using formal methods. The development of CAPSL
was started in 1996 and is being managed by Jonathan Millen. Its goal is to permit a protocol to be
specified once in a form that is usable as an interface to any type of analysis tool or technique, given ap-
propriate translation software. The CAPSL Intermediate Language (CIL) acts as an interface to analysis
tools, allowing protocols specified in CAPSL to be examined by these tools. CIL is designed to make
the translation to tool-specific representations as easy as possible. A CAPSL specification is parsed and
translated into CIL, and at that point a different translator can convert from CIL to whatever form is
required for each tool. The translator from CAPSL to CIL can deal with the universal aspects of input
language processing, such as parsing, type checking, and unraveling a message-list protocol description
into the underlying separate processes.

A CAPSL specification is made up of three kinds of subspecifications: type, protocol and environment
specifications, usually in that order. Type specifications define cryptographic operators and other func-
tions axiomatically, and are also used to define different types of principals. A protocol specification
contains declarations, messages and goals that the protocol should achieve. An environment specifica-
tion is optional and is used to set up particular network scenarios for the benefit of model checkers, search



2.4.1 Operators and Types 23

tools or other applications that need them. The following code sample is a small example of a protocol
specification, illustrating several of the language’s features:

PROTOCOL One_Message;
IMPORTS USER;
VARIABLES

A, B: User;
K: SKey, FRESH, CRYPTO;

ASSUMPTIONS
HOLDS A: B;

MESSAGES
A -> B: {A, K}Pub(B);

GOALS
SECRET K;
BELIEVES B: HOLDS A: K;

END;

This protocol has only one message in which user A sends a newly generated key K to another user
B. The key K is concatenated with the identity of user A and encrypted with B’s public key. Protocol
variables are typed, and they may also have properties. For example, the property FRESH means that the
value of the variable is newly generated for each session, and has not been used before by the principal
generating it. The CRYPTO property means that the variable is unguessable. A specification may import
another specification. Importing is understood as syntactically copying all definitions of the imported
specification into the importing one. In the above case the USER type specification is imported into the
current protocol. The HOLDS declaration implies that when a protocol session begins, A will possess the
identity of user B. There are two security goals specified in the GOALS section, namely that the new key
K is kept secret from any attacker, and that if the protocol session completes, B shares the key K with A.

2.4.1 Operators and Types

Messages in cryptographic authentication protocols are constructed using cryptographic operators and
functions. In principle, all functions used in CAPSL, and the data types they operate on, must be speci-
fied axiomatically with abstract data type specifications, called typespecs. Several commonly used data
types and operators are defined in a standard prelude. Type specifications in this prelude are considered
built-in, and do not need to be supplied by a designer or imported explicitly. Data types defined in the
prelude include Principal, Skey (symmetric key), Pkey (public key), Nonce, Field, List and
Timestamp. Operators defined in the prelude include encryption operators such as se and sd for sym-
metric encryption and decryption; ped for public-key encryption and decryption; kap and kas for key
agreement; sha for hashing; cat for combining items of type Field; con for creating values of type
List; seal to create a checksum and verify to check it; and lastly later and near for times-
tamp comparisons. CAPSL also implicitly allows for finite-field arithmetic and boolean expressions to
be evaluated and specified. An example of a type specification found in the prelude appears below:

TYPESPEC PKEY;
TYPES Pkey;
FUNCTIONS

keypair(Pkey, Pkey) : Boolean;
AXIOMS



24 CHAPTER 2. SECURITY PROTOCOL MODELLING ENVIRONMENTS

keypair(J, K) = keypair(K, J);
END;

As has already been mentioned, protocol variables, besides having a type, may also have properties
representing assumptions about the way in which they are generated or used. These properties generally
do not affect the abstract model or representation of a protocol as a process, but rather affect the feasibility
of certain types of attacks. The CRYPTO property indicates that a variable is unguessable; FRESH means
that it is not reusable in other sessions by the same principal; RANDOM refers to the fact that the variable
is unrecognizable; EXPOSED identifies a constant held by an attacker; and lastly PRIVATE is used to
refer to a function computable only by a specific principal — essentially a local table lookup. Properties
for a variable are stated after its type specification.

CAPSL provides for two types of concatenation, namely associative concatenation of fields, with the
operator cat, and nonassociative concatenation to produce values of type List, using the operator
con. Concatenation with cat is supposed to represent simple bit-string concatenation. All types in the
prelude, except for Field and List, are subtypes of a type called Atom, which has a well-defined
length. This allows cat(X, Y) to be uniquely decomposable into X and Y, if and only if either X
or Y is atomic. Accessor functions named first and last exist for fields fu; v; : : :g. These func-
tions are well-defined when u is atomic; the value of first is u and the value of rest is fv; : : :g.
Concatenation with con constructs values of type List, where component delimiters are explicit and
nestable in the concatenated field. Accessor functions named head and tail exist for con, which en-
sure that head(con(A, B)) = A and tail(con(A, B)) = B. A non-binary list is interpreted
right-associatively. Thus con(A, B, : : :) is interpreted as con(A, con(B, : : : )).

The expression fA, KgPub(B) is interpreted as ped(Pub(B), cat(A, K)). This is a combina-
tion of two notational conventions, namely the use of fA, Kg to abbreviate cat(A, K), and the postfix
of a Pkey term to a concatenation to encrypt it using ped. Decryption is indicated by placing a prime
in front of the applicable key. For example, conventional decryption of X with the symmetric key K is
indicated by fXg’K. The other concatenation operator, con, is indicated by using square brackets. Thus,
[A, B] is interpreted as con(A, B), and any encryption may be applied with postfix keys.

2.4.2 Messages

The MESSAGES section in a CAPSL specification contains messages and actions. A message is ex-
pressed in the form:

source �! destination: field1, : : :, fieldn

In this notation the source and destination are variables of type Principal. Messages may also be
numbered and preceded and followed by equational actions representing assignments or tests. A phrase
consists of a message and the actions associated with it. An action prior to a message is performed by
the sender of the message, and an action after the message is performed by the receiver. If the receiver of
a message is the sender of the next message, any action between the two messages is performed by that
principal, and it does not matter to which phrase the message belongs. If not, the association of actions
with messages can be indicated with a ‘/’ character, as in the following example:

A -> B: X;
X = Y;/
A -> C: Z;



2.4.3 Assertions 25

Here the ‘/’ shows that the action X = Y is performed by B rather than A, and it belongs in the phrase
containing the first message. An equational action like X = Y may be either an assignment to X or a
comparison test, depending on whether or not the acting principal already holds a value for X. The right
side of the equation may be any term that is computable by the acting principal, while the left side of
the equation is normally a variable, but it might also be any computable term, if a comparison test is
intended.

Assignment actions do not have to be placed in the message list if they have already been placed in a
DENOTES declaration. For example, the following DENOTES declaration defines a structure PMK that
can be used in message declarations:

PMK = kas(kap,(Xs(S)), Xc(C));

A DENOTES declaration is a convenient way to prominently exhibit the structure of conceptually impor-
tant items such as tickets or certificates. Through the use of these declarations a message specification
can be simplified and made more abstract.

2.4.3 Assertions

CAPSL permits a variety of assertions to be stated about operators and protocol variables. Axioms in
a type specification are universal assertions about the operators defined there. Assumptions and goals
in a protocol are statements about protocol variables. The ASSUMPTIONS section in a protocol states
initial conditions. An important use for this section is to indicate which variables are held initially by
each principal. The GOALS section states the security objectives for the protocol. A goal referring to the
state of a principal should be true for the final state of that principal. Statements intended as assumptions
or intermediate proof obligations may be placed among the actions preceding or following a message.
These assumptions are preceded with the keyword ASSUME, while proof obligations are preceded by the
keyword PROVE. Examples of assumptions include:

HOLDS A : Ka
SECRET Ka : A, S
SESSION_SECRET R: A, B
BELIEVES A: HOLDS B: K
KNOWS B: SECRET Kab

The HOLDS keyword identifies the variables which a given principal possesses; SECRET indicates which
principals hold the value of a given variable; SESSION SECRET identifies the principals who may hold
a variable’s value during an entire session; BELIEVES is used to indicate the initial beliefs of a given
principal; and lastly a principal KNOWS an assertion if the principal believes the assertion and the assertion
is true. Principals are implicitly assumed to hold their own identities, so HOLDS A: A is unnecessary.
Nonces may either be assumed to be held initially or not, while timestamps are implicitly assumed to be
held by all principals.

2.4.4 Subprotocol Invocation

CAPSL allows a designer to identify subprotocols (functionally related groups of messages) in a protocol
specification. Different concepts are involved, depending on whether a subprotocol is designed to be



26 CHAPTER 2. SECURITY PROTOCOL MODELLING ENVIRONMENTS

subordinate to a larger protocol or whether one is in fact combining two independent protocols with a
simple data flow relationship in the context of a larger system.

Subprotocols are usually offered as options to be chosen or negotiated, or applied in sequence. In CAPSL,
one can replace a message with a conditional selection or a subprotocol invocation. The intent of the cur-
rent CAPSL grammar is that subprotocols be declared in separate PROTOCOL specifications, which are
invoked by name in the parent specification by using INCLUDE statements. This approach is illustrated
in the following fragment of an SSL specification:

C -> S: C, CH, CS
IF CS = DH THEN INCLUDE SSH_DH;
ELSEIF CS = RSA THEN INCLUDE SSH_RSA;
ELSE ...
ENDIF

The child protocols import the parent protocol so that they can use the protocol variables. The parent
may only refer to the names of the subprotocols.

2.4.5 Environments

When a protocol is being analyzed or simulated, the analyst may have to specify which principals are to
be run. Other run-specific information, such as the initial knowledge of the attacker, may also have to be
supplied. A CAPSL environment contains specifications detailing this kind of information. Environment
specifications, like type specifications, are separate from the definition of a protocol. The content and
interpretation of an environment specification depends on the analysis tool. However, CAPSL does
provide syntax, keywords and organization so that different tools can take advantage of the CAPSL
parser. Declarations to name principals and other constants can be placed in an environment, and sessions
can be defined. More than one session may be declared and these sessions will run concurrently by
default. Execution dependencies between sessions can be expressed, allowing some search tools to save
time in the analysis process.

2.5 Closing Remarks

The modelling environments which have been discussed in this chapter are representative of a range of
diverse approaches to security protocol specification. Table 2.2 presents a comparative summary of some
of the attributes of the modelling environments presented. Different arguments can be made for the ap-
propriateness of each interface and the selection of affordances used. Both CAPSL and SPEAR I attempt
to create specifications which can be used as input to a large number of analysis tools and techniques. On
the other hand, the Interrogator and Convince are more focused on creating protocol specifications that
will be used within their intended scope of use.

Convince makes use of the OMT approach for modelling security protocols. This is one of the most
generic approaches that can be applied. However, applying too many of the associated object-orientated
techniques might lend itself to a system that is unnecessarily complex for cryptographic protocol engi-
neering. The Event Trace-type approach employed by SPEAR I clearly represents the message flows
between principals and is intuitive to use when creating security protocol specifications as all the rele-
vant information and functionality is accessible on the design canvas. Both CAPSL and the Interrogator



2.5 Closing Remarks 27

Category Convince Interrogator SPEAR I CAPSL
Input Environment Graphical Textual Graphical Textual
Integrated Results Viewer � � � �

Logic Analysis BGNY N/A BAN N/A
Subprotocol Support � � � �

Message Rounds Calculation N/A N/A Synchronous N/A
Component Typing � � � �

Type Formatting � � � �

Source Code Generation N/A N/A Java N/A
Attack Analysis � � � �

Protocol Session Simulation � � � �

Export Formats ISL N/A N/A CIL
Embedded Statements or Conditions � � � �

� = Yes � = No

Table 2.2: Comparative evaluation of the modelling tools discussed in this chapter.

use textual specification techniques for creating the initial protocol specification. The GUI used by the
Interrogator for creating attack sessions succinctly represents the message flows and also presents the
user with a clear view of the possible components which can be used as search targets.

The ability of the CAPSL language to represent subprotocols is exceptionally useful for specifying large
commercial protocols or protocols which have a choice of execution at some point. Convince allows for a
similar representation by using dynamic models and finite state machines to indicate the messages which
are sent when certain events take place. Although the Interrogator represents protocols internally using a
state machine approach, protocols are defined by specifying only one possible scenario. Each scenario is
input separately from the others and does not form part of a unified protocol specification. SPEAR I uses
the same approach as the Interrogator with regard to subprotocols. Thus, analysis or code generation
systems which require information about all the possible message flows would not benefit from the input
schemes used by the Interrogator or SPEAR I.

All of the specification environments in this chapter provide some notion of component typing. SPEAR I
ensures that every component has an associated type and format so that Java source code can be produced.
CAPSL provides typing facilities which include types that are specifically suited to security protocols,
such as nonces and timestamps, as well as user-defined types. Convince only considers typing keys,
shared secrets and functions, as these must be explicit in the context of BGNY logic. The type specifica-
tions in the Interrogator are merely predicates, so virtually any named type can be supported by the tool.
However, source code generation tools must know how to encode and decode types for transmission over
a communications network. The SPEAR I code generation engine produces source code that encodes
and decodes protocol components based on the type that they have been assigned. A difficulty with this
encoding mechanism is that it is not consistent with known standards and thus SPEAR I protocol im-
plementations can only communicate among themselves or with those that implement the same message
format. The Interrogator, CAPSL and Convince do not even attempt to provide the ability to specify the
format of a type.

Specifying statements to be executed between messages is a useful feature to have in a modelling envi-
ronment, especially if source code is to be generated. The ability to specify conditions that should be
satisfied before messages are sent or after they are received will also aid in later code generation or anal-



28 CHAPTER 2. SECURITY PROTOCOL MODELLING ENVIRONMENTS

ysis. CAPSL allows designers to specify a set of statements or conditions to be executed or examined
before a message is sent or after it is received. These statements are merely placed between messages
in the specification and then associated with the sender or receiver. SPEAR I has facilities which enable
designers to define a statement block that is executed between message flows. The positioning of these
statement blocks indicates the principal who executes them and the point at which they are to be run
or checked. Convince allows a designer to specify conditions that should be true after each message
has been sent and received, however it does not provide the ability to specify statements to be executed.
The Interrogator provides no way of defining intermediate code or conditions that should exist between
messages as this is not required for the attack analysis that it conducts.

The environments presented in this chapter use differing degrees of graphical and textual specification
techniques. On the one end of the spectrum, CAPSL is totally text-based. As a result of this fact, a de-
signer creating a specification in CAPSL must have a good working knowledge of the associated syntax
and semantic issues. The Interrogator also uses a textual interface to specify the protocol, however it
makes use of a graphical environment to set up protocol attack searches. Between writing the specifica-
tion and setting up penetration objectives, the designer has to compile the protocol specification into a
Prolog-compatible form. In this respect, the Interrogator specification environment is similar to CAPSL
since the protocol specification has to be typed out and then compiled. The penetration search engine
can be thought of as a third-party tool for which output is being produced by the compiler, much like a
CAPSL compiler will produce CIL output for other analysis tools. Convince allows a designer to create
a specification in a graphical design environment and then export this specification to the textual ISL
format which is used as input to the BGNY analyzer. Output produced by the analyzer is read back into
Convince and displayed to the user through the graphical environment. SPEAR I can be considered as
being almost fully graphical in nature, however entering message components and BAN beliefs is still
done in a textual fashion, albeit with some guidance.



Chapter 3

Security Protocol Modelling with GYPSIE

“The wire protocol guys don’t worry about security because that’s really a network protocol problem. The network protocol guys don’t worry

about it because, really, it’s an application problem. The application guys don’t worry about it because, after all, they can just use the IP address

and trust the network.”

— Marcus J. Ranum

Cryptographic protocol design and modelling is a complex task that is not always straight-forward to
carry out, since subtleties within a protocol specification can make it vulnerable to a number of attacks
which can be used to subvert its original goals and intent [2, 22]. To facilitate the development of more
advanced and reliable protocols, we need to ensure that protocol engineers have access to an environment
from within which they are able to easily create a high-quality protocol specification. Such a specification
can then form a basis for further security and performance analysis, as well as code generation. The
main function of a modelling environment is to serve as a core around which other protocol engineering
operations can revolve. For this reason, it should be simple to use, straight-forward and expressive. The
protocol model which is created must also be exportable to a wide variety of formats.

The use of graphical interfaces substantially reduces the amount of knowledge people have to remember
about an interface. [68]. In many situations, the intuitive and direct feel of the interface means that users
do not need to think about what they are doing or remember sequences of commands. Instead, they
primarily need to learn how to interact with a simulated world of objects. With a graphical interface we
also find that much of the information about a system’s structure and functionality is available within
the interface, meaning that users have to remember less details to use the system. A key feature of well-
designed graphical user interfaces is ‘direct manipulation’. Direct manipulation is an interaction style in
which objects are represented on a computer screen and then manipulated by the user in ways analogous
to how the user would manipulate the real object.

The primary goal of the SPEAR II protocol modelling framework is to create an environment which
allows for the specification of cryptographic protocols in such a way so as to distil the critical issues
and present the user with varying levels of abstraction, each level presenting an appropriate view of the
protocol design. The most suitable environment for this type of system is a graphical user interface that
employs direct manipulation to allow for easy interaction with the objects in each of these abstracted
views. By making use of a graphical user interface for protocol design we also ensure that the system
is easy to use since users do not need to memorize a specific syntax to be productive. They also have
instant visual feedback on how the protocol appears through each of the abstracted views.

29



30 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

The aim of this chapter is to describe the GYPSIE graphical protocol specification environment. GYPSIE
is a pivotal component of the SPEAR II Framework and is used to design and model security protocols.
Two core advantages of GYPSIE are its simplicity and generalizability. The primary focus of the GYPSIE
environment is rapid, effective and accurate construction of a protocol model, with the other components
of the SPEAR II Framework being used to carry out analysis and code generation activities based on the
information specified in this model. We will begin this chapter by developing a set of requirements which
we believe a flexible and generic security protocol modelling environment such as GYPSIE should imple-
ment. Thereafter we will describe the core features of GYPSIE, followed by a discussion of the message
rounds calculator which has been created to work in conjunction with GYPSIE. User experiments which
we conducted are then described. Implementation details will also be elaborated on briefly. The chapter
concludes with closing remarks that draw together all of the issues discussed in these sections.

3.1 Requirements for a Security Protocol Design Environment

Any tool that is concerned with designing and engineering cryptographic protocols should provide a
design module that facilitates the rapid and accurate specification of a protocol, but at the same time is
flexible enough to accommodate new types of protocols and security methods. The design environment
should also be tailored to provide a degree of guidance as a protocol engineer constructs a protocol
model. Guidance can be provided by enforcing the order in which protocol construction takes place or
by providing an interface that clearly displays the current state of the protocol specification. For example,
we do not want an individual to be able to specify messages if no principals have been defined. Also, if
one component is used in multiple messages, any changes made to one of these should be reflected in the
others in order to maintain consistency. To present a clean interface and to avoid unnecessary complexity,
different views of a protocol specification can be used. These views can represent completely distinct
parts of a protocol specification, or they can overlap to some extent.

When creating a protocol specification, the first components that need to be defined are the principals
who partake in each protocol session and exchange messages with each other. Each principal defined
in the protocol essentially represents a role that an entity will fulfil while the protocol is in effect. A
given role can be enacted by different entities each time a protocol session is run. After the principals
have been defined, the messages that are to be transferred must be constructed. Each message requires
a sender and at least one receiver. Besides specifying the sender and receivers, the components used
within each message must also be defined. Some standard components used in cryptographic protocols
include nonces, timestamps, encryptions and hashes. Since components such as encryptions and hashes
contain further components, we essentially end up with a component hierarchy that can be represented
as a tree-like structure to aid in the visualization of a message.

During the construction of a protocol specification, a designer may want to isolate functionality into
subprotocols to simplify a design or to improve the modularity of the implementation. For this reason,
the ability to add, view and modify subprotocols should be provided by a design environment. Automatic
subprotocols are always executed, while conditional subprotocols are only executed if certain criteria are
fulfilled during a session. The protocol specification environment should differentiate between these two
subprotocol classes when a specification is displayed. Besides being able to view subprotocols, it is also
important to be able to visualize their hierarchical relationship relative to each other. It should also be
possible to copy components, messages and principals between subprotocols. However, many formal
analysis techniques are not compatible with specifications that employ subprotocols. For this reason, the
ability to ‘flatten’ a subprotocol hierarchy should be included in the design environment.



3.2 Overview of the GYPSIE Environment 31

Once the essential features of a protocol specification have been defined, additional information that
can be used for security and performance analysis, meta-execution or code generation can be supplied.
The interfaces to supply this information would be provided by the design environment itself or by the
engineering modules that plug into the system. These secondary modelling steps could include carrying
out the following tasks:

� The underlying structure of components within each message can be clearly defined to enable
source code generation, simulation or formal analysis.

� External functions that are to be applied to the message components may be defined. The linkage
between these external functions and generated source code must also be made explicit.

� Communication settings, such as transport protocols and instance timeouts, can also be specified.

� Information specific to security or performance analysis may be declared. This could include
details such as initial beliefs and possessions of principals and pre-recorded protocol timings.

� Source code or checks that are to be executed while the protocol messages are being transmitted
can be embedded in the appropriate locations.

There are obviously a large number of other details that can be specified. But for now, this list gives
a general idea of how a design environment can be used in the context of multi-dimensional protocol
engineering. Essentially, the design environment can be viewed as the central interface through which
a protocol specification is created. After construction, this specification is used when conducting the
actual engineering functions which examine the protocol and generate source code. In effect, all of the
protocol engineering modules rely on the specification produced by the design module. Thus, the goal
of a design module should be to provide an easy-to-use, flexible and powerful interface within which
security protocols can be accurately modelled and exported for later use.

3.2 Overview of the GYPSIE Environment

The GYPSIE environment is an integral component of the SPEAR II Framework and is used to construct
a protocol specification before any protocol engineering or analysis operations are conducted. GYPSIE
itself is divided into three views, each view revealing information about a specific portion of a protocol
specification. The High-Level Protocol View describes the overall flow of messages, graphically indi-
cating the principals which send and receive messages and the sequence in which these messages are
transmitted. Any subprotocols embedded within the protocol under inspection are also displayed. The
more detailed Component View displays the contents of each message as a hierarchical tree and provides
mechanisms whereby each component within this tree can be edited, ordered, deleted or viewed. The
Navigator View presents a user with a concise summary of the structure and contents of a protocol by
using a tree-view with expandable and collapsible nodes. Through the use of this tree-view, the navigator
also facilitates the exchange of messages and principals between subprotocols. Besides allowing a proto-
col to be designed in these three views, GYPSIE also ensures that a protocol can be saved to disk, loaded
from disk and exported to either text or LATEX. An included component tracker can be used to highlight
a given item embedded within a message so that its use can be tracked through the protocol model. To
determine optimal or synchronous message rounds for use in simple performance measurements [34], a
rounds calculator which is part of the SPEAR II Framework can be used.



32 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

Subprotocol

Principal

Message

High-Level Protocol View

Navigator View

Toolbar

Pull-Down Menus

Figure 3.1: The GYPSIE protocol design environment shown in a SPEAR II screenshot.

3.2.1 High-Level Protocol View

The High-Level Protocol View, shown in Figure 3.1 can be considered as a front-end to the GYPSIE
protocol design module and essentially consists of a dynamically-sized canvas on which a protocol en-
gineer places objects representing principals, messages and subprotocols. Its main purpose is to provide
a suitable abstraction and encapsulation mechanism so that designers can retain a high-level perspective
of the operation of the protocol. Manipulation of the High-Level View canvas components takes place
through dragging-and-dropping operations, pop-up menus and the SPEAR II pull-down menus. To aid
in protocol construction, the High-Level View incorporates an undo and redo feature which ensures that
designers can recover from accidental message, subprotocol and principal moves, deletions and edits.
The Component Tracker is also part of the High-Level View and attempts to reduce the complexity that
is found in specifications containing a large number of components.

3.2.1.1 Selection of a Formalism

The Message Sequence Chart (MSC) [44] syntax forms the basis for the hybrid representation that is used
within the High-Level View to describe the flow of messages. In essence, the High-Level View formalism
can be described as a simplified MSC syntax which makes use of symbols from the Specification and
Description Language (SDL) [43] to denote the sender and receiver of a message. The use of these SDL
symbols in conjunction with the sequencing and tracing ability of MSCs leads to a clean, accurate and
concise representation. An advantage of using the SDL symbols to represent messages is that we are
able to include a flat list-like representation of a message’s contents within each one, since each of these
symbols is a box-like structure that can act as a text container. The rectangular symbol used to represent
subprotocols does not stem from any existing formal technique. It was derived well after the message
and principal representations and its development was primarily influenced by the need to integrate with
these formalisms and to maintain compatibility with the underlying GYPSIE architecture.



3.2.1 High-Level Protocol View 33

When deciding on a formalism for representing a security protocol specification, the use of SDL was
initially considered. SDL is a specification language used to describe communicating systems such as
telecommunications protocols. It is an International Telecommunication Union standard, and as such
is widely recognized and supported. The SDL language includes both a textual syntax (SDL/PR) and
a graphical syntax (SDL/GR). In this regard, SDL is superior to other formal description techniques
such as Estelle [18] and LOTOS [10], which have only textual representations. There are also existing
tools such as editors, correctness analyzers, simulators and code-generators that exist for specifications
written in SDL. Members in our research group have also developed a system called SPECS II [19] which
performs correctness and performance analysis of an SDL protocol specification and generates code from
this input. Other projects undertaken in our research group have also made extensive use of SDL, and
thus it was an obvious consideration.

However, after due deliberation we decided against using SDL as our input formalism. Our reason
for not selecting SDL as our specification formalism was largely due to the fact that SDL does not
allow for a high-level cryptographic specification, but rather provides a low-level functional specification.
While recognizing that it is at the functional level that subtle flaws can be identified, we perceive a lot
of common low level functionality amongst cryptographic protocols. By this we mean that although
message recipients and contents vary greatly in security protocols, much of the actual implementation
details such as connections and time-outs can be viewed as common to many protocol implementations.
Accepting this, one can consider the High-Level View as being a level above SDL — where designers
can concentrate chiefly on logical security protocol design and actual message contents.

With a view to allowing prototyping and experimentation, it was decided to use a protocol specification
technique closer to that of MSCs, since MSCs capture the exchange of messages at a higher level which
is more appropriate to cryptographic protocol design. More intricate details that are necessary for source
code generation, or different forms of analysis, can be included in further interfaces which work in tan-
dem with the GYPSIE environment. In fact, we want to enable a protocol engineer to model a protocol
as quickly as possible by supplying only those details which are mandatory for understanding the proto-
col’s operation. Our simplified MSC syntax achieves this goal as only the protocol messages, senders,
receivers and subprotocols are specified, resulting in a simple irreducible specification. An implication
of our decision to use a syntax closer to MSCs is that SDL could still be generated from the specification
for use by another modelling tool.

3.2.1.2 Fundamental Building Blocks

Components used in the High-Level View formalism which we have derived are illustrated in Figure 3.2.
Communicating principals are specified as MSC-style axes, with the head containing the principal’s
name. Each message in the protocol is represented by two linked SDL-style boxes. The sending and
receiving principals are designated through the placement of these message boxes — a convex box indi-
cating the sender of a message, and a concave box indicating the recipient. At this point in time, each
message has only one recipient, but this representation can easily be extended. Messages are ordered se-
quentially in time, with the earlier messages at the top of a principal axis, and the later messages near the
bottom of the axis. Each message displays a textual representation of the components which it contains.
Functionally related groups of messages, known as subprotocols, can also be placed on the canvas. A
subprotocol is rendered as a rectangular box with the name of the protocol in the title bar. Subprotocols
are ordered sequentially, with the subprotocols called first being placed towards the top of the design
canvas. Subprotocol components lie on top of the principal axes and those principals which are involved
in a given subprotocol are visible through the subprotocol body, as seen in Figure 3.1.



34 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

Principal Name

Axis

Base

(b)

Truncated Message Text

(c)

(d)

(e)

Sent MessageReceived Message

Optional Preprocessing Indicators

Optional Post-processing Indicators

(a)

(f)

Figure 3.2: Components used to represent a protocol in the High-Level View.

To assist code generation and analysis modules that will plug into the SPEAR II Framework, we have
augmented the message representation so that it is able to indicate whether additional processing code
has been inserted into the protocol specification. These optional processing indicators are shown in
Figure 3.2 (a). An arrow near the top left of a message indicates that preprocessing code has been inserted
by the protocol engineer, while an arrow near the bottom left indicates that post-processing code has been
inserted. Preprocessing code is executed before a message is sent or received, while post-processing code
is executed after a message has been sent or received. If a subprotocol does not contain any principals or
messages, then its fill colour is the same as the canvas background, as shown in Figure 3.2 (d). On the
other hand, if any principals or messages are present, the subprotocol contains a mesh pattern, illustrated
in Figure 3.2 (e) – (f). A subprotocol that is always executed has a solid outline, while one that is executed
conditionally has a dashed outline.

The High-Level View can be fully manipulated through drag-and-drop operations. A message or sub-
protocol can be reordered in time by dragging it up or down along an axis. The sender and receiver of
a message can also be changed by dragging either the convex or the concave message box onto a new
principal axis to signify the new sender or receiver respectively. Principal axes can also be repositioned
to ‘neaten’ or simplify the appearance of the specification. Note that movement of the principal axes
does not change the functioning of the protocol in any respect. When dragging a component, an XORed
representation is displayed. This representation appears green when a drop is allowed, and red when
it is not. The XORed representations also contain guidelines to help users to accurately position the
components. When dragging a concave or convex message object, a drop will only be valid if the guide,
which is shaped as a cross, is positioned on top of a principal axis between messages and subprotocols.
A subprotocol drop is considered as valid if the guide, which is basically a horizontal line, is not on top
of a message or subprotocol. Finally, a principal drop is allowed if the principal axis does not overlap the
horizontal space of any message or principal.



3.2.1 High-Level Protocol View 35

If a message contains a large number of embedded components, then its textual representation could be
rather long with the result that its corresponding representation in the High-Level View could span quite
far across the canvas or even scroll out of the visible window area. Such a situation could make viewing
the protocol tedious and would also affect dragging and dropping operations by making it difficult to
position the message over another principal axis. For this reason, a protocol engineer is allowed to set the
maximum allowed message box width in the SPEAR II Preferences Dialog. Any message box exceeding
this size is truncated as shown in Figure 3.2 (c). However, to allow a designer to identify a message
or view its contents, tooltips have been added to the message boxes so that the message contents are
displayed when hovering the mouse pointer over each message. A subprotocol automatically occupies
the width of the visible canvas area if no principals have been defined. If principals are present, then the
subprotocol’s width is roughly equivalent to the width of the protocol specification. A truncated version
of the subprotocol name is displayed if it is too long for the rectangular box in which it appears. Tooltips
are also used to reveal the full name of a subprotocol to cater for situations in which the name has been
truncated.

(b)

(c)

(d)

(e)

(a)

(f)

(i) (ii) (iii) (iv) (v) (vi) (viii) (x)(ix)(vii)

Figure 3.3: Graphical components used to work in the High-Level View.

3.2.1.3 Accessing High-Level View Features

The features provided by the High-Level View are all accessible through the use of pull-down and pop-up
menus. Shortcuts and toolbar buttons are provided for accessing frequently used operations, while direct-
manipulation is used to modify the sequencing and transmission details related to protocol messages and
subprotocols. We have tried to be as logical and as flexible as possible in the construction of the interface
so as to cater for a wide range of users and preferences. This goal has lead to us developing multiple ways
to accomplish frequently used High-Level View operations. In Figure 3.3 the four pop-up menus used
to interact with a protocol model, the Design pull-down menu and the toolbar buttons used for accessing
critical features of the SPEAR II Framework are all illustrated. In the list that follows we describe each
of these graphical components and the role which they fulfil in providing functionality, usability and
flexibility to the High-Level View:



36 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

(a) The Design pull-down menu provides access to all of the High-Level View features. Whereas the
pop-up menus are all limited to dealing only with principal, message or subprotocol operations,
the Design pull-down menu facilitates all of these operations and more. In Figure 3.3 (a) we
see the Principal Operations submenu being used. Notice that when selecting the Edit Name
submenu, a list of principals is constructed so that the user can indicate which principal he wishes to
rename. The principals inserted into this submenu are those who take part in the protocol currently
being edited. An advantage of this dynamically-constructed menu system is that it provides an
alternative to right-clicking on a principal’s canvas representation and then using the principal pop-
up menu illustrated in Figure 3.3 (c) to select an operation. The principle of dynamically updating
the submenus found in a pull-down menu with the names of the appropriate target objects is also
used in the Delete Canvas Object, Message Operations and Subprotocol Operations submenus.
Undo and redo functionality is provided by the first two pull-down menu items, as well as the
toolbar buttons labelled as (viii) and (ix) respectively.

(b) This pop-up menu is used to add a principal, message or subprotocol object to the High-Level View
canvas. It appears when right-clicking on an open portion of the canvas not currently occupied by
a principal, message or subprotocol object. The advantage of using this pop-up menu to add
items to the protocol model is that the resultant object is inserted where the user right-clicked
the canvas. Messages and subprotocols are inserted horizontally along the Y-coordinate of the
mouse pointer, while principals are inserted vertically along the corresponding X-coordinate. For
example, assume that there are three messages on the canvas. To add a fourth message after the first
one, a user merely needs to right-click between the first and second messages and then select the
Message item from the Add Canvas Object submenu. When the Principal command is chosen, a
dialog box which the user can employ to name the principal being added to the canvas is displayed.
The Subprotocol command opens the Add Subprotocol dialog which is used to set the subprotocol’s
properties, while the Message command opens the Component View which can be used to edit the
new message components.

(c) This pop-up menu is invoked when right-clicking on a principal object. Once the pop-up menu
appears, a dashed box is drawn around the principal so that users can remember which principal
they selected to be the subject of commands chosen from the pop-menu. The Edit Name command
activates a dialog containing a text box which the user can employ to rename the principal. The
Add Message item invokes the Component View and then sets the selected principal to be both the
sender and the receiver of the newly created message. The user must obviously change the sender
or the receiver of the message to reflect another principal on the canvas. To delete a principal,
the Delete command is used. This command erases the selected principal, as well as all of the
messages that it sends and receives, from the specification.

(d) This pop-up menu appears when right-clicking on a subprotocol object. A dashed line is drawn
around the subprotocol once the pop-up menu becomes visible. As discussed in (c), this high-
lighting effect helps a user to remember which subprotocol he is currently editing. The Explore
command is the most important item on this pop-up menu and will probably be the most fre-
quently used in protocol specifications involving subprotocol hierarchies. This command brings
the selected subprotocol to the foreground, causing the current High-Level View canvas to be re-
drawn and replaced with the subprotocol’s own principals, messages and subprotocols. To return
to the parent protocol, the back button located on the toolbar, and labelled as (iv) in Figure 3.3,
is used. The Properties command invokes a dialog which can be used to modify a subprotocol’s
properties. Properties that can be changed at present include the name, execution style and se-



3.2.1 High-Level Protocol View 37

quencing details. The Delete command is used to remove a subprotocol from the specification. If
a subprotocol is removed, then all of the components defined therein are also deleted, unless they
appear in other non-related subprotocols.

(e) This pop-up menu is brought to the foreground when right-clicking on a message object. To help
users remember which message was right-clicked, a dashed line is drawn around the message while
the pop-up menu and any commands spawned therefrom are active. The Properties item activates
the Component View which a user can then use to edit the components embedded within the
message. The Actions command is used to specify processing operations that take place before or
after sent and received messages. At present it merely displays a dialog box with two tabbed panes
for specifying the processing actions for the sender and receiver of the message respectively. To
duplicate a message a designer can make use of the Duplicate command. This command produces
a copy of the selected message which can then be altered as needed. This feature is useful for
modelling backward and forward replay attacks. The Delete command is used to remove a message
from the specification.

(f) The toolbar is used to provide fast access to key features of the SPEAR II Framework. Buttons
(i) to (iii) are used to create a new specification, open a specification, and save a specification
respectively. When creating a new specification or opening one that has been saved, the user is
first asked whether she wishes to save the current protocol if it has been modified since the last
save. Returning to a parent protocol after entering a child is accomplished by pressing button
(iv). Of course, this function will only be applicable if the specification in the High-Level View
is a subprotocol with an existing parent. To create a new principal, message or subprotocol, the
buttons labelled (v) through to (vii) are used. These buttons open the dialog that is invoked when
selecting the Properties item from the message and subprotocol pop-up menus, and the Edit Name
item from the principal pop-up menu. Undo and redo functionality exists for all of the High-Level
View commands and is accessible by pressing buttons (viii) and (ix) for undo and redo respectively.
The component Tracker is invoked by pressing button (x). Tooltips that appear when hovering the
mouse cursor over a toolbar button describe what each button does.

The Communications Settings command, found on the Design pull-down menu and each of the High-
Level View pop-up menus, is used to invoke a dialog which protocol designers can employ to supply
technical information necessary for code generation or performance analysis. This information could
include details such as IP addresses, transport protocols, timing information and message sizes. The
Communications Settings commands found in the Design pull-down menu and the canvas pop-up menu
are both used to modify the default settings of the root protocol and the current subprotocol. To mod-
ify the communications settings of a principal, subprotocol or message, the Communications Settings
commands found on the principal, subprotocol and message pop-up menus are used.

If a given command is not available, then the graphical components used to access it are dimmed and
rendered inactive. For example, if two or more principals have not been defined, then all of the pull-down
and pop-up menu items, as well as toolbar buttons, used to add messages are disabled. The graphical
components become usable once the commands become available. This approach helps to avoid tedious,
intrusive and unnecessary error message dialogs. We have chosen to dim disabled components as opposed
to hiding them so that users always maintain an idea of the tasks that are possible to carry out with the
interface. However, the disabling of redundant commands does not indicate to users how to use the
interface. Instead, it is still the responsibility of individual protocol engineers to ensure the presence of
appropriate objects on the canvas and to supply information necessary for any engineering operations.



38 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

The direct manipulation built into the High-Level View helps protocol engineers to easily set up the
sequencing of messages and subprotocols, and also to specify the sender and the receiver of a given
message. However, the current protocol view may not always fit into the visible window. This may hinder
dragging-and-dropping operations which change a message’s sender and receiver if the target principal
does not reside in the visible window area, as automatic window scrolling has not been implemented.
In such a situation, a designer can still use the Component View to change the sender and receiver. The
same problem could apply when re-sequencing messages and subprotocols if there are already a large
number in the specification. In this case, the Component View and Subprotocol Properties Dialogs both
allow one to set the position of a message or subprotocol by using a vertically-orientated slider control.

(a) (b)

(c) (d) (e)

Figure 3.4: Dialog boxes used in conjunction with subprotocols.

3.2.1.4 Working with Specifications in the High-Level View

When creating a protocol specification, a user first begins by specifying at least two principals who send
or receive messages. Once these two principals have been defined, messages can be added and more
principals can be introduced as needed. The addition of subprotocols to a specification does not require
the prior existence of any other canvas objects. Thus, a given protocol can be made up entirely of subpro-
tocols, just like some functions in a procedural language might only consist of calls to other functions.
When adding a principal, the user is first requested to supply a name that will be used to identify the
principal during modelling and engineering operations. Once this name is supplied, a principal axis is
created and placed on the canvas. The same dialog used for a principal add operation is used in principal
edit operations. When adding messages, the Component View is invoked so that the sender, receiver and
embedded components within the message can all be defined. A message object is added to the canvas
when the Component View is closed. The Component View is also used to edit message properties. The
vast majority of protocols will not contain any subprotocols. However, in the case of specifications that
do contain subprotocols, each subprotocol can essentially be viewed as a High-Level View model that
can be brought into focus as necessary to edit the messages and principals contained therein. At present,
the only details that are required when specifying a subprotocol are its name, execution style and position
in the specification. Principals and messages are added when exploring the subprotocol.



3.2.1 High-Level Protocol View 39

To add subprotocols to a specification, the Add Subprotocol dialog shown in Figure 3.4 (a) – (b) is used.
This dialog consists of two tabbed panes. In the Appearance pane a designer can set the vertical position
of a subprotocol as well as the name that is displayed in its rectangular representation on the design
canvas. There are two choices for this display name — a Friendly Name or the protocol’s file-name. We
have distinguished between these two names to allow individuals to use a simple name when saving the
protocol, and a more descriptive name in the protocol specification. The Execution Style pane is used
to set the execution type used for later code generation or analysis. If a subprotocol is always executed,
then the Automatic Execution radio-button is checked. However, if the execution depends on the parent
protocol’s state, then the Conditional Execution radio-button must be checked. The text-box on the left of
the pane is used to specify the execution trigger for a conditionally executed subprotocol. At this stage,
no code generation routines have been added to the SPEAR II Framework, so the trigger is not functional
but merely present to give an indication of how the system would operate. When editing a subprotocol,
the same dialog box is used, however the title is changed to reflect the editing operation.

Whenever a protocol specification is modified, its dirty bit is set and the save function is enabled. When
a save command is issued, only the protocol contained within the High-Level View is written to disk and
the information contained in any embedded subprotocols is ignored. Each protocol is saved in a separate
file. Protocols containing further subprotocols store the properties associated with each subprotocol as
well as the relative path to the subprotocol file on disk. To save an entire protocol specification the
Save All command, which is accessible from the File menu, is used. If a protocol is being saved for the
first time, the user will be asked to supply a filename. When closing the High-Level View, a list which
contains a reference to every unsaved protocol specification is automatically created. This list is then
used to initialize the Save Confirmation dialog, shown in Figure 3.4 (c). The drop-down list in this dialog
contains the names of all the unsaved protocols. Using this dialog a user can decide whether to save or
discard the changes made to a protocol in the list. A protocol is removed from the drop-down list when
it is saved or its modifications discarded. Once a decision has been made regarding the status of every
protocol in the drop-down list, the Save Confirmation dialog is closed.

Two or more subprotocols in a specification cannot have the same name unless they are all tied to the
same source file. However, if such a scenario is the case, the source file can be modified and saved while
one of these duplicate subprotocols is being edited in the High-Level View. Changes made to the source
file in this way would not be reflected in any of the other subprotocols unless a check was explicitly
carried out to determine whether the file on disk had changed. Thus, in order to avoid synchronization
issues of this nature between multiply included subprotocols, the High-Level View subsystem conducts
a test before exploring a subprotocol to ensure that the source file on disk has not been modified since the
subprotocol was last edited. If the subprotocol source has been modified, the warning message shown
in Figure 3.4 (e) is displayed and the user is given the option of reloading the subprotocol specification.
This feature is useful when dealing with subprotocols that carry out error handling, since a given set
of error handling messages could be packaged in a subprotocol, included in multiple locations and then
edited and saved from wherever the container subprotocol appears in the specification.

Loading a protocol specification containing subprotocols is essentially a recursive process, since the
same load operation is executed on the files which contain the subprotocols embedded within a parent.
A subprotocol is only loaded if the file containing the subprotocol exists in the location defined within
a saved specification. An inherent danger when loading protocol specifications containing subprotocols
is that an infinite loop could result from a circular reference. To avoid infinite loops, all of the protocol
filenames in a subprotocol’s ancestor list are examined to determine whether the protocol file has already
been loaded. If it has been loaded, then the error message shown in Figure 3.4 (d) will be displayed and
the loading operation will ignore the subprotocol in question.



40 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

3.2.1.5 Dealing with Duplicate Components in a Specification

The memory model used by GYPSIE ensures that only one copy of a component ever exists in memory
at any given time. For example, in a protocol specification containing the components fXgK , X and
H(X), there would only be one copy of the data structure defining the characteristics of X . All of the
instances of X throughout the protocol specification would reference the memory location containing
this data structure. In this way changes made to a component remain consistent and are immediately
reflected throughout an entire protocol specification. Guards built into the GYPSIE environment prevent
an individual from creating two terminal components with the same properties. To duplicate a terminal
component, only the functions provided by the Component and High-Level Views can be used, thus
ensuring that all duplicates remain instances of the same component.

A given component might be duplicated in a protocol or even exist in two separate subprotocols that
are both part of the same protocol specification. When reloading such a specification after it has been
saved, we would like all of these duplicates to again reference a single memory location that contains
the data structures pertaining to the component of which they are all instances. To achieve this goal we
assign a unique numerical identifier to each component when writing it to disk. Duplicates of a given
component will all be assigned the same identifier. The identifier essentially tags each component in the
protocol source file and in this way maintains the linkage between components that are duplicated across
subprotocols and saved in separate source files. With this component tagging in place, reloading a given
component merely involves restoring the component’s data structures once and then ensuring that all of
the remaining components with the same numerical identifier reference this information when they are
loaded from the same or other source files.

Two protocols which are not part of the same specification may occasionally contain terminal components
with identical data definitions. Since these terminal components were never duplicates of the same
component instance, they would have received different numerical identifiers while being saved to disk
and thus will not be forced to reference the same memory location when they are included in the same
protocol specification as subprotocols. In such a situation, confusion and naming conflicts would most
probably occur. To eliminate the possibility of such a scenario, we examine every terminal component
during a subprotocol load operation and then determine whether a similar component already exists. If
it does, we modify the name of the terminal component that is currently being loaded. For example, if
protocol X containing the nonce Na is loaded into a specification that already contains a nonce by that
name, then the nonce in protocol X is renamed to N0a. Generating an error message for each duplication
would be tedious from an end-user perspective, and besides this fact, we cannot assume that if two
components have the same data definition they are meant to be one and the same when merging two
protocols.

3.2.1.6 Flattening a Protocol Specification

In certain situations, an analysis system tied to the SPEAR II Framework might not be able to accom-
modate or understand subprotocol hierarchies. For this reason, the ability to transform a collection of
subprotocols into a single set of messages embedded within one root protocol is provided by the GYPSIE
environment. This ‘flattening’ process essentially extracts all of the messages from a given subprotocol
and then embeds them in its parent. The flattening procedure can work out to be a recursive process,
since every subprotocol can potentially contain further nested subprotocols that will need to be flattened
before the subprotocol itself is incorporated into its parent. Once all of the messages have been extracted
from a subprotocol, the subprotocol is deleted and the messages take its place on the design canvas. In



3.2.1 High-Level Protocol View 41

the case of conditionally executed subprotocols, a protocol engineer should ensure that only those mes-
sages applicable to the protocol scenario under examination are used. This essentially means that he
would have to examine all of the extracted messages and then delete those which are not required for the
engineering routines being performed. Messages belonging to automatically executed subprotocols can
be embedded in a parent protocol immediately and don’t require any tweaking by a protocol engineer.

Executed when undo
operation is called.

Current position
of queue pointer.

Executed when redo
operation is called
and becomes the

new queue pointer
position.

New queue pointer
position after undo

operation.

made to the High−Level View.
Discarded if a new modification is

=
Modification details

queue pointer position.

inserted at this point
and becomes the new

Tail of QueueHead of Queue

Message Add Message Edit Principal Add Message Duplicate Message Add

Figure 3.5: An explanation of how the history queue is used for undo and redo operations.

3.2.1.7 Undo and Redo Operations

A dynamically-sized queue containing the undo and redo details pertaining to every High-Level View
operation carried out during an engineering session is used to facilitate undo and redo commands. As-
sociated with this queue is a pointer which references the queue element containing the details of the
next High-Level View operation to be undone. The number of High-Level View operations stored in
the history queue can be set using the SPEAR II Preferences Dialog. When the queue is full, the oldest
operations at the head are discarded first. An advantage of the undo and redo feature is that it encourages
individuals to experiment with a protocol specification, as they can easily recover from any changes or
errors that have been introduced. The ability to undo and redo specification changes is also useful in
protocol analysis and code generation tasks, as components can be modified before carrying out analysis
or code generation, and then restored to their original state thereafter, thus allowing a user to experiment
with a variety of protocol configurations without having to save each one.

The operation of the history queue is relatively straight-forward and is illustrated in Figure 3.5. Every
time a modification which affects a protocol’s High-Level View is made, the details necessary to undo
or redo this modification are recorded and inserted behind the element referenced by the queue pointer.
The queue pointer is then reset to reference the newly inserted element and any elements that previously
existed behind the pointer are discarded. Thus, older operations will be found at the head of the queue,
while newer operations will be found at the tail. When performing an undo operation, the information
stored at the current queue pointer position is first used to restore the protocol specification, after which
the pointer is moved one element forward, towards the head of the queue. When performing a redo
operation, the queue pointer is first moved backwards by one position, towards the tail of the queue, and
the information at this new position is then used to remodify the protocol specification.



42 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

Figure 3.6: The Component Tracker being used to highlight a Kerberos ticket.

3.2.1.8 Highlighting the Position of Components

The Component Tracker helps designers to deal with the complexity that results from having a large
number of components defined in a message passing specification by allowing them to highlight all of
the locations where a given component appears on the design canvas. As a result, they can easily locate
a component in the protocol model and also track its movement through the protocol specification. The
ability to track a component is useful for educational and informative demonstrations of a protocol’s
underlying operation and also helps one to focus more on the critical issues associated with a design,
such as where and how a specific component is being used. In Figure 3.6 we see the Component Tracker
being used alongside a simplified version of the Kerberos protocol. In this screenshot the Component
Tracker dialog in the lower right-hand corner has been used to highlight the ticket fTs; L;Kab; AgKbs

in
the second and third messages. Because of the highlighting it is significantly easier to follow the progress
of the ticket from the authentication server S to the client A and then to the server B.

As shown in Figure 3.6, the Component Tracker dialog is a modeless window that contains a drop-
down list of all the components specified in a protocol definition. Only components that are part of
the currently visible protocol specification appear in this drop-down list. Those belonging exclusively
to child or parent subprotocols are excluded. To highlight a given component, the user merely needs to
select it from the drop-down list and then place a check mark in the Highlight check-box. The foreground
and background colours used to highlight a component are user-definable and are set using the SPEAR II
Preference Dialog. While the Component Tracker is active, a user can still scroll through the High-
Level View canvas and explore any existing subprotocols. A component will only be highlighted if it
is contained within the current High-Level View message passing specification. If the component is not
visible because it is part of a truncated message, then it will not be highlighted. However, if a portion of
the text representing the component is visible, then that specific portion will be highlighted.



3.2.1 High-Level Protocol View 43

Figure 3.7: The tabbed-pane dialog used to configure communications settings.

3.2.1.9 Setting Protocol Properties

The ability to configure the communications settings of a protocol specification is essential for code
generation and selected performance analysis routines. For this reason we felt that it would be useful to
prototype an approach for incorporating the collection of these details within the SPEAR II Framework.
The Communications Settings dialog, shown in Figure 3.7, consists of four tabbed panes which are
used to specify communications settings for messages and principals, as well as default communications
settings for protocols. Because of the prototypical nature of this dialog, the input fields do not cover all
of the details that would be required for most code generation or performance analysis routines.

A list of all the protocols used in a specification is contained in the Protocol drop-down list of the
Messages pane. After selecting a protocol from this list, the Code Name drop-down list is initialized with
the names of all the messages in the selected protocol. The properties of a message that can currently be
modified are the transport protocol and port number. These two settings can either be defined explicitly
or specified manually in any generated source code after it has been created. A protocol engineer can
apply the settings specified in this pane to the currently selected message. Alternatively, he can associate
the subprotocol defaults or the root protocol defaults with this message.

The Principal pane allows a protocol engineer to define the communications settings associated with
a given principal role. A list of all the principal names defined in the specification is contained in the
Principal drop-down list. A principal’s address can be specified as an four-byte IP address, a domain
name or it can be relegated to being specified in any generated source code. If a principal changes its
name fromA toB, it obtains the settings that the B role defines. Furthermore, if principal A is duplicated
in the protocol specification, then changing the settings of one of these duplicates will also update A and
all of its duplicates to maintain consistency within the protocol specification.

The Defaults pane is used to specify the default message settings of the root protocol in a hierarchical
specification, as well as the default settings of each of the descendant subprotocols. These settings can
then be associated with individual messages in the Message pane. Using this approach allows us to
keep the settings for a group of messages in a protocol or subprotocol consistent, eliminating the need
to modify each message every time a global change needs to be made. Fields included in the Defaults
pane must be of such a nature that they can be common to a collection of messages. If the Message pane
were to include performance measurement fields for transmission timings and message sizes, then these
settings would not be included in the Defaults pane as they apply to individual messages.



44 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

Figure 3.8: The Component View and its associated pop-up menu.

3.2.2 Component View

While the High-Level View focuses on the external environment within which message exchanges take
place, the Component View has a much narrower scope, focusing primarily on the composition and
internal structure of messages in a protocol. Within the Component View dialog the internal structure of
a message is represented through the use of a hierarchical tree structure. This hierarchical tree can be
manipulated by using drag-and-drop operations or a pop-up menu associated with the Component View.
The sender and the receiver of a message, as well as the position of the message in its container protocol,
can also be modified by using the appropriate graphical controls provided within the Component View.
The Component View as implemented in the SPEAR II application is shown along with its associated
pop-up menu in Figure 3.8. The message displayed as a hierarchical tree is represented in conventional
cryptographic notation as S �! B: Ns; xor (H (Ns; A; Sbs); inc(Nb)); fSab; ha; hb; Sbsg+Kb

.
The public key +Kb is defined as a property of the public-key encryption node and is visible through
the use of tooltips which appear when hovering the mouse pointer over the encryption node. A flattened
representation of the entire message is displayed via a tooltip when hovering the mouse pointer over the
root node.

3.2.2.1 Using the Component View

Each node in the hierarchical tree represents an embedded message component. Now, to be able to
represent a message as a hierarchical structure, we must categorize these components into terminal and
non-terminal node types. Logically, we can think of cryptographic types such as hashes, encryptions and
functions as non-terminal nodes, since they all have to contain child nodes and cannot exist independently
of these. Components such as nonces, timestamps and keys would obviously be classified as terminal
nodes, since they cannot encapsulate other components but instead exist as independent entities. We have
defined thirteen primary component types and categorized them as follows:



3.2.2 Component View 45

� Non-terminal components include functions, hashes, symmetric encryptions and decryptions, public-
key encryptions, private-key encryptions and groups.

� Terminal components include nonces, timestamps, shared secrets, symmetric keys, public keys,
private keys and user-defined components.

Components can only be added to a non-terminal node. To add a component, the Component View pop-
up menu, shown in Figure 3.8, is used. When right-clicking on a non-terminal node, the Add submenu
item is enabled. This submenu contains the New and Existing submenus. When selecting the New
submenu a list of all the component types which can be inserted as child nodes are displayed. Selecting
one of these component types results in a node of the selected type being created and inserted into the
message tree as a child of the currently selected node. After insertion, the properties of the newly inserted
node can be edited by using the Properties command of Component View pop-up menu. There are two
ways to add a component that already exists in the specification to a non-terminal node:

� The first approach makes use of the Existing submenu nested within the Add submenu. The Ex-
isting submenu contains a list of all the terminal and non-terminal components that have been
defined in the current specification. These components are sorted by type and are extracted from
all of the protocols within the specification, thus facilitating the sharing of components between
subprotocols. Once a component is selected from the pop-up menu, it is inserted as a child of the
non-terminal component which was right-clicked. When inserting a non-terminal component, all
of the components anchored off it are copied and inserted as well.

� The other technique for copying components involves using the copy, cut and paste facilities pro-
vided by the Component View pop-up menu. To select a component, a user merely needs to
right-click on it and select Copy or Cut. Once a component is stored in the clipboard, the Paste
command is enabled and its execution will result in the stored component being added as a child to
the currently highlighted non-terminal node. A single clipboard is used to store all of the messages
and subprotocols in a specification, so items copied in one message, can be pasted into another
message in any subprotocol. When pasting a non-terminal node, all of the child nodes that were
anchored off it are also pasted in the process.

An important point to note is that when a component is copied, we merely insert a reference to the
location in memory that holds the data structures associated with the copied component. This approach
ensures that all duplicates of a component remain consistent, since all these duplicates point to the same
storage location in memory. Whenever a new component is added to a message, it is given a unique
identifier. For example, if a nonce is added to a message, it will initially be named N1. If this name
is retained, the next nonce that is added will be called N2, and so on. When editing the properties of a
component, it cannot be given the same name as any other component that exists in the specification, and
if an attempt is made to do so, an error message is generated.

The ability to change the order of components within a message is provided by the Component View
pop-up menu. The Order submenu has both Move Up and Move Down commands which can be used
to accomplish this task. The position of a component can also be modified by using the up and down
keyboard arrow keys in combination with a Shift key. To move components from one container to another,
drag-and-drop operations are used. For example, consider the hierarchical tree shown in Figure 3.8. To
move the component hb from the Public-Key Encryption Node into the Hash node, we merely drag the hb
node and then drop it on top of the Hash node. Linearly moving or dragging and dropping a non-terminal
node results in all of the components anchored off it being moved as well.



46 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

If a component is subordinate to an encrypted node, then its icon in the tree-view has a light-red cross
drawn through it. This marking helps individuals to quickly see whether a given component has been
enciphered, although it does not give any details regarding the strength or security of the cipher. All non-
terminal nodes can be expanded or collapsed. If a node is expanded, then all of its immediate children
are revealed. Collapsing hides all of a node’s children as well as their descendents from view. The
Expand All command on the Component View pop-up menu expands all of the descendent nodes of a
non-terminal so that all of their children are visible, not just the first level.

To modify the sender and the receiver of a message, the two drop-down lists in the Component View
are used. Each list contains the names of all of the principals involved in the current protocol displayed
in the High-Level View. The position of a message among the other messages and subprotocols in a
specification is modified by using the vertical slider control. The current position of the message is
displayed above the slider in a text box. No undo and redo facilities are available in the Component
View. If a user makes a mistake or later wishes to undo or redo an operation, he must make use of the
undo or redo feature provided by the High-Level View to undo or redo the message add or edit operation
facilitated by the Component View.

GYPSIE Type Icon GYPSIE Type Icon

Component Public-Key Encryption

Nonce Private-Key Encryption

Timestamp Group

Function Shared Secret

Hash Symmetric Key

Symmetric Encryption Public Key

Symmetric Decryption Private Key

Table 3.1: Icons used for representing cryptographic types in the GYPSIE environment.

3.2.2.2 Fundamental Component View Types

Each of the thirteen components used in the GYPSIE environment has its own iconic depiction, mod-
ifiable properties and exportable textual, LATEX and Prolog representations. The icons used in the hier-
archical tree to represent components are shown in Table 3.1. If any of these components is inside an
encryption, its icon has a red cross drawn through it. The thirteen Component View types have been
partitioned into six classes.

Class A: Nonces and Timestamps

Nonces and timestamps are used to determine the freshness of a message. Timestamps record when
a message was sent or constructed, while nonces are used in challenge-response exchanges to ensure
that a message is not a replay from a previous session. All nonces and timestamps have a mandatory
alphanumeric identifier which is used to distinguish them from each other. For example, the nonce Nab
has identifier ab, while the timestamp T1 has identifier 1. A unique integer identifier is automatically
associated with each new timestamp or nonce when it is added to a specification. Within a protocol
specification, two nonces or two timestamps cannot have the same identifier unless they are duplicates of
each other and reference the same data structures stored in memory.



3.2.2 Component View 47

(a) (b)

(d)(c)

Figure 3.9: Some dialogs used in the Component View.

The dialog used to edit a nonce’s properties is shown in Figure 3.9 (a). The Identification tab is used to
modify the identifier, while, the ASN.1 tag is used to define the structure of the nonce in Abstract Syntax
Notation One [77]. The ASN.1 tab is merely present for cosmetic purposes, as code generation is not
yet supported by the SPEAR II Framework. Any changes made to a nonce in this dialog, will affect all
of its duplicates, as the changes are applied to the region in memory storing the nonce’s data structures.
The timestamp properties dialog appears similar to the nonce properties dialog, and also includes the
Identification and ASN.1 tabbed panes.

Class B: Cryptographic Keys and Secrets

Shared secrets, symmetric keys, public keys and private keys all fall into this category. A shared secret is
kept private between a group of principals and, when necessary, used to identify a message or collection
of components as originating from a member of this closed group. For example, when encrypting com-
ponents with a public key, a shared secret can be included among the encrypted components to identify
the principal who enciphered the data. When a shared secret S is used as an identifier, as opposed to
being used as plain data, it is written as < S >. Cryptographic keys are used to perform transformations
on data which encipher or decipher it. Symmetric and private keys must be kept secret, while public
keys can be revealed to the world. These three key types can be included as stand-alone components in a
message, or they can be aggregated in non-terminal encryption nodes.

As in the case of nonces and timestamps, each of the components in this category is assigned a unique
identifier. A unique integer identifier is created when the component is first inserted into a message. This
identifier can be modified at a later stage by using the associated properties dialog. The properties dialog
for a shared secret is displayed in Figure 3.9 (b). This dialog is the same as that used for symmetric,
public and private keys except for one significant difference — it includes an extra tabbed pane called the
Functionality pane. The Functionality tabbed pane is used to indicate whether a shared secret is being
used as an identifier. The action of checking the embedded check-box only associates the shared secret
as an identifier within the encapsulating container. The check-box in this tabbed pane is active when the
shared secret is included in a hash, symmetric encryption or public key encryption and the corresponding
textual label reflects the type of this container node.



48 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

When a public or private key is inserted into a specification, the corresponding private or public key
partner is also created. Any data structures in memory pertaining to a public key reference the cor-
responding private key partner, and any private key data structures reference the corresponding public
key partner. This feature is pivotal for later analyses, as many protocol specifications make use of only
one asymmetric key and don’t define its partner in any of the protocol messages. For example, in the
Needham-Schroeder Public-Key Protocol [1], the following asymmetric keys are defined in the message
passing specification: +Kb, +Ka and �Ks. The corresponding public or private key is not mentioned
for any of these keys. Thus, it is imperative that we automatically create �Kb, �Ka and +Ks and make
sure that each public and private key references its partner, since protocol engineers may have to specify
properties about these missing keys in analyses that follow.

Class C: Other Terminal Components

If a terminal component does not fit into Class A or Class B, then it is considered to be a generic com-
ponent type. Components in this category could include principal identifiers, passwords, usernames or
any other data structure that would be used to represent information in a protocol message. The identifier
of a component in this class is its name. For example, in the encryption fA;Na;DatagKab

there are
two plain components, and their identifiers are A and Data respectively. Any two components in this
class cannot share the same name, unless they are both duplicates of the same component. The dialog
used to edit a plain component is structured in the same way as the one used to edit nonces, shown in
Figure 3.9 (a) and includes all of the same graphical interface components.

Class D: Functions and Hashes

Due to the lack of code generation facilities with which to interact, a function or hash node merely
operates as an anchor point for a collection of terminal nodes. With the current level of functionality,
function statements such as increment(Na; 1) and hash statements such as fH(Document; Ta)g�Ka

can all be defined. This level of functionality is sufficient for the aims set out in this dissertation, as
we merely require that all functions and hashes be representable. The properties dialog for a function
node allows one to set the name of the function. This name is known as the descriptor. Hashes do not
have an associated properties dialog, as every hash function has the same name. To distinguish between
functions with the same name and hashes used within the specification, a unique identifier is associated
with each function or hash. When copying a function or hash node, all of the child nodes are copied and
inserted into the hierarchical tree as well and the identifier of the resulting node stays the same. After
inserting a function or hash node into the hierarchical tree, a protocol engineer has to add components to
it, otherwise an error message will be generated if the node is left empty when closing the Component
View.

Class E: Cryptographic Transformations

A cryptographic transformation uses a symmetric, public or private key to encipher or decipher infor-
mation to be transmitted in a protocol message. There are four types of cryptographic transformations
that can be represented within the Component View. These are symmetric encryptions and decryptions,
public key encryptions and private key encryptions. When inserting an encryption or decryption node
into the hierarchical tree, a key is automatically associated with the node. For example, if a public key
encryption node is created, then a key named +K1 would automatically be created to serve as the key
used to carry out the encryption operation. An encryption or decryption node cannot be inserted into the
tree and left empty and an error message will be generated when closing the Component View if there
are any empty nodes which should have child nodes anchored off them. At present, protocol engineers
can only specify the key associated with a cryptographic transformation and an explanatory text string
called the descriptor.



3.2.2 Component View 49

The key used to carry out an encryption or decryption is aggregated within the cryptographic transforma-
tion node. This key can be renamed or even replaced with another key of the same type that already exists
in the protocol by using the properties dialog. Figure 3.9 (c) shows a symmetric encryption properties
dialog. The Keys tabbed pane has a drop-down list which contains a list of all the symmetric keys defined
within the protocol specification. A protocol engineer can use this drop-down list to select a new key or
she can use the Edit Key button to edit the properties of the currently selected key using the symmetric
key properties dialog. The identification tabbed pane contains a text box which can be used to edit the
descriptor of the node. This descriptor is displayed next to the node icon in the hierarchical tree. The
default descriptor text is the type of the encryption or decryption represented by the node. For exam-
ple, a public key encryption will have a default descriptor of ‘Public-Key Encryption’. Also associated
with each encryption and decryption node is a unique integer identifier used to distinguish the node from
others of the same type.

Class F: Component Collections

In some protocols a set of components may be grouped together and sent and received among principals
in unison. To cater for situations such as this, we have created a grouping non-terminal node which
can be used as a container for these components. To copy or move all of the components in a group, a
user merely needs to copy or move the grouping node. A descriptor can be associated with a group to
describe it in greater detail in the hierarchical tree. The default descriptor is the text, ‘Group’. Besides
the descriptor, a protocol engineer can also specify whether a group should have brackets surrounding it.
This property is useful when exporting the group to text or LATEX formats. The properties dialog for a
grouping node is shown in Figure 3.9 (d). As with all the other components, a unique integer identifier is
associated with each grouping node.

Class G: Message Tree Root

The message tree root is not a member of any of the six official component classes, and thus we have
included it within this extra seventh class. The main purpose of the message tree root is to serve as an
anchor point for all of the first-level components. The only modifiable property of a message tree root
is the code name of the message it represents. As we’ve already seen in the Communications Settings
dialog, shown in Figure 3.7, each message in the protocol has an associated code name that is used
to identify the message. The default code name for a message is ‘Message n’, where n is an integer
describing the vertical position at which the message was first inserted into a protocol. This code name
can be changed by using the message properties dialog which is accessible from the Properties item on
the Component View pop-up menu which appears when right-clicking on the message tree root.

3.2.2.3 Exporting Messages and Components

The GYPSIE environment has facilities that allow one to export a protocol specification to text, LATEX
or Prolog-compatible output. Exporting a protocol entails converting each individual component into
the correct format, concatenating these results into a message, appending the sender and the receiver,
and then incorporating the resulting output in the context of the overall protocol specification. Terminal
nodes are normally straight-forward to convert as they mostly require a token to be concatenated with
the component’s identifier. However, in the case of non-terminal nodes, there is usually a front and rear
portion of output to create, all the embedded components being inserted between these two pieces. In the
list that follows, we show the text and LATEX representations for each of the Component View types. The
Prolog representation has been excluded from this list and is described in Chapter 5.



50 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

GYPSIE Component Text LATEX
Generic component named X X X

Nonce with identifier i Ni Ni

Timestamp with identifier j Tj Tj
Function with arguments X and Y named F F(X, Y) F (X;Y )
Hash of X concatenated with Y H(X, Y) H(X;Y )

Symmetric encryption of X with key K E(K : X) fXgK
Symmetric decryption of X with key K D(K : X) fXg�1K
Public key encryption of X with key +K E(+K : X) fXg+K
Private key encryption of X with key �K E(-K : X) fXg�K
Shared secret S being used as an identifier <S> < S >

Symmetric key with identifier ij Kij Kij

Public key with identifier i +Ki +Ki

Private key with identifier i -Ki �Ki

In this list we have shown how the LATEX output will appear once it has been parsed. The actual LATEX
output consists of the textual mark-up codes. The plain textual representation of components is used
in tooltips since it is easy to display and does not contain any subscripts. The textual notation used
to represent cryptographic transformations has been taken from [23]. A protocol specification can be
exported and saved to a file on disk, or alternatively it can be viewed in a dialog containing a text edit
box. When exporting a protocol specification, messages are indented appropriately to indicate their
membership of subprotocols. Any messages belonging to a subprotocol are clearly marked.

3.2.3 Navigator View

The aim of the Navigator View is to provide a protocol engineer with a concise overview of the structure
and contents of a protocol specification. A tree-view with expandable and collapsible nodes is used to
represent a protocol and to give an indication of the principals, messages and subprotocols that have been
defined. Consider the protocol specification shown in Figure 3.10. The Navigator View is the window
pane on the left of the screen-shot. From this Navigator View we can discern the following facts:

� Meaningless Protocol contains three principals (Lana, Billy and Alice), three messages (Initializa-
tion, Exchange and Goodbye) and two subprotocols (John’s Subprotocol and Mike’s Subprotocol).

� John’s Subprotocol contains three principals (Billy, Alice and Fred) and two messages (Authenti-
cate and Drop).

� Mike’s Subprotocol contains four principals (Lana, Billy, Derek and Fred) and three messages
(Welcome, Transmit and Close).

Besides providing an overview of a protocol’s composition, the Navigator View also functions as an
alternative means through which High-Level View functionality can be accessed. When clicking on
nodes in the tree-view, pop-up menus in accordance with the selected node’s type are displayed, allowing
a subset of operations provided by the High-Level View to be conducted. The Navigator View can
also be used to import principals and messages into the protocol currently being edited and to explore
the subprotocols defined in a specification. Tooltips displaying the contents of a message appear when
hovering over the message’s code name in the Navigator tree-view.



3.2.3 Navigator View 51

(b)

(a)

(d)

(c)

Figure 3.10: The Navigator View and associated pop-up menus.

The pop-up menus used in conjunction with the Navigator View are very similar to those used within
the High-Level View. Figure 3.10 contains all four of the pop-up menus used in the Navigator interface.
Pop-up menus (b) – (d) are invoked when clicking on a message node, principal node or subprotocol node
respectively, while pop-up menu (a) appears when right-clicking on the root node of the tree-view. In
pop-up menu (b) the first three commands are shared with the High-Level View message pop-up menu,
in (c) the first two commands are shared with the High-Level View principal pop-up menu, while (d)
shares the first three commands with the High-Level View subprotocol pop-up menu. The remaining
commands are used to navigate through a subprotocol hierarchy and expand tree-view nodes.

In each of the pop-up menus, the Go to Container Protocol command makes the subprotocol of which
the selected message, principal or subprotocol is a member the active one in the High-Level View. This
means that a protocol engineer can have direct access to a subprotocol and he does not have to navigate
to a given subprotocol by repeatedly using the Explore command from a subprotocol pop-up menu. The
Expand All command recursively expands each of the tree-view nodes anchored off a selected node until
all of the descendant nodes have revealed their children. Individually expanding or collapsing a node
is accomplished by clicking the box-like token to the left of a node. Pop-up menu items are dimmed
and rendered inactive if a command is unavailable or the subprotocol which is the target of a navigation
command is already being edited in the High-Level View.

Tight integration between the Navigator and High-Level Views allows a user to copy principals and
messages between subprotocols. To copy a principal into a subprotocol being edited in the High-Level
View, one merely needs to drag the principal node from the Navigator View tree onto the High-Level
View canvas. A principal axis will then be inserted at the point where the dragging operation ended.
Similarly, copying a message merely involves dragging the message node from the Navigator tree-view
onto the High-Level View canvas. The message will be inserted at the point where the dragging operation
ended. When copying a message, the sender and the receiver are added to the target protocol if they are
not already members thereof. The components inside the message are all duplicated so that they still
reference the same data structures in memory as the source components.



52 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

If a principal already exists in a protocol, then another principal with the same name cannot be copied
into the protocol and the copy feature of the Navigator View will not allow the drop operation to proceed.
However, if a message that is being copied already exists in the target protocol, then it is merely dupli-
cated and its code name has a dash appended after the last character. This duplication operation is exactly
the same as that provided by the High-Level View message pop-up menu. Subprotocols cannot be copied
into a protocol. Instead, to copy a subprotocol a user merely needs to add a new subprotocol, explore
it, and then load the subprotocol file. The GYPSIE environment ensures that two or more subprotocols
that stem from the same source file stay synchronized. A further example of the integration between
the Navigator and High-Level Views is seen when right-clicking on a principal, message or subprotocol
object on the High-Level View canvas. This act of selecting a canvas object results in a triangular pointer
icon being displayed next to the message, principal or subprotocol tree-view node in the Navigator View.
If the node is not visible, then all of its ancestors are expanded to reveal it.

3.3 Calculating Message Rounds

When constructing security protocols, most designers would like to have an indication of how optimal
their protocols are with respect to standard, well-known performance metrics. In [35] Li Gong describes
research that he conducted regarding the minimum number of rounds, messages and encryptions required
for selected classes of network authentication protocols. To extend the SPEAR II Framework and make
it more useful for designers wanting to obtain performance measurements, we decided to construct a
protocol rounds analyzer to work in tandem with the GYPSIE environment. We chose to calculate the
message rounds metric as we wanted to build on and extend research gathered during the construction
of the original SPEAR application [6]. By using the rounds analyzer in conjunction with the principles
presented in Gong’s paper, a protocol engineer can determine how close a given protocol is to being
optimal with respect to the number of rounds it employs.

As in [35], we make the assumption that the network on which protocol messages are exchanged is
uniformly connected so that a message always travels from a source node to destination node in one unit
of time, irrespective of the location of the sender and the receiver. The computation time at each node is
neglected. One protocol round consists of all of the messages which can be sent and received in parallel
within one time unit. Thus, it is possible for a principal to send different messages to more than one
principal during a round. The number of rounds in a protocol is the number of time units that elapse from
the instant that an originator sends the first message in the protocol to the instant that the last message
is received. When calculating protocol rounds, we make a distinction between synchronous rounds and
optimal rounds. The original SPEAR tool could only calculate synchronous message rounds.

When carrying out optimal rounds calculations, our only restriction is that a principal needs to possess
all of the information contained in a message before it is transmitted. This information must have been
received in a previous round. Any messages transmitted can be sent asynchronously. However, in the case
of synchronous rounds calculations, we assume that only synchronous communication can take place
between principals. Thus, a particular entity cannot send and receive messages asynchronously and the
transmission of these messages has to progress in a sequential fashion. A reason for using synchronous
rounds calculations is that there are situations where subtle side-effects of previous message receptions
may affect the following messages or one may not want to progress further without receiving some kind
of acknowledgment of reception. Synchronous rounds calculations always yield a value greater than or
equal to that obtained when using the optimal rounds calculation technique on the same protocol.



3.3 Calculating Message Rounds 53

Message message;
StringList receiversInRound;
Map messagesInRounds;
Integer round = 1;

for i = 1 to getMessageCount() {
message = getMessage(i);

if (receiversInRound.contains(message.getSender())) {
round = round + 1;
receiversInRound.clear();

}

receiversInRound.add(message.getReceiver());
messagesInRound[round].add(message);

}

Figure 3.11: C++-style pseudocode for determining the synchronous rounds in a protocol.

In Figure 3.11 we have listed C++-style pseudocode to describe how the synchronous rounds for a set
of protocol messages can be determined. This algorithm groups together all of the messages that belong
to the same synchronous round. The messages in round n are placed into the list denoted by the map
structure messagesInRound[n]. The basic principle underlying synchronous round calculations is
that no principal who has received a message in a given synchronous round can send another message in
the same round. In Figure 3.12 similar C++-style code for generating the optimal message rounds for a
protocol is described. The basis behind this algorithm is that a principal cannot send a component in a
message round if it has not received that component in a previous round. If a principal sends a component
which it has received in the current round, then the rounds counter, named rounds, is incremented and
the message and all the ones following thereafter become part of one of the subsequent rounds. As can
be seen from the pseudocode, the implementation of optimal rounds checking requires a lot more effort
and, most importantly, the ability to examine the components transmitted within messages. Also, notice
that the optimal rounds algorithm determines the initial possessions of every principal involved in the
protocol using the getInitialPossessions() function call. To illustrate the difference between
synchronous and optimal rounds calculations, consider the protocol that follows [35]:

(1) A �! S : A;B

(2) S �! A : fS;A;A;Kab; B; TsgKas

(3) S �! B : fS;B;A;Kab; B; TsgKbs

(4) A �! B : fA;B; TagKab

(5) B �! A : fB;A; TbgKab

Optimal Rounds: f1g, f2, 3g, f4, 5g
Synchronous Rounds: f1g, f2, 3g, f4g, f5g

This protocol consists of three optimal rounds and four synchronous rounds. It is easy to see that mes-
sage (1) must proceed before any of the others can, thus constituting the first round. The second round
consists of messages (2) and (3) since the server S doesn’t receive any new information between these
two messages. However, messages (4) and (5) cannot proceed because the shared key Kab hasn’t been
received yet. Now, the third optimal round consists of messages (4) and (5). This is not as obvious as the



54 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

Message message;
StringList receiversInRound;
Map messagesInRounds, receivedInProtocol, receivedInRound;
List componentList;
String principal, sender, receiver;
Integer round = 1;

for i = 1 to getPrincipalCount() {
principal = getPrincipal(i);
getInitialPossessions(principal, receivedInProtocol[principal]);

}

for i = 1 to getMessageCount() {
message = getMessage(i);
receiver = message.getReceiver();
sender = message.getSender();

if (receiversInRound.contains(sender) {
componentList = receivedInRound[sender];
for j = 1 to componentList.count {

if (message.contains(componentList[j])){
if not(receivedInProtocol[sender].contains(componentList[j]))){

round = round + 1;
for k = 1 to receiversInRound.count {

principal = receiversInRound[k];
receivedInProtocol[principal].add(receivedInRound[principal]);

}
receiversInRound.clear();
receivedInRound.clear();
break;

}
}

}
}

receiversInRound.add(receiver);
messagesInRounds[round].add(message);
componentList = message.getContents();
for j = 1 to componentList.count {

receivedInRound[receiver].add(componentList[j]);
}

}

Figure 3.12: Pseudocode for determining the optimal rounds in a protocol.

above rounds since it appears that B first receives a message and then sends a message. The subtle thing
to notice is that message (5) does not rely on any information received from message (4) and therefore
it can be sent simultaneously with message (4). However, there are four synchronous message rounds in
the protocol. This is because it is assumed that some side-effects can take place between message (4) and
(5), therefore disallowing their concatenation into a single round. Now, consider the following protocol:



3.4 Experiments with the GYPSIE Environment 55

(1) A �! B : N1; N2

(2) B �! A : fN1gKab

(3) A �! B : N3

(4) B �! A : H(N2; N4)

Optimal Rounds: f1g, f2, 3, 4g
Synchronous Rounds: f1g, f2g, f3g, f4g

This protocol is not useful to any extent and serves more to illustrate the differences between optimal
and synchronous rounds calculations. When performing the relevant calculations, we end up with two
optimal rounds and four synchronous rounds. The reason why there are so many synchronous rounds
is because the protocol alternates between two principals and each principal can only send a message
after it has received the previous message. On the other hand, the optimal rounds calculation takes into
consideration the fact that when transmitting the last three messages, the senders both already possess
the items to be transmitted, and thus they do not need to wait for these components to be received in a
prior message and can instead just broadcast all three of these messages simultaneously.

To perform rounds calculations in SPEAR II, the Performance pull-down menu is used to reveal the
Calculate Synchronous Rounds and Calculate Optimal Rounds commands. Upon initiating one of these
commands, the relevant calculations are conducted and a dialog box is displayed containing the details of
the rounds computation. The dialog contains the number of rounds and also lists the messages involved
in each of these. Besides rounds calculations, we also foresee more performance measurement functions
being added to this menu. Such functions could work in tandem with code-generation routines to carry
out simulations and gather timing information, or they could compute more stand-alone metrics like the
rounds calculations which we have implemented.

3.4 Experiments with the GYPSIE Environment

In order to obtain an indication of how protocol engineers will interact with the GYPSIE design en-
vironment, we decided to conduct a number of user experiments. These experiments were essentially
structured as a series of case studies and allowed us to examine how individuals made use of the system,
the time they took to create protocol specifications, and the accuracy with which they completed these
specifications. All twenty participants who took part in the experiments were Computer Science ma-
jors who had recently completed a fourth-year network and internetwork security course which included
cryptographic protocol design principles as part of the curriculum. As such, this sample of individu-
als represented a collection of users who are reasonably likely to make use of a system similar to the
SPEAR II Framework at some point within their chosen profession.

The experiments which we developed required users to construct three cryptographic protocols, answer
questions about a specification and manipulate an existing protocol in the High-Level View. Users were
asked to input a voting protocol [33], an authentication protocol which we had devised, and a modified
version of the Needham-Schroeder protocol [33] using GYPSIE. A screen-shot of the Navigator and
High-Level Views was used to test how much information about a protocol’s structure and composition
users could gather from these two environments. Finally, the participants were asked to modify and
manipulate a model of the Kerberos protocol in the High-Level View. Besides helping us to determine
how users interacted with the design environment, the experiments also gave each of the participants an
opportunity to exercise the GYPSIE environment and test the system for any latent bugs. The experiments
test sheet can be found in Appendix C.



56 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

GYPSIE Type Voting Protocol Authentication Protocol Needham-Schroeder
Generic Components 5 2 8
Nonces 4 5 10
Functions 0 0 1
Hashes 2 0 0
Public Key Encryptions 0 1 0
Private Key Encryptions 0 1 0
Symmetric Encryptions 0 2 7
Asymmetric Keys 0 2 0
Symmetric Keys 0 3 8
Shared Secrets 2 0 0
Principals 2 2 3
Messages 3 3 7

Table 3.2: The distribution of cryptographic types in the protocols specified in the experiments.

Table 3.2 describes how the component types were distributed among the voting, authentication and
Needham-Schroeder protocols. When examining this table we notice that the voting protocol does not
contain any encryption nodes, but instead uses only hashes to group components. An important point to
keep in mind is that the shared secrets used in the voting protocol are both used as identifiers and not
as data. Both the authentication and Needham-Schroeder protocols contain encryption nodes. However,
the Needham-Schroeder protocol only uses conventional encryption, while the authentication protocol
uses both conventional and public-key encryption. None of the protocols which the participants had to
specify contained subprotocols. However, the model comprehension portion of the experiment, which
employed the use of a screen-shot containing the Navigator and High-Level Views, included a subproto-
col hierarchy. Participants were asked to examine this hierarchy and then answer questions related to the
principals, messages and subprotocols contained therein.

Construction Time Number of Errors
95% Confidence 95% Confidence

Sample Interval for Sample Interval for
Protocol Mean Population Mean Min Max Mean Population Mean

Voting Protocol 300s (258s, 348s) 173s 450s 0.65 (0.10, 1.26)
Authentication Protocol 378s (306s, 459s) 214s 673s 0.20 (-0.23, 0.68)
Needham-Schroeder 589s (518s, 669s) 400s 958s 0.60 (0.15, 1.11)

Table 3.3: Results of tests pertaining to GYPSIE protocol construction.

The time that each of the participants took to construct the voting, authentication and Needham-Schroeder
protocols using GYPSIE was recorded. Each of their specifications was also saved to disk and the num-
ber of errors that had been made while modelling the protocol was recorded. Errors that we checked for
included incorrect subscripts, encryption types and component types and improper ordering of compo-
nents. The model comprehension questions were answered on the question sheet and marked afterwards,
while the manipulation questions were answered by the participants physically demonstrating the re-
quired tasks. None of the participants had ever used SPEAR II before and as a result each of them was
given a brief introduction to the system before proceeding with any of the questions. The results ob-
tained from the protocol construction experiments are listed in Table 3.3 and a set of graphs detailing the
construction times and errors for each individual user is shown in Figure 3.13.



3.4 Experiments with the GYPSIE Environment 57

Voting Protocol Timings and Errors

0 200 400 600 800 1000

1

4

7

10

13

16

19

P
a

rt
ic

ip
a

n
ts

Time in Seconds
(Dots indicate errors)

Authentication Protocol Timings and Errors

0 200 400 600 800 1000

1

4

7

10

13

16

19

P
a

rt
ic

ip
a

n
ts

Time in Seconds
(Dots indicate errors)

Needham-Schroeder Protocol Timings and Errors

0 200 400 600 800 1000

1

4

7

10

13

16

19

P
a

rt
ic

ip
a

n
ts

Time in Seconds

(Dots indicate errors)

Overall Construction Times

0 500 1000 1500 2000

1

4

7

10

13

16

19
P

a
rt

ic
ip

a
n

ts

Time in Seconds

Figure 3.13: Time taken and number of mistakes made when participants specified protocols.

The timing and error results that we recorded essentially function as a benchmark at this point. It was
difficult to obtain access to other protocol design environments, and for those we did have access to,
training people to use them and then testing them in this area would not have been a simple task and would
have consumed more time and finances than we had available. Also, subtle differences in how these
design environments work would have made any comparisons a non-trivial task. For example, different
design environments define a complete protocol specification in different ways and thus require differing
amounts of information to be supplied before a specification can be concluded. Thus, a simplistic design
environment might allow a protocol engineer to quickly specify a protocol, but the resulting specification
might not be very comprehensive. On the other hand, a more advanced environment might take longer
to use, but the resulting specification could well be more extensive and useful. In effect, what we have
done is to set a standard that other design environments similar to GYPSIE can be compared against. In
Table 3.3 the mean, minimum and maximum construction times for each protocol are listed. From the
data we calculated the 95% confidence interval indicating where the population mean for the construction
time should lie. We also calculated the mean number of errors committed per protocol and the 95%
confidence interval for this population mean. In Figure 3.13 the number of dots to the right of each bar
indicate the number of errors made during the time that the protocol in question was being constructed.



58 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

When examining the graphs in Figure 3.13, we notice that the construction times are widely distributed.
Glancing at Table 3.3 reveals that the difference between the minimum and maximum times for the vot-
ing, authentication and Needham-Schroeder protocols is four minutes and 37 seconds, seven minutes and
39 seconds, and nine minutes and 18 seconds respectively. These differences are quite large, considering
that the mean construction time for these protocols are five minutes, six minutes and 18 seconds, and
nine minutes and 49 seconds respectively. This spread of construction times can probably attributed to
the differing degrees of cryptographic knowledge possessed by each of the participants. Those with less
understanding of cryptographic protocol design principles will struggle more when using GYPSIE, and
as a result their times would most likely be lower than those of more knowledgeable individuals. Another
factor influencing construction times could be the fact that some people are just more proficient at using
graphical interfaces and able to use them more naturally. In fact, during the course of the experiments
we noticed that certain individuals did not seem to familiarize themselves with the environment that eas-
ily, while others immediately mastered the three views and were able to construct protocols accurately
and efficiently. Another factor to consider is that individuals sometimes decide to favour accuracy at
the expense of time and thus take longer to complete a specification. Others consider time to be more
significant and rush to finish quickly, sometimes making mistakes in the process.

An interesting metric to examine is the mean time taken to specify each component in a protocol. For
the voting, authentication and Needham-Schroeder protocols a given component takes on average 27
seconds, 23 seconds and 17 seconds to specify respectively. Notice that the trend is one of decreasing
time. This could be due to individuals becoming more proficient at using the GYPSIE environment as
time increases, resulting in them being able to specify components more quickly. Another explanation is
that in certain cases, as protocols become more complex, there is usually a larger degree of component
repetition and as a result, components are added using the copy and paste or Add Existing feature of
the Component View, resulting in reduced insertion times. The population mean interval computed
from the construction times help to view the results we obtained in context. When looking at the 95%
confidence intervals we notice that on average individuals will specify a given security protocol within
a very reasonable amount of time. In fact, an average individual within our target population will take
in the order of six minutes, eight minutes and eleven minutes to specify the voting, authentication and
Needham-Schroeder protocols respectively.

For each protocol specification the mean number of errors that an average individual within our target
population will commit is at most one for the voting and Needham-Schroeder protocols, and a fractional
value below one for the authentication protocol. Out of all sixty protocol specifications that were con-
structed, forty-five of these were completely error free. Ten of the participants committed errors when
specifying the protocols. Five of these individuals made an error in two protocol specifications, while
the remaining five only made an error in one protocol. The ten participants who did not create flawless
specifications committed an average of 2.7 errors each while constructing the three protocols. Three
individuals specified incomplete or incorrect subscripts, resulting in a total of seven incorrect subscripts.
In the case of the voting protocol, two individuals forgot or did not know how to specify the fact that
a shared secret was being used as an identifier and not as mere data. Another error committed by three
participants was the use of incorrect component types — for example, using a generic component instead
of a nonce and then naming it ‘Na’ or something similar. Seven of the participants struggled to determine
which message components should be generic component types or more specialized components, how-
ever, four of them ended up making the right decision. With regard to transcription errors, six individuals
placed components in the incorrect location or left components out of a message.



3.4 Experiments with the GYPSIE Environment 59

Four of the participants specified incorrect message senders or receivers. A contributing factor to these
errors could have been that these individuals were not totally comfortable with the sender and receiver
notation of the High-Level View. We noticed that to ensure that the senders and receivers were correct
some individuals used the Component View or viewed a protocol specification as text. However, when
manipulating the Kerberos protocol, all of the participants managed to correctly change the sender and
receiver of a message using High-Level View drag-and-drop operations. To an extent, the stress factor
associated with constructing a protocol specification sometimes forces individuals to overlook correctly
setting a message’s sender and receiver as they tend to get caught up in creating the actual structure and
embedded components of a message. This stress also affects their ability to accurately validate a protocol
specification. On at least one occasion the errors which an individual had made were fairly blatant and
clearly visible, yet he did not even notice or attempt to correct them.

Approximately four of the participants struggled to create encryption nodes. Instead of inserting an
encryption node into the specification, they inserted the corresponding cryptographic key and then tried to
add the encrypted components to it. Of course, this did not work as key nodes are all terminal. However,
these users eventually figured out how to create encryptions by experimenting with the interface, although
it did incur a time penalty. The fact that these individuals had difficultly creating encryptions is difficult to
understand, as everyone was shown how to create encryptions during the SPEAR II introduction prior to
the experiment. Also, the commands to add encryption nodes are clearly visible in the Component View
Add New pop-up menu. However, because the encryption node text in the tree-view does not plainly
display the key associated with an encryption, users might feel that an encryption is not actually being
represented as they cannot immediately associate a public, private or symmetric key with the node. On
the other hand, we did notice that most of the participants made use of the Component View tooltips to
determine the key associated with an encryption node.

During the construction of the voting, authentication and Needham-Schroeder protocols we were able
to observe how individuals made use of the Component View. In general we found that once users had
become acquainted with the various terminal and non-terminal node types, they were able to modify
message contents with ease. As we have already mentioned, the types that posed the most difficulties
were the encryptions. No significant problems were encountered with hash and function nodes, although
one individual created a function instead of a hash and then renamed this function to ‘H’ to make it
appear as a hash. To reorder components some individuals first tried to use drag-and-drop operations and
only when this did not work did they realize that there was a Move command on the Component View
pop-up menu. One individual went so far as to delete all of the message components when he discovered
that they were in the incorrect order. He then re-inserted all of these components in the correct order.

The model comprehension portion of the question sheet presented users with a screen-shot of the Naviga-
tor and High-Level Views which they had to answer questions about. Essentially, what we were testing
in this section was how easily individuals would make use of the information contained in these two
views and how well they could understand and apply it. Of the twenty participants, only three answered
questions incorrectly in this section. In fact, most of the participants were able to easily make use of the
Navigator tree-view in conjunction with the High-Level View and deduce facts about the sample proto-
col. During the SPEAR II introduction prior to each experiment, we explained to all of the participants
the meaning of the translucent subprotocol bodies which appear above the axes of principals involved in a
subprotocol. When asked to determine which principals the currently displayed protocol had in common
with a direct child subprotocol, eleven out of the nineteen participants that answered correctly indicated
that they had determined this information by searching for translucent axes in the High-Level View. The
remaining eight used the Navigator View and compared the principal names in the Principals category
of each protocol.



60 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

All of the participants were able to correctly manipulate the Kerberos protocol as required by the High-
Level View manipulation questions. However, approximately six individuals took some time before
realizing that the cross-hair in the center of a dragged message must be placed on a principal axis before
a drop is considered valid. Instead, these individuals tried to reorder messages and change senders
and receivers by dragging and dropping message objects in the vicinity of their new position. Of the
twenty participants, three hesitated when having to decide which message boxes represented the sender
and the receiver, but they all eventually arrived at the correct solution, changing senders and receivers
appropriately. We had explained to the participants how to move messages and change senders and
receivers prior to the experiment. However, it seems as though these individuals had forgotten this
information or were not concentrating during the explanation. Another factor could be that we just
explained too much information too quickly during the SPEAR II introduction, not giving them enough
time to absorb it all. All of the participants were able to edit message contents and principal names. One
individual even used the Navigator message pop-up menu to bring the Component View to the foreground
so that he could edit a message.

The GYPSIE environment was created to facilitate the modelling of security protocols. However, as
with most tools, a user should have an understanding of the underlying theory that the tool implements
in order to make effective use thereof. The GYPSIE environment is not of much use to someone who
has little or no understanding of security protocol design concepts. The individuals who took part in
this evaluation had all attended a one semester security course that included protocol engineering as
part of the curriculum. However, because of the differing levels of skill and knowledge possessed by
each of these participants, the time taken to construct protocols in GYPSIE varied, quite remarkably
in some cases. A positive point to note was that everyone managed to complete three diverse protocol
specifications in a reasonable amount of time, each specification being completed in under ten minutes
on average. The error level was also relatively low, with 75% of the specifications produced being totally
error-free. As with any tool, effectiveness and productivity increases with familiarity. However, in this
situation none of the participants had even used SPEAR II before, yet they were still able to complete
all of the tasks set before them. With these facts in mind, and judging from the results obtained, we feel
that the GYPSIE environment will be able to simplify, enable and facilitate the construction of accurate
protocol specifications when used by cryptographic protocol engineers.

3.5 Implementation Details

An object-orientated approach was employed when creating the GYPSIE environment in order to facil-
itate expansion and understanding of the source code. GYPSIE itself consists of approximately 18000
lines of source code and was written using the Borland C++ Builder package which significantly aids
in the creation of event-driven Windows applications. In essence, the GYPSIE framework provides a
mechanism through which a protocol and its associated messages can be defined. API calls allow built-in
SPEAR II modules, such as the rounds calculator and Visual GNY environment, to access this design
information and use it for further protocol engineering tasks. These API calls can also be tailored to
package and export the information stored in GYPSIE so that it can serve as input to applications which
form part of the SPEAR II Framework and are executed using system calls. An example of such an ap-
plication is the Prolog-based GNY analyzer, known as GYNGER. Thus, the GYPSIE API facilitates the
retrieval and manipulation of specifications created in the High-Level and Component Views by external
and built-in protocol engineering modules. Besides these functions, the API also handles tasks such as
drawing the canvas, saving and loading specifications, and controlling interaction with the user.



3.5.1 Class Hierarchy 61

0..1

Payload

BarrenPayloadFertilePayload

RGCObj

InformationPayload

FunctionPayload HashPayload

SymDecryptionPayloadPubEncryptionPayload

SymEncryptionPayload

SecretsList

ASN1Payload

NoncePayload TimestampPayload SharedSecretPayload

PrivKeyPayload PubKeyPayload ComponentPayload

PrivEncryptionPayload

DesignController

Clipboard

History Tracker

PreferencesPrincipal

SymKeyPayload

FloaterDeleteTracker

SubprotocolAddTracker

PrincipalMoveTracker

SubprotocolEditTracker

PrincipalAddTracker

PrincipalEditTracker

MessageDuplicateTracker

PrincipalDeleteTracker

MessageAddTracker

MessageActionsTrackerFloaterMoveTracker

MessageEditTracker

TPaintBox

MessageTreeNodeSubprotocol Message

Floater

0..*

0..*

GroupPayload

Preamble Navigator

PrincipalSettingsStore

IndividualPrincipalSettings

IndexedPayload

1 1 1

10..* 1

1

0..*

0..4
1

11

1

1

1

1

1

0..*

10..1

1

Figure 3.14: Diagram of selected classes used in the GYPSIE implementation.

3.5.1 Class Hierarchy

The GYPSIE class hierarchy consists of approximately 59 classes, 49 of which are illustrated in Fig-
ure 3.14. These classes can be divided into four broad categories. There are 21 classes which are used
for storing and modifying message components, each component type ultimately being represented by a
separate class. Another two classes are used for representing the structure of a message by means of a
sibling-child tree approach and loading stored messages from file. Four classes are used to store, render
and manipulate message, principal and subprotocol High-Level View components which appear on the
design canvas. Finally, 22 classes are used to store and manage protocol designs, interact with the user
and control GYPSIE sessions.

3.5.1.1 Storing Message Components

All of the classes used to represent message components inherit attributes and behaviour from the top-
level Payload class. There are two primary types of message components. The FertilePayload
class represents those classes which can contain child components. Payloads in this class include hashes,
encryptions and functions. On the other hand, message components which are terminal inherit from
the BarrenPayload class. At present, all of the BarrenPayload classes also inherit from the
ASN1Payload class, which is a direct descendant of BarrenPayload. The Payload class is a de-
scendant of the RGCObj class. This class is used to implement reference count-based garbage collection
in C++ and is critical for memory management within the SPEAR II environment. In order to enable the



62 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

Standard Tree Representation

First
Child

First
Child

Right Sibling Right Sibling

Sibling−Child Representation

Parent

Parent

Parent

Parent

Left SiblingLeft Sibling
A

A;B; fNagK

B fNagK

Na

A;B; fNagK

A

B

fNagK

Na

Figure 3.15: Two ways of representing message contents.

use of identifying secrets within public key encryptions, hashes and symmetric encryptions, all of these
components inherit functionality from the SecretsList class. This class contains a list of shared se-
crets that are used as identifiers within the encapsulating containers. Thus, to determine whether a shared
secret is being used as an identifier within a suitable container, we merely need to check if it appears in
this list. All of the encryption components aggregate a cryptographic key of the appropriate type. The
public and private key types both contain a reference that points to the corresponding partner key. This
allows the identifiers of both keys to stay in synchronization and it also ensures that a public or private
key does not appear in isolation in a specification. The InformationPayload class is used to store
a message’s code name and is associated with the root node of a message.

3.5.1.2 High-Level View Objects

In the class hierarchy which we have developed, messages and subprotocols are represented by the Mes-
sage and Subprotocol classes respectively. Both of these classes are derived from the Floater
class. This generalization allows one to manipulate message and subprotocol objects displayed on the
design canvas more easily, as they can be treated identically for certain operations, such as deletion and
reordering. Deriving messages and subprotocols from a single base class also makes the storage and
manipulation of these components within a linked-list much easier. To aid in identifying message and
subprotocol objects, the Floater base class contains virtual methods that return a derived object’s
type. Every Message object contains a MessageTreeNode object that contains all of the compo-
nents stored in the message. Each subprotocol contains a DesignController object, which contains
all of the information related to the subprotocol being included in the protocol.

Each principal is represented by a Principal object. Objects in this class contain a text string rep-
resenting the principal’s name as well as a reference to the list of messages and subprotocols which is
stored in the DesignController associated with the protocol. Thus, Principal objects can di-
rectly manipulate and access messages in a protocol specification. A situation in which this is useful
is when a Principal object changes its name and then modifies the sender and receiver names of
messages which it originates or receives. This aggregation also allows Principal objects to be given
the responsibility of rendering their own messages. The Message, Subprotocol and Principal
classes all have methods that allow them to be rendered to a given canvas. The rendering style can ei-
ther be normal, in which case the colours specified in the SPEAR II Preferences Dialog will be used.
Otherwise, an XORed representation can be generated at a predefined location on the canvas.



3.5.1 Class Hierarchy 63

3.5.1.3 Representing the Structure of a Message

While the actual contents of a given component is saved within an individual Payload class, the struc-
ture of a message is stored by a collection of MessageTreeNode classes. The MessageTreeNode
class effectively provides a mechanism for representing the structure of a message through through the
use of a sibling-child tree approach (see Figure 3.15). Pointers within a given MessageTreeNode are
used to reference the parent, left sibling, right sibling and first child of a given node. Because of this rep-
resentation technique, the contents of a message can be treated as a binary tree and manipulated as such.
Within the MessageTreeNode class, methods are provided to extract information, manipulate nodes
and link the tree to the tree-view contained within the Component View. Every MessageTreeNode
contains a class derived from the Payload class. This class contains all of the details pertaining to the
component represented by the tree node. Thus, when querying or manipulating a MessageTreeNode,
the underlying Payload class is actually being viewed or modified. The IndexedPayload class
is used when loading a saved specification from disk and contains an integer index, a Payload and a
possible MessageTreeNode that references a component’s parent node.

3.5.1.4 Managing Protocol Design

The DesignController class is the central controller and storage repository within a protocol spec-
ification. For every protocol present in a specification, there exists one DesignController object
wherein the protocol messages, principals and further subprotocols are embedded. Most of the API calls
in GYPSIE are in fact methods of the DesignController class. The DesignController class
encapsulates a number of important classes. The Preamble class is used to store protocol properties
and principal settings. This information includes details such as comments, default communications
ports, transport protocols and the IP addresses of principals. Settings pertaining to individual messages
are stored in Message objects. Principal settings are stored in IndividualPrincipalSettings
objects which are contained in a PrincipalSettingsStore embedded in a Preamble object.
This approach is used to ensure that principal settings remain consistent across subprotocols included
in the same specification. When modifying the settings of any principal, the root protocol Design-
Controller has its Preamble object updated, since all of the principal settings are stored in the
PrincipalSettingsStore embedded in the root Preamble object.

The Preferences class stores user settings specified in the SPEAR II Preferences Dialog. Settings
within this class specify details such as the colours to be used when drawing canvas components, the style
in which a dragged component is drawn, save paths and tooltip activation settings. The Preferences
object is loaded from an initialization file stored on disk. If this file is not present, then default settings are
used. All DesignController objects reference the same Preferences object. A Clipboard
object is shared between all of the DesignController objects and is used to facilitate the transfer
of MessageTreeNode objects between messages. Because this clipboard is shared, components can
be copied between subprotocols. If a non-terminal component is present in the clipboard, then all of the
child nodes are pasted as well when it is inserted into a message. The History class contains a list
of Trackers and is used to facilitate the undo and redo feature described in Section 3.2.1.7. A class
derived from Tracker exists for every operation defined in the High-Level View. These classes are
stored as a queue within a History object, with a queue pointer being used to obtain the next operation
to be undone or redone. Information contained within each Tracker can be used to undo or redo High-
Level View operations. For example, the PrincipalDeleteTracker class stores the information
pertaining to a deleted principal and all of the messages which it sends and receives.



64 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

The Navigator class is used to manipulate the Navigator View. Embedded within each Navigator
object is a reference to the tree-view used to display the protocol structure. A Navigator object is
encapsulated within each DesignController and the API calls provided by this Navigator ob-
ject can be used to add, remove and edit nodes in the associated Navigator tree-view. When modifying
a specification, the coupled DesignController automatically modifies the embedded Navigator
object by invoking the appropriate API calls so that the Navigator View is updated as required. Most
of the Tracker objects manipulated by the History and DesignController objects include
routines which modify the Navigator View appropriately when conducting undo and redo operations.
These Tracker objects are passed a reference to the embedded Navigator object through method
parameters so that they can save or restore information as necessary. Also stored within each Design-
Controller is a list of Principals and a list of Floaters. These two lists are used to manage
principals, messages and subprotocols — messages and subprotocols being stored in the same list. The
order in which components are stored in these lists parallels their order in the protocol specification
and as a result, no other ordering information is required. Each DesignController also contains a
pointer to a TPaintBox object so that all rendering operations can be directed to the correct canvas.
This pointer is instantiated when the DesignController is created.

3.5.2 Saving and Loading Specifications

All of the information contained in a SPEAR II protocol specification is saved to disk as ASCII text using
a simple block-like format. The GYPSIE portion of a standard SPEAR II source file is divided into four
sections which are used to store the preamble, component information, principal records, message details
and subprotocol properties. Other SPEAR II modules are free to add their own sections to the file format,
since a given module only reads sections that apply to it, discarding the rest. The protocol shown below
is referred to as Sample throughout this section and has been created for illustrative purposes. It contains
ten components: two nonces, two hashes, two private key encryptions, two public keys and two private
keys. Three messages, a subprotocol and two principals are also present in the specification:

(1) A �! B : Na

(2) B �! A : fH(Na); Nbg�Kb

Foobar Subprotocol Executes

(3) A �! B : fH(Nb)g�Ka

When storing the details applicable to a given principal, we only save its name and position relative to
the other principal components. In the case of protocol messages, the constituent components, structure,
communications settings and sequencing associated with a given message are all written to disk. The
file format which we have developed ensures that duplicate message components can be correctly re-
stored, with each duplicate referencing the same data in memory after a file load operation. When saving
subprotocols we store the location of the subprotocol source file, the subprotocol’s friendly name and
its execution style. The text extract which follows shows the principal section of the Sample protocol’s
source file:

PRINCIPAL {
NAME = "A"

}
PRINCIPAL {

NAME = "B"
}



3.5.2 Saving and Loading Specifications 65

Each PRINCIPAL block has a solitary field containing the name of the principal which it represents.
One block is allocated per principal and the order in which these blocks are written parallels the order in
which the principals are rendered on the canvas. In this case, A will be rendered to the left of B when the
protocol is drawn. The preamble section of a SPEAR II source file stores the communications settings for
every principal, as well as the default message settings. Only the source file of the root protocol contains
a preamble with principal communications settings. The remaining subprotocols obtain these settings
from the DesignController object associated with the root protocol after a file load operation.
However, a given preamble block always contains information describing the default message settings
for a protocol. The preamble section of the Sample protocol’s source file appears as follows:

PREAMBLE {
COMMENT = ""A sample protocol for","the SPEAR II thesis.""
MSG TRANSPORT = "udp"
MSG PORT = "4443"
MSG PORT SELECT = "explicit"
PRINCIPAL SETTINGS {

A {
IP = "137.158.130.52"
DOMAIN = ""
ACTIVE SETTING = "ip"

}
B {

IP = "137.158.130.51"
DOMAIN = ""
ACTIVE SETTING = "ip"

}
}

}

In this text fragment the default transport protocol is UDP and the default port on which messages will
be sent is 4443. Other options for the MSG TRANSPORT field are tcp and src. A setting of src means
that the designated field is defined in source code. The MSG PORT SELECT field can either be set to
explicit or src. If it is set to explicit, the MSG PORT field defines the default port number. The COM-
MENT field is used to save a multi-line comment attached to the protocol. The PRINCIPAL SETTINGS
block contains the name of every principal taking part in the protocol and a list of communications set-
tings for each of them. At this point, a user can only specify the principal’s IP address and domain name.
The ACTIVE SETTING field indicates which of these is currently in force. The definition blocks for
five components defined in the Sample protocol appears below:

PAYLOAD (mcNonce, 14347972) {
ID = "a"
ASN.1 = ""

}
PAYLOAD (mcPrivKey, 14348112) {

ID = "b"
ASN.1 = ""
PUBKEY = 14348348

}
PAYLOAD (mcPubKey, 14348348) {

ID = "b"
ASN.1 = ""
PRIVKEY = 14348112

}

PAYLOAD (mcHash, 14340540) {
ID = "1"
DESCRIPTOR = "Hash"

}
PAYLOAD (mcPrivEncryption, 14348740) {

ID = "1"
DESCRIPTOR = "Private-Key Encryption"
PRIVKEY = 14348112

}



66 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

This text fragment is written in two columns to save space. In the actual source file the mcHash block
would appear below the mcPubKey payload. When writing a component to disk, it is assigned a unique
integer identifier which is used to reference it in later sections of the SPEAR II source file. This identifier
is specified in parenthesis as the second parameter of the PAYLOAD keyword. The first parameter is
a text string indicating the component’s type. Within each component block are the fields which are
required to restore the component correctly. The encryption payloads all store the integer identifier of the
cryptographic key embedded within them. This implies that cryptographic keys must be specified before
the encryption in which they are included so that undefined references do not result. In fact, all terminal
components are always saved to disk before the non-terminal components. In the case of asymmetric
keys, each key contains a reference to its partner. The file load operation caters for this special case of
undefined references while reading the source file and restores the references correctly after both keys
have been loaded. The list of shared secrets being used as identifiers is recorded through the use of a
SECRETS block placed within a hash, symmetric encryption, or public key encryption block. This block
contains a list of the integer identifiers of the shared secrets being used for identification purposes within
the given encryption or hash container. The definition block for the second message which is sent from
B to A and contains the components fH(Na); Nbg�Kb

appears below:

MESSAGE {
SENDER = "B"
RECEIVER = "A"
ACTIVE SETTINGS = "subprotocol"
SETTINGS {

TRANSPORT = "udp"
PORT = "4443"
PORT SELECT = "explicit"

}
ACTION {

SENT PREACTION = ""
SENT POSTACTION = ""
RECEIVED PREACTION = ""
RECEIVED POSTACTION = ""

}
ROOT PAYLOAD {

ID = "Message 2"
DESCRIPTOR = ""

}
COMPONENTS {

TOP LEVEL: 14348740
14348740: 14340540 13870552
14340540: 14347972

}
}

The most important portion within a MESSAGE block is the COMPONENTS section. The text therein
conveys the structure of a message by indicating which components are anchored off each other. For in-
stance, in the case above we can see that the public key encryption with key�Kb (14348740) is anchored
off the root and contains a hash (14340540) and the nonce Nb (13870552). The hash in turn has one child
component anchored off it, namely the nonce Na (14347972). The SENDER and RECIPIENT fields sig-
nify the originator and recipient of the message respectively. The communications settings are stored in
the MESSAGE block. The ACTIVE SETTINGS field can be set to self, root or subprotocol. A
value of self indicates that the SETTINGS block is used to specify the communications setup, while



3.5.3 Memory Management 67

the root and subprotocol values indicate that the root or subprotocol defaults are used instead. The
message code name is stored in the ROOT PAYLOAD block and any pre-processing and post-processing
associated with the message is stored in the ACTION block. The following text extract reveals the saved
definition for the Foobar subprotocol included within the Sample protocol specification:

SUBPROTOCOL {
EXECUTION TYPE = "automatic"
CONDITIONAL TEXT = ""
FRIENDLY NAME = "Foobar Subprotocol"
USE FRIENDLY NAME = "yes"
FILE NAME = "Foobar Subprotocol.spr"

}

This fragment of text is found between the MESSAGE blocks for the second and third message, as the
order of the MESSAGE and SUBPROTOCOL blocks indicates their sequencing. In the above SUBPRO-
TOCOL block the name of the source file associated with the subprotocol is Foobar Subprotocol.spr.
This file is located in the same directory as the Sample source file, since the path-names of included
subprotocol files are always specified relative to the location of the parent’s source file. The remainder of
the subprotocol fields are self-explanatory and reflect the options presented in the Subprotocol Properties
Dialog.

3.5.3 Memory Management

The GYPSIE environment makes use of a reference-count based garbage collector to ensure that memory
occupied by Payload objects is correctly referenced and deallocated. The garbage collector that we
have developed was based on the description given in [60]. In the context of the GYPSIE environment, a
garbage collection system is essential, since there are multiple pointers scattered throughout the system’s
memory at any given time, many of which reference the same locations in memory. In fact, when using
the SPEAR II tool, multiple Payload objects easily arise due to explicit duplication or as a consequence
of undo and redo information that is created when High-Level View operations are conducted.

The reference-counting garbage collector that we have developed does not need to search through mem-
ory to find objects to delete. Instead, for every object a running count is kept of the number of pointers
that reference it. This running count is known as the object’s “reference count”. Every time a pointer
is assigned to reference an object, that object’s reference count is incremented. When a pointer is reas-
signed to reference a different object, the original object’s reference count is decremented and the count
of the object to which the pointer has been newly assigned is incremented. Also, every time a pointer
goes out of scope, the reference count of the object to which it pointed is decremented. An object can
only be deleted if there are no pointers referencing it.

To implement the reference-count based garbage collector we created two classes named RGCObj and
RGCRef. The RGCObj class contains an integer to store a reference count and three methods named
incRefCount(), decRefCount() and canDelete(). To increment or decrement the reference
count the incRefCount() and decRefCount()methods are used. To check if the reference count
is zero, the canDelete()method, which returns a boolean value, is used. The RGCObj is declared as
a virtual public superclass of any class that requires reference-count based garbage collection. However,
to perform the actual incrementing, decrementing and deallocation of memory, the RGCRef class is used.
The RGCRef class is templated and takes a class descended from RGCObj as a parameter.



68 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

To use the garbage collection engine in conjunction with a given class, say class X, a programmer first
needs to make sure that RGCObj is a superclass of X. She then needs to create a templated type by passing
X as a parameter to RGCRef. The RGCRef class contains overloaded operators to facilitate operations
such as dereferencing, assignment, comparison and pointer address calculation. In the code sample that
follows we give a practical example of how the garbage collector is used by creating an Integer class
and then using the RGCRef type to create a garbage collected type based on the Integer class. We
then instantiate two variables of this type and show how they can be used by initializing one of them
with an integer value, and then making the other point to and modify the same location in memory. The
important point to note in this example is that the memory pointed to by both references is correctly
deallocated at the end of the main() function, with no memory faults occurring:

// Integer is a subclass of RGCObj.
class Integer : public virtual RGCObj {
public:

Integer(int newValue) { value = newValue; }
int getValue() { return value; }
void setValue(int newValue) { value = newValue; }

private:
int value;

};

// Make declaration with the wrapper class easier.
typedef RGCRef<Integer> PInteger;

void main() {
PInteger pointer, duplicatePointer;

// Initialize pointer with 5593879.
pointer = new Integer(5593879);
// Make duplicatePointer reference the same memory.
duplicatePointer = pointer;
// Change the value of the integer in memory.
duplicatePointer->setValue(5583565);

// See the effects of the change.
cout << pointer->getValue() << endl;

}

The technique outlined in this code fragment is employed in the GYPSIE source code. The Payload
class is used to create a type named PayloadWrapper through the use of the RGCRef template.
An instance of this wrapper class is then embedded inside each MessageTreeNode. When creat-
ing a MessageTreeNode, a Payload pointer is passed as a parameter to the constructor and this
pointer is then used to initialize the embedded wrapper. Because every Payload object contains a ref-
erence counter, the wrapper associated with the MessageTreeNodewill be able to determine when a
Payload object can be safely deleted. The incrementing and decrementing of the Payload object’s
inherited reference counter is performed by the wrapper. In this way, we can have multiple Message-
TreeNodes scattered throughout the system’s memory. When these nodes are deleted from memory, the
associated Payload objects will either have their reference count decremented or they will be deleted.
RGCRef wrappers are also used in the encryption and decryption Payload-based classes to store cryp-
tographic keys. This ensures that a key used in multiple locations will not be inadvertently deleted from
memory when the encryption or decryption node it is associated with is deallocated.



3.5.4 Functions Provided by GYPSIE 69

3.5.4 Functions Provided by GYPSIE

The GYPSIE API is too large to describe in detail due to space constraints. However, we will give some
brief details pertaining to portions of the core feature set in order to present an understanding of how
the API operates. The ability to add, edit, delete and retrieve canvas components is provided by De-
signController methods. To add a message to the design canvas, the addMessage() function
call is used. This method takes a Message object and vertical position as parameters. The editMes-
sage() method allows one to modify a message by providing the old message, new message and new
vertical position as parameters. The deleteFloater() function removes the message or subprotocol
at the vertical position specified by its parameter. Similar add, edit and delete methods are provided
for principal and subprotocol components. To retrieve a given canvas component, the getFloater()
or getPrincipal() methods are used. Obtaining a count of the number of messages, principals or
subprotocols can be accomplished with the getMessageCount(), getPrincipalCount() and
getSubprotocolCount() methods. Finally, to render a protocol we use the drawProtocol()
method which renders the current protocol to the canvas specified by the TPaintBox object embedded
within the protocol’s DesignController object.

To obtain a flat textual representation of a component, the getText() method belonging to the Mes-
sageTreeNode class is used. If the component represented by the node is non-terminal, then the
getText() method is applied recursively to all of the child nodes and the resulting text components
are concatenated. Any text that needs to be appended to the front or rear of the output is also concate-
nated to the result before the text is returned. To obtain the textual representation of a given message,
the getText() method of the root node associated with the message is invoked. The getLatex()
method of the MessageTreeNode class is used to obtain LATEX output. Within the Message class, the
getText() and getLatex() are used to invoke the embedded root node’s getText() or getLa-
tex() method. Text or LATEX output of the entire specification is obtained using the getProtocol-
Text() or getProtocolLatex()methods which belong to the DesignController class.

The retrieval of components can be carried out by using the getPayloadsUsedInProtocol() or
getPayloadsByTypeInProtocol() methods. Both of these methods return a linked list of all
the components used in the current protocol, however, the latter method returns only those components
of a specified type indicated by its associated parameters. To initialize the Component View tree, the
initTreeView()method belonging to the root MessageTreeNode object of a message is invoked
with the tree-view pointer as a parameter.

Saving and loading operations are conducted by the DesignController object associated with a
protocol. When saving components, the saveProtocolFile() method iterates through the prin-
cipal, message and subprotocol linked-lists, invoking the doWrite() method, which is a member of
the Principal, Message and Subprotocol classes. To save the preamble the saveProto-
colFile() method examines the preamble and writes its settings to disk, while in the case of compo-
nent data it invokes the doWrite() method of each component. The doWrite() methods all take
the target file as a parameter and produce a specification block therein. A number of methods within
the DesignController class have been created to read the different specification blocks that exist
in a protocol source file. For example, to read a PREAMBLE block, the readPreamble() method
is used. Within the readMessage() method, the readTreeComponents() method is used to
construct the trees which represent a message’s structure. When reading components from disk, the
IndexedPayload method is used to store a Payload object along with its integer identifier. The
MessageTreeNode object within the IndexedPayload class is used to temporarily store the node
within which a non-terminal component is embedded so that further nodes can be anchored off it.



70 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

To determine whether certain SPEAR II operations are permissible, the GYPSIE API includes function
calls that can be used to query whether specific conditions are true so that the appropriate interface to a set
of engineering operations can be enabled or disabled appropriately. For example, a message rounds cal-
culation should only be conducted when at least one message exists. So, to check whether a message does
indeed exist, the aMessageExists()method which belongs to the DesignController class can
be used. To determine whether an undo or redo operation is possible, the canUndo() and canRedo()
methods, which both return a boolean value, can be used. The getUndoDescription() and ge-
tRedoDescription()methods are used to obtain textual descriptions of the undo or redo operation
to be carried out next. This text is included in tooltips which appear when hovering over the undo or redo
buttons. The getChangesMade()method determines whether a protocol specification has been mod-
ified by examining a dirty bit. To determine the width and height which a protocol specification takes up
on the design canvas we use the getProtocolWidth() and getProtocolHeight() methods.
This information is used to dynamically resizing the canvas when protocol specifications become large.

3.6 Closing Remarks

In this chapter we begun by presenting requirements for a generic security protocol design environment
and then followed this up by presenting the GYPSIE environment, which is a realization of these re-
quirements. GYPSIE is a core component of the SPEAR II Framework and is used to create protocol
specifications which can be used as input to a wide-range of SPEAR II engineering modules. The GYP-
SIE environment is composed of three distinct views. The High-Level Protocol View describes the overall
flow of messages and works in conjunction with the Navigator View which presents a concise summary
of the structure and contents of a protocol by using a tree-view with expandable and collapsible nodes.
The more detailed Component View is invoked from the High-Level View and allows one to view and
edit the contents of protocol messages, each message being displayed as a hierarchical tree. In effect, the
GYPSIE environment acts as a central hub and is the key enabling component of the SPEAR II Frame-
work. Without GYPSIE, no protocol engineering operations could take place within SPEAR II as there
would be no protocol specification to analyze or manipulate. Because of this fact, we have tried to make
GYPSIE as generic as possible, so that it can produce output that can be easily augmented to cater for a
wide array of protocol engineering and analysis operations.

The ultimate value of the SPEAR II Framework lies in the extent to which it can be expanded and
integrated with existing and future protocol engineering techniques. Within the current SPEAR II appli-
cation, three modules work in conjunction with the GYPSIE design environment. Internal modules are
embedded within the SPEAR II source code and make use of the GYPSIE API to obtain details about
a protocol specification. Examples of internal modules that currently exist are the rounds calculator and
Visual GNY environment. Both of these modules use API calls to retrieve components, determine types,
uncover message flows and obtain the principals involved in a specification. However, in the majority
of situations, protocol analysis tools already exist and these tools may have been written in languages
other than C++. One of the ways in which such external analysis modules can be integrated within the
SPEAR II Framework is by piping input into the module in the required format. This approach requires
that the GYPSIE API be used to collect, collate and format the protocol specification and any other nec-
essary information. Once this task has been performed, the module can be executed using system calls,
the extracted information being transferred through the use of command-line parameters. After execu-
tion, the output from the module is retrieved, parsed and then displayed appropriately. This approach has
been used to integrate the Prolog-based GYNGER analyzer within the SPEAR II Framework.



3.6 Closing Remarks 71

There are currently no code generation modules associated with the SPEAR II Framework. However,
selected features within the GYPSIE environment indicate how code generation routines can be incor-
porated within the system. For example, some component properties dialog boxes contain a tabbed pane
which can be used to specify a textual ASN.1 specification. This specification is not used for any current
engineering operations, but it is still saved with the component. To facilitate the construction of ASN.1
specifications, we envisage the creation of a graphically-based ASN.1 specification environment. This
environment would help designers to specify a component’s structure so that appropriate encoding and
decoding routines can be constructed and included in any generated source code. The GYPSIE environ-
ment also includes a Communications Settings Dialog that can be used to specify the communications
properties associated with given message, principal or protocol. These settings are minimal at present,
but give an impression of how this type of information can be requested. SPEAR I included a simulation
module that allowed a protocol engineer to step through a protocol execution and view the progression
of BAN beliefs. However, we envisage the creation of a more powerful attack analysis module based on
the Interrogator [24] that would work in conjunction with the GYPSIE environment and try to determine
replay attacks that would reveal secret information during a protocol session.

The GYPSIE High-Level View is very similar to the SPEAR I design environment and uses the same
formalisms and user-interaction style. However, a significant difference is that GYPSIE includes the
ability to add subprotocols to a specification. To aid in visualizing a specification and its contents,
GYPSIE includes the Navigator View and the Component Tracker. The SPEAR I design environment
includes no such aids. The undo and redo feature is a powerful addition to the GYPSIE environment
and frees users to experiment with a specification and recover from accidental errors. SPEAR I does not
include any such error-recovery mechanism. The Component View presents a designer with a detailed
overview of the structure and composition of a given message using a hierarchical tree-view, allowing one
to conduct modifications through drag-and-drop operations, pop-up menus and specially tailored dialog
boxes. However, in the case of SPEAR I, the message structure and composition is specified textually
and the components themselves must all be defined using dialog boxes prior to being added to a given
message. The SPEAR I system incorporates a code generation module which produces rudimentary Java
code. As we have seen, the SPEAR II environment does not yet contain a code generation module.
However, API calls are in place to allow one to be incorporated within the system. In fact, the GYPSIE
API was used to incorporate a rounds calculator, an export subsystem which generates textual, LATEX and
Prolog output and a GNY analysis environment within the SPEAR II Framework.

The CAPSL [28] specification language is intended to support the creation of cryptographic protocol
specifications which can be examined by formal analysis tools. Interoperability with CAPSL would be
of tremendous benefit to SPEAR II, since it could well become the standard language in which proto-
col specifications are modelled. In fact, the appeal of using GYPSIE would improve significantly if it
could be used to create syntactically correct CAPSL specifications, since the process of creating a textual
CAPSL specification would be transformed into one of merely creating a specification through drag-and-
drop operations and dialog box completion. Also, no graphically-based tools to aid in the construction
of CAPSL specifications currently exist. At present, the SPEAR II file format uses our own specially-
devised syntax. However, as a possible upgrade we are considering the incorporation of CAPSL import
and export functionality within the GYPSIE environment. However, this upgrade would require some
thought as a given CAPSL specification does not map directly to a GYPSIE specification. There are
portions of a specification which both environments will have in common, however the difficultly lies
in resolving the differences they might have. For example, a potential conflict could arise when import-
ing or exporting a specification since CAPSL provides both associative and non-associative component
concatenation, while GYPSIE only provides associative concatenation.



72 CHAPTER 3. SECURITY PROTOCOL MODELLING WITH GYPSIE

The Software Through Pictures (StP) [42] OMT environment serves as a front-end to the Higher Order
Logic analyzer that is part of the Convince toolkit [50]. In a similar vein, GYPSIE serves as a front-end
to the SPEAR II Framework and currently creates input for a rounds calculator and Prolog-based GNY
analyzer. However, there are significant differences in how these two systems operate and interact with
users. The StP environment is a full-featured OMT modelling tool and can be used to create specifica-
tions for a diverse range of applications. On the other hand, the GYPSIE environment is tailor-made for
creating cryptographic protocol models. Thus, a user wishing to employ the StP environment to produce
cryptographic protocol models must be familiar with both OMT and cryptographic protocol modelling
concepts. However, a GYPSIE user need only understand the issues related to cryptographic proto-
col modelling since there is an almost direct mapping between the interface and protocol engineering
concepts. In effect, the StP environment forces one to manually make an association between protocol
modelling concepts and the OMT syntax and notation in order to represent the flow of messages. A
short-coming of StP is that it does not feature built-in functionality for typing protocol components. On
the other hand, every GYPSIE component has an associated type which is derived from cryptographic
protocol theory. In effect, StP forces users to create annotations to specify a component’s type, while
GYPSIE considers typing as an integral part of a specification, which is necessary to correctly perform
certain analyses and code generation. Both StP and GYPSIE can produce output for a variety of proto-
col engineering tools, StP producing ISL [15] for use with a HOL-based GNY analyzer, and GYPSIE
producing text, LATEX and Prolog output for use with the GYNGER GNY analyzer.

A challenge that confronts users of the GYPSIE environment, and perhaps all protocol design environ-
ments in general, is that as a protocol increases in size it becomes more difficult to model and manage,
since mistakes can creep into the specification more easily while it is being created. To facilitate accurate
protocol construction and verification, the Component View displays a hierarchical tree-like represen-
tation of a message, using icons to represent each component type and expandable and collapse nodes
to represent containers such as encryptions. The High-Level View lists all of the principals involved
in a specification and illustrates the flow of messages using a formalism similar to Message Sequence
Charts [44]. Furthermore, to aid in validating a protocol model, a text or LATEX representation of the pro-
tocol can be generated through the High-Level View so that a designer can print the the specification and
examine it off-line. A limitation of the GYPSIE environment is that it does not cater for the modelling of
multi-cast protocols, since each message can only have one recipient. This current lack of functionality
is due to the fact that GYPSIE was created with the aim of providing specifications for GNY analysis
and rounds calculations. Thus, when a code generator is integrated within the SPEAR II Framework, the
GYPSIE environment will have to be upgraded to incorporate multi-cast mechanisms.

We conducted a number of experiments to examine how individuals who had been lectured in security
protocol modelling techniques interacted with the GYPSIE environment. The primary goal of these ex-
periments was to determine whether the GYPSIE environment facilitates accurate protocol modelling.
We also wanted to examine how much time individuals took to specify security protocols. One of our
primary observations was that the effectiveness of the GYPSIE environment depends to a large degree on
the cryptographic expertise and fluency already possessed by a user. In order to create cryptographic pro-
tocols, an individual should have an understanding of the underlying theory of security protocol design.
However, even with this requirement, we found that every one of the participants was able to complete
three diverse protocol specifications in a reasonable amount of time, each specification being completed
in under ten minutes on average. The error level was also reasonably low, with 75% of the resultant
sixty specifications being completely error-free. The comments from participants were favourable and
no major problems were encountered. Judging from the results that we obtained we feel that GYPSIE
will be able to simplify, enable and facilitate the construction of high-quality protocol specifications.



Chapter 4

GNY-Based Protocol Analysis

“A formal method that tries to cover all the features of cryptographic protocol analysis is like a Swiss Army knife — not a terribly good instance

of any of the tools it contains.”

— Roger Needham, Quoted in “On Unifying Some Cryptographic Protocol Logics”

Analysis methods for cryptographic protocols have predominantly focused on detecting information leak-
age, rather than determining whether a protocol attains its stated goals. However, security protocols often
fall short of achieving their intended objectives, usually for very subtle reasons [2]. As a result of this
fact, cryptographic logics have been developed to aid in determining whether protocols actually fulfil
their intended goals [32]. Using logics to analyze security protocols has a number of advantages:

� The use of logics forces protocol designers to explicitly state the security assumptions which they
have made and will require after the protocol has executed.

� Reasoning with logics makes designers think about the use for which each component is intended,
thus minimizing redundancy.

� Cryptographic logics can also be used to explicitly bind the evolution of beliefs in a protocol
session to message contents, number of messages and message rounds, thus helping to determine
the minimum number of messages required to achieve a given set of beliefs and possessions.

The BAN modal logic [1] popularized the notion of using logics to detect flaws and redundancies in
protocols. It has been labelled as a success by many commentators [31, 56, 23] and has been used to find
flaws in several protocols, including Needham-Schroeder [63] and CCITT X.509 [21]. BAN has also
been used to uncover redundancies in well-known protocols such as Kerberos [59] and Otway-Rees [64]
and many published papers use BAN to make claims about their protocol’s security.

BAN spawned the creation of a number of related logics, each of which has tried to improve on or add
to its underlying premises. Popular descendants of BAN include GNY [36, 33], AT [3], VO [81] and
SVO [79]. Each of the logics descended from BAN has its own advantages, disadvantages and vested
interests. The aim of this chapter is to introduce the GNY modal logic. We will sketch the fundamental
assumptions underlying GNY and introduce definitions and concepts from [36, 33]. Thereafter we will
describe the inference rules, give hints for determining protocol goals and discuss modifications which
have been made to the GNY postulate set. Finally, we work through two example analyses, showing how
useful results can be achieved. The chapter then concludes with some closing remarks.

73



74 CHAPTER 4. GNY-BASED PROTOCOL ANALYSIS

4.1 Model of Computation

A distributed environment consists of independent entities called principals. Depending on the context,
they can either be users, processes, computers, or any entity that wishes to communicate with another.
Principals are connected by network links and these constitute the only means of communication. Com-
munication occurs through the exchange of messages on these links. A principal can place a message on
any link and may also observe and alter messages being passed along any link.

A protocol is a distributed algorithm which determines the messages a principal should communicate as
a function of his internal state. Protocols are divided into stages by message transmissions. A session
is an execution of a protocol. Principals participate in a session with certain initial beliefs and initial
possessions. From this point, they can obtain new beliefs from current beliefs and incoming messages.
Similarly, principals can increase their possessions by receiving messages or generating new message
components. Inference rules presented later in this chapter govern the derivation of new beliefs and
possessions.

A principal’s state consists of two sets. A belief set includes beliefs of the principal which reflect his
view of the state of the physical world and other principals. The state of the world records the occurrence
of events such as the originator and time at which a certain message was sent. A possession set includes
information available to the principal from which he can derive new beliefs and construct new messages.
Beliefs and possessions are monotonic within a session. This means that if a belief or possession is a
member of its respective set at any phase of the session, then it remains in that set at every subsequent
phase of that session. However, no such claim is made across sessions. A principal’s belief or possession
in a session will not necessarily be a member of the corresponding set in past or future sessions in which
the principal has or will participate.

The only universal assumption that we require is that secrets which are used for identification purposes
are not discovered or used maliciously by untrusted principals. Since principals will be extremely limited
in attaining useful beliefs without such a basic trust, it is a convenience to make this assumption default.
However, if it was so desired, we could let principals choose, as part of their initial beliefs, whether to
trust each other in this respect.

4.2 A Protocol Description Language

In this section the basic notions underlying the GNY reasoning process will be introduced. As has already
been mentioned, principals exchange messages during the execution of a protocol. A protocol may be
represented as a finite sequence of n messages:

(1) P1 �! Q1 : X1

(2) P2 �! Q2 : X2

...
(3) Pn �! Qn : Xn

In this notation, Pi is the sender, Qi is the intended recipient, and the formula Xi is the message body.
During the execution of a protocol, principals communicate messages in the order in which they are
listed. However, in practice, principals may send some messages simultaneously and the transmission of
these messages may overlap in time.



4.2.1 Formulae 75

4.2.1 Formulae

A formula in a protocol description is a name referring to a bit string which would have a particular value
in a session. This is analogous to a variable identifier in a programming language. Let X and Y range
over formulae. Two kinds of special formulae, shared secrets and encryption keys, are denoted as S and
K respectively. The following are also formulae:

� (X;Y ): The conjunction of two formulae. Conjunctions represent sets and have properties such
as associativity and commutativity.

� fXgK and fXg�1K : Conventional encryption and decryption of X , assuming that the cryptosys-
tems are resistant to ciphertext-only and known-plaintext attacks. The encryption (or decryption)
depends on the plaintext (or ciphertext) and key in such a way that any change to plaintext (or
ciphertext) or the key causes an apparent random change in the ciphertext (or plaintext). It is
assumed that ffXgKg

�1
K = X is always satisfied, but that ffXg�1K gK = X is not necessarily

satisfied.

� fXg+K and fXg�K : Public key encryption and decryption of X . A public-key cryptosystem
satisfies the requirements stated for a conventional cryptosystem. Public key applications that
are used for key exchange satisfy ffXg+Kg�K = X , while public-key cryptosystems that are
applicable to digital signatures satisfy ffXg�Kg+K = X .

� H(X): A one-way function of X . Given X it is computationally feasible to compute H(X),
however, given H(X), it is infeasible to compute X . It is also infeasible to find an X and X0 such
that H(X) = H(X0). This defines a strong one-way hash function.

� F (X0;X1; : : : ;Xn�1): A many-to-one computationally feasible function, such that for any Xi,
where 0 � i � n � 1, and constants C0; C1; : : : ; Cn�1, F (C0; : : : ; Ci�1;Xi; Ci+1; : : : ; Cn�1)

is a one-to-one computationally feasible function, and its inverse is also computationally feasible.
As a special case F (X) denotes a feasible one-to-one function whose inverse is also feasible.

� < S >: Denotes that the secret S is used for identification purposes. Thus, it can be distinguished
when other secrets are included merely as data in the same message or computation.

Principals often exchange formulae to express their current beliefs. Beliefs are described by statements,
introduced in the next section. Let C range over all statements. The following is also a formula:

� X ; C: A formula with an extension. Statement C is the extension and is considered an integral
part of the formula. By definition, X ; C1 ; C2 and (X ; C1) ; C2 are equivalent to
X ; (C1; C2).

Essentially, an extension to a formula is a formal specification which dictates that a principal should
proceed to send a formula only if certain conditions hold. A formal specification such as this helps to
eliminate ambiguity as these conditions are often only expressed verbally in traditional protocol specifi-
cations. Having accepted that a formula is genuine, the recipient can choose to believe that the formula’s
extension holds, if he trusts the sender’s competence and honesty. Without extensions, principals can
draw conclusions about the physical world. However, with extensions principals may be able to draw
conclusions about beliefs held by other principals.



76 CHAPTER 4. GNY-BASED PROTOCOL ANALYSIS

4.2.2 Statements

A basic statement reflects some property of a formula, typically reflecting a relation between a principal
and a formula. As a convention, “believes” means “believes or is entitled to believe” and “possesses”
means “possesses or is capable of possessing”. Let P and Q range over principals. The following are
statements:

� ;: This is an empty statement and does not denote anything except that there could have been a
non-empty statement in its place. The formulae X and X ; ; are equivalent.

� P �X: P is told a formula, X , possibly after performing some computation, such as decryption.
Thus, the formula being told is itself, or some computable content thereof.

� P � �X: P is told a formula, X , which he is not the first to convey in the current session of the
protocol, though he could have transmitted it in a previous session. Also, it is the first time that P
receives X in the current session.

� P 3 X: P possesses formula X . P is able to repeat this formula in future messages of the current
session. At a particular stage of a session, P possesses all the formulae that he has been told, all the
formulae he started the session with, and all the ones that he generated during the current session.
In addition, P possesses all the formulae that are computable from formulae he already possesses.

� P j� X: P once conveyed formula X . X can be a formula explicitly exchanged or some com-
putable content of a formula. Thus, a formula can also be exchanged implicitly.

� ](X): FormulaX is fresh. A principal should believe that a formula originated by another principal
is fresh if it has been constructed after the occurrence of some fresh event. A principal believes
anything he has originated to be fresh if he cannot have chosen the same formula for the same
purpose before.

� �(X): Formula X is recognizable. A principal would believe X to be recognizable if he has
certain expectations about the value or structure thereof. He may recognize a particular value, a
particular structure or other forms of redundancy. In either case, he may not possess part or all of
the formula.

� P
S
 ! Q: S is a suitable secret for P and Q. These entities may use S to prove their identities

to each other. They may also use it as, or derive from it, an encryption key K to communicate,

denoted as P
K
 ! Q. This notation is symmetrical. Thus P

S
 ! Q and Q

S
 ! P can be used

interchangeably.

�
+K
7! Q: +K is a suitable public key for Q. The matching secret key is given by �K .

As we have mentioned, the only default assumption which we require is that S, K or �K will never
be discovered by any principal except the legitimate owners or principals which the owners trust. In the
latter case, the trusted principals should never use S, K or �K as a proof of identity or as an encryption
key to communicate. Continuing, the following are also statements:

� P / X: P is eligible to convey formula X . P holds the relevant possessions and beliefs. This
notation is used to detect inconsistencies in the protocol description.



4.2.3 Operational Semantics 77

� P a (X): P is not the first principal to originate formula X . This formula must first be generated
and conveyed by another principal.

Statements are often associated with individual principals to specify their states. Let C range over state-
ments. The following are also statements:

� (C1; C2): The conjunction of two statements. Conjunctions represent sets and have properties such
as associativity and commutativity.

� P j� C: P believes that statement C holds. P j� is considered an empty statement.

� P j� Q j=) C: P believes that Q has jurisdiction over statement C . He believes that Q has
authority on C and should be trusted in this respect.

� P j� Q j=) Q j� �: P believes that Q has jurisdiction over all his beliefs. P considers Q to be
competent and honest.

Trust can be defined at multiple levels in order to derive weaker or stronger conclusions. For example,
if honesty of a principal implies that he maintains the correspondence between the contents of a formula
and the extension during conveyance, then the conclusion that P j� Q j� Q j� C can be obtained.
Since Q may not be competent, this represents a lower level of trust and the conclusion is weaker than
P j� Q j� C . Moreover, we can specify different levels of trust for particular aspects of a principal’s
behaviour. This reflects the fact that often a principal is trusted differently with respect to the different
tasks in which he engages.

4.2.3 Operational Semantics

The following operational semantics are similar to those in BAN [1]. Principals develop new beliefs and
accumulate possessions by applying computationally tractable inference rules to their current beliefs,
possessions and received messages.

The local state of a principal P consists of two sets, viz. a set of formulae PP and a set of statements
BP . Intuitively, PP is the set of formulae the principal possesses and BP is the set of beliefs the principal
holds. These sets have some closure properties, as will be illustrated by the inference rules.

A global state is a tuple containing the local states of all principals. Suppose s is a global state. Then sP
is the local state of P in s and PP (s) and BB(s) are the corresponding sets of possessions and beliefs.
The satisfaction relation between global states and statements is:

� P j� C holds in a state s if C 2 BP (s).

� P 3 X holds in a state s if X 2 PP (s).

� A set of statements holds in a given state if each of its members holds.

A protocol session is defined as a finite sequence of states s0; : : : ; sn where BB(si) � BB(si+1) and
PP (si) � PP (si+1) for all i � (n� 1). That is, the belief and possession sets are monotonic and do not
decrease in size during a session.



78 CHAPTER 4. GNY-BASED PROTOCOL ANALYSIS

As described previously, a protocol is a finite sequence of n expressions of the form:

(P1 �! Q1 : X1); (P2 �! Q2 : X2); : : : ; (Pn �! Qn : Xn)

Now Xi, where i � n, is normally a conjunction of formulae and certain formulae embedded within
Xi will contain extensions. Let Cij be an extension attached to the jth formula within Xi and assume
that there are mi formulae within Xi, where mi � 1. During a session, all of the messages within the
protocol are communicated so that Xi 2 (PQi

(si) \ PPi(si�1)) and Cij 2 BPi(si�1) for all i � n and
j � mi .

A protocol analysis consists of annotating the protocol with statements and manipulating these statements
with the aid of the inference rules. An annotation for the protocol holds in a session if all the statements
in the annotation hold in their corresponding states. An annotation is valid if it holds in all sessions of
the protocol. The first set of the annotation is the initial assumptions and this must be the first set to hold.

4.3 Protocol Parsing

Security protocols are normally described by listing the messages sent between principals and symbol-
ically showing the source, destination and the contents of each message. However, this conventional
notation is not convenient for manipulation with a logic, since we wish to attach exact meanings to each
component of each message and these meanings are not always apparent from the data contained in the
messages. Thus, the aim of the protocol parser is to transform a protocol description into a form that is
more suitable for manipulation and analysis. The parser examines all the lines of the form P �! Q : X ,
scanning from the beginning of the list to the end:

1. If Q = P an error is reported.

2. For each complete Y using a shared secret in a line of the form P0 �! Q0 : X 0, if:

� Y does not appear in a line Q0 �! P 00 : X 00, and

� A line P 00 �! Q0 : X 00 containing �Y does not already appear.

Then the parser inserts a star before Y .

The following example gives a demonstration of the protocol parser at work. The conventional protocol
specification is on the left, and the parsed output on the right.

(1) A �! B : fXgK
(2) A �! C : fXgK
(3) C �! A : fXgK
(4) C �! B : fXgK
(5) B �! E : fXgK

is transformed to

(1) A �! B : �fXgK
(2) A �! C : �fXgK
(3) C �! A : fXgK
(4) C �! B : fXgK
(5) B �! E : �fXgK

Notice that the parser ‘detects’ possible backward and forward replays in the current session of the
protocol run, as seen in messages (3) and (4) respectively. Possible replay attacks are not tagged with a
star.



4.4 Inference Rules 79

4.4 Inference Rules

GNY inference rules govern the reasoning about principals’ beliefs and formulae which they possess.
These rules do not claim properties such as completeness and new rules can be introduced where appro-
priate. There are no negations of any kind and thus contradicting conclusions cannot be reached unless
the initial assumptions are self-contradicting. All inference rules have the form:

N .
C1; C2; :::; Cn
K1; K2; :::; Km

Essentially, this says that if statements C1; C2; : : : ; Cn hold then so do K1;K2; : : : ;Km, where n � 1

and m � 1. N is the inference rule number. An inference rule that applies to formula X also applies
to formula �X . In other words, substituting �X for X everywhere in an inference rule yields another
inference rule. The reverse is not necessarily valid. The complete set of GNY inference rules is listed in
Appendix A. In the subsections that follow we describe the salient features of the eight GNY rule sets.

4.4.1 Being-Told Rules

Being-told inference rules deal with the formulae which a principal receives. Every formula which a
principal receives, as well as certain manipulations of that formula, are regarded as being told to that
principal. The following are some examples of being-told inference rules:

T4.
P � (X; Y )

P � X

If P is told a formula, then he is also told each of its cojoined components.

T5.
P � F (X0; X1; :::; Xn�1); P 3 (X0; :::; Xi�1; Xi+1;:::; Xn�1)

P � Xi

If P is told the result of an n-ary function F and he possesses at least n� 1 of the arguments, then he is
also considered to have been told the missing argument.

T6.
P � fXgK; P 3 K

P � X

If P is told a formula encrypted with a key he possesses, then he is also considered to have been told the
decrypted contents of that formula.

4.4.2 Possession Rules

Inference rules in this category specify the formulae a principal is capable of possessing by manipulating
formulae which he already possesses. Examples of these inference rules include:

P1. P � X
P 3 X

P possesses a formula which he is told.



80 CHAPTER 4. GNY-BASED PROTOCOL ANALYSIS

P6. P 3 X
P 3 H(X)

P possesses a one-way hash function of a formula which he possesses.

P8.
P 3 X; P 3 +K
P 3 fXg+K

If P possesses a formula and a key, then he possesses the encryption and the decryption of the formula
with the key. A very important point to note is that the rules P3, and P6 through to P9 can be applied
indefinitely to produce what may seem quite trivial new possessions. In the case of automated analysis
tools, such a situation may result in needless possessions being generated and may also result in the
analyzer not terminating.

4.4.3 Eligibility Rules

Eligibility inference rules determine what formulae a principal is eligible to convey according to the
formulae he possesses and the beliefs he holds. The following is a sample of some eligibility inference
rules:

E1. P 3 X
P / X

P is eligible to repeat in future messages a formula which he possesses.

E2. P / X
P / �X

If P is eligible to convey a formula, then he is eligible to convey the formula with a preceding star. Recall
that the protocol parser decides whether to insert a star in front of a formula based on the formula’s
position in the protocol description. Thus, a principal’s being eligible to convey �X does not necessarily
mean that he is the first to convey the formula in the protocol.

E6.
P / X; P 3 (S; +K); P j� P

S

 ! Q; P j�
+K
7! Q; P j� C

P / fX; <S>g+K ; C

If P is eligible to convey a formula, he possesses a secret and believes it to be suitable for him and
Q, he also possesses Q’s public key, then he is eligible to convey the formula cojoined with the secret,
encrypted with the public key, and with an extension to describe some of his beliefs.

4.4.4 Recognizability Rules

Inference rules in this category specify the formulae which a principal can believe to be recognizable,
given his beliefs about the recognizability of other formulae. A principal believes a formula to be recog-
nizable if he has an expectation of the value or structure of the formula. In either case, he may not possess
part or all of the formula. In other words, during an execution he may not know the value of part or all
of a formula before actually receiving it. All of the recognizability inference rules can be understood in
terms of two basic principles which are illustrated by the following inference rules:



4.4.5 Freshness Rules 81

R300.
P j� �(X); P 3 F (X)

P j� �(F (X))
R10.

P j� �(X); P 3 X; P 3 H(X)

P j� �(H(X))

These two inference rules essentially state that a given formula can be recognized by a principal if it can
be transformed into a recognizable formula or a recognizable formula can be transformed into it. The
basic premise underlying R300 is that a given formula constructed using an invertible function is recog-
nizable if the result of applying the function’s inverse to this formula is also recognizable. The premise
underlying R10 is slightly different and implies that a formula constructed from a one-way function is
recognizable if the application of the same one-way function to a recognizable formula produces a result
identical to the formula in question. The fundamental difference between these two inference rules is
that in R300 no possession of a recognizable formula is implied, whereas R10 requires the possession of
a recognizable formula for comparison purposes. Inference rules R4 through to R9 are all based on R300

and R10 — R5, R6, R7 and R11 being based on R10 and R4, R8 and R9 being based on R300.

4.4.5 Freshness Rules

Freshness inference rules specify the formulae which a principal can believe to be fresh, given his beliefs
about the freshness of other formulae. A principal believes a formula to be fresh if it could only have
been constructed after the occurrence of some fresh event. Essentially this means that it could only have
been created by the application of some transformation to another fresh formula. A principal believes
anything he has originated to be fresh if he could not have chosen the same formula for the same purpose
before. As was done in Section 4.4.4, we can find two inference rules on the basis of which the other
inference rules can be explained. These two inference rules are:

F300.
P j� ](X); P 3 F (X)

P j� ](F (X))
F4.

P j� ](X); P 3 X; P 3 H(X)

P j� ](H(X))

The postulates F5, F9 and F10 are based on F300, while F6, F7, F8 and F19 are based on F4. Now, we
will explain why in F13 through to F16 we have the recognizability requirement. Consider that F13 can
be simplified using R4 to yield the following:

F13.
P j� �(fXgK); P j� ](K)

P j� ](fXgK)

Thus, F13 essentially states that if fXgK is believed to be recognizable and the encryption key K is
believed to be fresh, then fXgK can also be considered as fresh, since its creation could only have
occurred after the creation of the fresh key, K . The same reasoning can be applied to F14 using R5, F15
using R6 and F16 using R7. Furthermore, we can simplify F17 using R9 to obtain the following:

F17.
P j� �(fXg�K); P j� ](�K)

P j� ](fXg�K)

Again, this means that if fXg�K is received it can be recognized and since the encryption key �K is
believed to be fresh, it can immediately be concluded that the encryption is fresh, since it could only have
been created after the creation of the key, �K . We can derive a similar result using F18 and R8.



82 CHAPTER 4. GNY-BASED PROTOCOL ANALYSIS

4.4.6 Conveyance Rules

Inference rules in this category govern the advancement of a principal’s beliefs about other principal’s
states by examining formulae he is told. The freshness requirement in C1 through to C5 and C15 prevents
reasoning about non-fresh formulae since they may be a replay during an execution. For reasoning about
non-fresh formulae, C10 through to C14 and C16 replace the freshness requirement with the requirement
that the recipient knows that he is not the first to originate a formula.

We can simplify (C1, C10), (C2, C11), (C4, C13), (C5, C14), C6 and (C15, C16) by applying the
applicable recognizability inference rule, these being R4, R5, R9, R6, R8 and R4 respectively. For
example, C2 can be simplified to the following using R5:

C2.
P � �fXg�1

K
; C; P j� P

K

 ! Q; P j� ](X; K); P j� �(fXg�1
K
)

P j� Q j� X; P j� Q j� fXg�1
K
; C; P j� Q 3 (X; K)

C10 can be simplified to the following using R4:

C10.
P � �fXgK ; C; P j� P

K

 ! Q; P j� �(fXgK); P j� P a (fXgK)

P j� Q j� X; P j� Q j� fXgK ; C

And, C6 is simplified to the following using R8:

C6.
P � �fXg�K ; C; P j�

+K
7! Q; P j� �(fXg�K)

P j� Q j� X; P j� Q j� fXg�K ; C

In C7, the added premise that P j� ](X; �K) ensures that the conclusion P j� Q 3 (X;�K) results.
Finally, in laws C3 and C12 the recipient can check the authenticity of the hash by simply rehashing the
components X and S. C17 enables splitting of message extensions, which are essentially conjunctions of
one or more beliefs, while C8 enables dropping of message extensions completely. Similarly C9 enables
splitting of conveyed formulae. Finally, C18 enables principals to derive beliefs about others’ possessions
based on what they have conveyed, and C19 enables splitting of formula conjunctions which a principal
believes that someone else possesses.

4.4.7 Jurisdiction

Inference rules in this category reflect how different levels of mutual trust among principals affects their
reasoning about beliefs held by other principals. J2 and J1 are used to determine and to take on the beliefs
held by principals partaking in a protocol. J2 allows principal P to believe that principal Q believes in
the validity of a statement contained in an extension to a formula which P believes that Q conveyed. For
this inference rule to be applied, P must believe that Q is honest and competent and that the formula with
the attached extension is fresh. Once P believes that Q has confidence in the validity of a statement, he
can also believe in the validity of that statement if he believes that Q is an authority on the matter. This
is expressed by J1.

4.4.8 Rationality Rules

Two rationality inference rules supplement those already introduced and help to reason about a principal’s
beliefs regarding the states of principals including himself.



4.5 Determining Final Conditions 83

Firstly,
P j� P j� C

P j� C
. Also, if C1

C2
is an inference rule, then so is

P j� C1

P j� C2
.

Essentially, the rationality inference rules represent the view that some or all of the principals are rational
in advancing their beliefs. For example, the following inference rule can be derived from P9:

Q j� P 3 X; Q j� P 3 �K

Q j� P 3 fXg�K

If Q believes that P possesses a formula and a secret key, then Q believes that P possesses the decryption
of the formula with the key. However, note that the second rationality rule can be applied indefinitely to
produce useless inference rules.

4.5 Determining Final Conditions

In order to perform a GNY analysis, a designer must know what goals the protocol under inspection
should be expected to achieve [12]. There are two broad classes of security protocols that we will dis-
cuss. An authentication protocol verifies the identities of participants and then ensures that they agree on
an encryption key for later use. Information exchange protocols seek to securely transfer information be-
tween participants, ensuring that authentication of the sender, non-repudiation and integrity are achieved.
In this section we will present the recommended goals for authentication and information exchange pro-
tocols. With these goals in place, a GNY analysis will essentially involve a designer determining the
class of the protocol that he wishes to analyze, and then ensuring that these goals are fulfilled. Using
these goals, an analyzer can also make recommendations as to what the initial conditions for an analysis
should be in certain cases.

4.5.1 Authentication Protocols

As a basis for this discussion we have used the ideas presented in [1, 35]. Authentication protocols are
normally run as precursors to communication sessions which require confidentiality. Once an authenti-
cation protocol has executed, the participants should be convinced of each other’s identity and share a
session key which can be used to encrypt formulae to be transmitted [1]. Authentication protocols fall
into two categories [35]. Protocols in the first category can be viewed as only accomplishing authentica-
tion, ensuring that each participant has a session key which he believes to be suitable. A protocol in the
second category uses handshakes between the participants so that they can be convinced among them-
selves that each of them has successfully received the key and believes in its suitability. So, there are two
primary successive phases that take place in an authentication protocol, the last phase being optional:

1. During the key exchange phase, principals exchange or negotiate a session key that will be used
for further communication. This exchange can be arbitrated by an authentication server which
shares a symmetric key with each of the principals. If an authentication server is not used, then
public-key cryptography can be used to exchange a key or key components selected by one or both
of the principals. If an authentication server is used, then three possibilities exist [35]:

(a) The authentication server chooses the key and then distributes this key to each of the clients.

(b) One client chooses the key and then relays it to the other client via the authentication server.



84 CHAPTER 4. GNY-BASED PROTOCOL ANALYSIS

(c) Both clients choose the key by each selecting temporary keys and then constructing the final
key from these two components, which are exchanged via the authentication server.

In a similar vein, if public-key cryptography is used, then either one client can choose the session
key, or both can be involved. Once this phase of an authentication protocol has been completed,
both clients will possess the session key and should believe in its suitability.

2. During the handshake phase, the principals ensure among themselves that each of them has suc-
cessfully received the session key. A handshake can be one-way or two-way. In a one way hand-
shake only one principal declares that he has successfully received the key. However, in a two-way
handshake both principals declare this fact to each other. The following are examples of hand-
shakes that use timestamps:

� A one-way handshake in which A declares to B that he has successfully received the session
key K .

(i) A �! B : fA;B; TagK ; A
K
 ! B

� A two-way handshake in which A and B declare to each other that they have successfully
received the session key K .

(i) A �! B : fA;B; TagK ; A
K
 ! B

(i+ 1) B �! A : fB;A; TbgK ; A
K
 ! B

Handshakes that use nonces require an extra message when compared to those that use times-
tamps [35]. Often the first message in a handshake can be piggy-backed on a prior message. Once
the handshake phase has completed, the principals who received a handshake should be convinced
that the originator thereof possesses the key and that he believes in the suitability of the key.

The goals that we have referred to above can be formalized in GNY notation as eight end-conditions.
Authentication protocols that use two-handshakes should achieve all of these goals, while those that use
only a one-way handshake should achieve (1), (2) and either (3a) and (4a) or (3b) and (4b). Protocols
that do not use handshakes must achieve at least (1) and (2). Consider an authentication protocol in
which P and Q participate and the session key to be distributed is K . The recommended final beliefs
and possessions appear below:

(1a) P 3 K; (2a) P j� P
K
 ! Q; (3a) P j� Q 3 K; (4a) P j� Q j� P

K
 ! Q

(1b) Q 3 K; (2b) Q j� P
K
 ! Q; (3b) Q j� P 3 K; (4b) Q j� P j� P

K
 ! Q

Possession (1) and belief (2) are derived from phase 1, while beliefs (3) and (4) are derived from phase 2.
The being-told and possession laws can typically be used to derive (1), while conveyance laws and ex-
tensions can be used to derive (2). In this case, the recipient of a message which conveys trust in the
key must believe that the sender is honest and competent, and that he has jurisdiction over the suitability
of encryption keys. Belief (3) can be obtained through the application of conveyance laws to the hand-
shake. For belief (4) to be derived, the sender of the handshake must attach an extension to the formulae
encrypted with the exchanged session key. This extension must reveal his trust in the suitability of the
key. Then, the conveyance and jurisdiction laws can be used to derive (4). Note that the recipient of
the handshake must believe in the honesty and competence of the handshake sender. Throughout the
construction of an authentication protocol, the designer must keep in mind that the contents of encrypted
formulae should be fresh and recognizable to the recipient.



4.5.2 Information Exchange Protocols 85

4.5.2 Information Exchange Protocols

For this study we define information exchange protocols to be the mechanism by which principals ex-
change formulae. The aim of an information exchange protocol is to securely transfer information
between participants, ensuring that authentication of the sender, non-repudiation and integrity are all
achieved. An exchange consists of three steps that take place between the sender and the receiver of a
formula:

1. The formula to be exchanged is transmitted via a secure channel, created through the use of sym-
metric or public-key encryption. Both the sender and the receiver must believe in the suitability
of the encryption key, regardless of whether it is symmetric or asymmetric. Trust in a key can be
achieved by running an authentication protocol prior to the execution of the exchange protocol. If
a public key is being used to encrypt the formula, then a secret token must be included with the
formula to identify the sender. Both the sender and the receiver must believe that this token is a
suitable secret.

2. The recipient receives the transmitted message and then verifies the source by successfully decrypt-
ing it, or in the case of public-key encryption decrypting it and then verifying the secret token. The
contents of encrypted formulae must be fresh and recognizable, otherwise the GNY conveyance
laws cannot derive suitable beliefs. At this point in the protocol, the recipient should be convinced
of the origin of the formula that was conveyed and should possess it.

3. An acknowledgement message must be transmitted back to the sender to indicate that the formula
has been successfully received. This message should be constructed so that the sender can conclude
that the recipient believes he conveyed the formula. From this message, the sender should also be
able to convince himself that the recipient possesses the information conveyed. There are numerous
techniques in the GNY conveyance postulates which can be used. However, the simplest involves
transmitting a fresh keyed-hash of the formula and a secret token.

The goals that we have referred to above can be formalized in GNY notation as four end-conditions.
Every information exchange protocol should achieve these basic requirements when analyzed with the
GNY logic. Consider an information exchange protocol in which the sender is P , the receiver is Q and
the information to be exchanged is X . The recommended final beliefs and possessions follow below:

(1) Q 3 X; (2) Q j� P j� X; (3) P j� Q 3 X; (4) P j� Q j� P j� X

Possession (1) and belief (2) are derived from the first message sent from the sender to the receiver, while
beliefs (3) and (4) are derived from the acknowledgement message. The conveyance laws are typically
used to derive (2), while simple manipulation of being-told and possession laws derive (1). In the case of
belief (4), an extension can be used to convey (2) back to the sender. In this case, the sender must believe
that the recipient is honest and competent so that he can believe that the recipient believes the extension.
Lastly, belief (3) can be obtained by using conveyance laws, if the message is constructed appropriately.

4.6 Modifications to the Inference Rules

Since the formulation of the GNY logic in 1990, changes have been made to the inference rules to
solve inconsistencies that resulted in unsound conclusions. The rule sets have also been expanded to



86 CHAPTER 4. GNY-BASED PROTOCOL ANALYSIS

eliminate certain issues of incompleteness, modified to remove redundant premises and updated to allow
for automated forward-chaining. In this section we will examine some of the changes made to the logic.
The modifications that are described in Section 4.6.1 through to Section 4.6.4 are summarized from [53,
54], while those in the remaining sections have been added as a result of our own experiences with the
logic.

4.6.1 Possession Premises in Freshness and Recognizability Rules

In the original GNY logic, the freshness and recognizability rules did not include a premise which stated
that a principal can only obtain a belief in the freshness or recognizability of a formula if he possesses
the formula. For example, the original F30 appeared as follows:

P j� ](X)

P j� ](X; Y )

However, this rule, and the others formulated in a similar manner, are unsuitable for automated forward-
chaining simply because they can be applied indefinitely to generate new beliefs. To overcome this prob-
lem, an additional premise of the form P 3 X has been included in every freshness and recognizability
rule with a conclusion of the form P j� ](X) or P j� �(X). The resulting rules ensure that a principal
can only obtain a belief in the freshness or recognizability of a formula if he possesses the formula. We
will now discuss the rationale behind the modification to the freshness rules — the recognizability rules
can be handled in a similar manner.

The basic purpose behind applying the GNY logic is to reason about the beliefs and possessions of a
given principal. These beliefs and possessions are derived from messages which the principal receives
during a protocol run. However, the conclusions obtained from the application of a freshness rule are of
no practical value if they do not affect a principal’s beliefs about others, or his beliefs regarding what he
possesses.

The rule which enables a principal P to obtain beliefs from messages which he has received is the
jurisdiction rule J2, which has a premise of the form P j� Q j� (X ; C). This premise reflects
the requirement that P can only obtain beliefs from messages sent by some well-known principal Q,
and appears as the conclusion of the conveyance rules C1 through to C6, C10 through to C14, C15
and C16. Therefore, the statement P j� ](X) is of significance in deriving P ’s beliefs about others
only if it appears as a premise in one of these rules. Of these rules, only C1 through to C5, and C15
have a freshness requirement. Further, the premise set of each of these rules implies that P possesses
each formula occurring in the freshness premise of the rule. We will now formally state and prove this
property.

Write S ` C to denote the derivability of statement C from a set of statements S . Let K =

fC1;C2;C3;C4;C5;C15g, and let K denote the premise set of K . If P j� ](X1; : : : ;Xm)

is the freshness premise of K , then K ` P 3 X for every X 2 fX1; : : : ;Xmg.

The proof for C1 follows below. Note that the freshness premise in C1 has the form P j� ](X;K).
Since P j� ](X;K) is used in this rule to denote P j� ](X) or P j� ](K), we must first replace C1 by
two equivalent rules:



4.6.2 An Unsound Rule 87

C10.
P � �fXgK ; C; P 3 K; P j� P

K

 ! Q; P j� �(X); P j� ](X)

P j� Q j� X; P j� Q j� fXgK ; C; P j� Q 3 (X; K)

C100.
P � �fXgK ; C; P 3 K; P j� P

K

 ! Q; P j� �(X); P j� ](K)

P j� Q j� X; P j� Q j� fXgK ; C; P j� Q 3 (X; K)

In C10 we can apply T3, T2, T6 and P1 respectively to the first two premises to obtain P 3 X , while
P 3 K holds as a premise in C100, trivially. Proofs for C4 and C15 can be conducted in a similar vein,
while proofs for C2, C3 and C5 follow trivially.

4.6.2 An Unsound Rule

The original GNY inference rule set contained an unsound rule for R11. Let’s call this rule R110 and
examine the unsound conclusion which can be achieved.

R110.
P 3 H(X); P 3 X

P j� �(X)

Assume that P 3 X . By applying P6 and R110 we can derive the groundless conclusion that P j� �(X).
This supposedly means that P ’s possession of X is sufficient for him to believe that X is recognizable.
There is nothing wrong with P6 since it just states that a principal is capable of performing a calculation
on a formula which he possesses. The problem lies with R110. To fix R110, we introduce an additional
premise which states that P believes that the message digest of X is recognizable.

4.6.3 A Redundant Premise

The original GNY rule set included a secret S in the second premise of C4. However, this is unnecessary.
From P � �fX;< S >g+K and P 3 �K it follows by applying rules T2, T7, T4 and P1 that P 3 S.

4.6.4 Unsound Rule Combinations

When used together, the freshness rules F13 and F6, imply a strange result. Let’s examine such a scenario
and see how an unsound result can be achieved. Suppose that for principal P , all of the following
conditions hold:

– P j� �(X)

– P j� ](K)

– P 3 K

– P j� fXgK

Then, by applying F13 we obtain P j� ](fXgK). By further applying F6, we obtain that P j� ](X).
This problem is not only confined to the freshness rules F13 and F6, but is manifested in a number of
rule combinations from both the freshness and recognizability categories. The solution to this problem is
to propose side conditions for several of the freshness and recognizability rules, as seen in Appendix A.
These side conditions eliminate the derivation of unsound conclusions which occur in their absence.



88 CHAPTER 4. GNY-BASED PROTOCOL ANALYSIS

4.6.5 Rules Regarding Identifying Secrets

A secret that is used between two principals for identification purposes will appear in a protocol speci-
fication in two possible forms, namely S or < S >, depending on the context in which it is being used.
This dual representation can lead to difficulties when implementing the GNY rules in an automated anal-
ysis system, as the two representations will probably be viewed as different formulae, even though they
represent the same item. Assume that the following conditions hold:

– P j� ](X)

– P 3 X

– P 3 S

– P 3 H(X;< S >)

We cannot apply F4 to get the result P j� ](H(X;< S >)), as P possesses the compound formula
(X;S) by P3, not (X;< S >), which is syntactically distinct. So, we have to add a rule that will allow
us to derive that P possesses < S > if he already possesses a secret S:

P10.
P 3 S; P j� P

S

 ! Q

P 3 <S>
, S 62 fK;+K;�Kg

Now, assume that in the above conditions P believes S to be fresh instead of X . He possesses the
compound formula (X;< S >) by P10 and P3, however, he cannot believe it to be fresh as he doesn’t
believe in the freshness of either X or < S >. So, we must add another rule which will allow us to derive
that P believes < S > is fresh if he already believes S to be fresh:

F20.
P j� ](S); P 3 <S>

P j� ](<S>)
, S 62 fK;+K;�Kg

We can also add a similar recognizability rule which allows us to derive that P believes < S > is
recognizable if he already believes S to be recognizable:

R12.
P j� �(S); P 3 <S>

P j� �(<S>)
, S 62 fK;+K;�Kg

The following rule allows us to remove the angled brackets from an identifying secret after it has been
extracted from an encryption through the use of either T6 or T7:

T9. P � <S>
P � S

Lastly, we need to have some way of mimicking the symmetrical nature of the shared secret operator:

C20.
P j� P

S

 ! Q

P j� Q
S

 ! P

This rule prevents us from having to manually specify each form of the shared secret operator in the
initial conditions.



4.6.6 Dropping Formula Extensions 89

4.6.6 Dropping Formula Extensions

An extension forms an integral part of a GNY formula. However, formulae with extensions can some-
times cause analysis difficulties if the extensions cannot be dropped or handled by the GNY rules. Current
GNY rules allowing for the dropping or handling of extensions include T3, P2, R1, R2, F1, F2, C8 and
C17. Assume that the following conditions hold:

– P � �fXgK ; C

– P 3 K

– P j� P
K
 ! Q

– P j� �(X)

– P j� P a (fXgK ; C)

Now, even though the premises are those found in C10, C10 cannot be applied as the final never-
originated-here condition includes an extension. Thus, we add need to add the following rule:

C21.
P j� Q a (X ; C)

P j� Q a (X)

Now, after applying C21 to the above conditions, we will end up with the result P j� P a (fXgK),
which will allow for the application of C10. Similarly, C21 can also be used in combination with C11
through to C14 and C16. Rule C22 has also been added to the postulate set to allow for the dropping of
extensions that may be attached to secrets in shared secret suitability statements.

4.7 Example Analyses

This section analyzes two security protocols using the GNY logic. The first is an information exchange
protocol that seeks to transfer a formula from one principal to another and the second is an authentication
protocol that transfers a shared key through the use of public-key cryptography. Significant goals that are
achieved during the analysis are highlighted by drawing a box around them.

4.7.1 An Information Exchange Protocol

The information-exchange protocol which we will analyze appears as follows:

(1) A �! B : fTa; B;X; SgKab

(2) B �! A : H(X;< S >)

The aim of this protocol is to transfer the formula X from A to B. The first message in the protocol
transfers the information, while the second serves as a confirmation of the success of the transfer. The
key Kab is shared between the two principals and already held by both of them. A secret S is transmitted
to B so that A will be able to identify the hash in the second message as originating from B. The
timestamp Ta is used to ensure freshness of the encryption in the first message. The protocol parser
produces the following output after extensions have been appended to formulae which use secrets:



90 CHAPTER 4. GNY-BASED PROTOCOL ANALYSIS

(1) A �! B : �fTa; B;X; SgKab
; A

S

 ! B

(2) B �! A : �H(X;< S >); A j� X

The initial assumptions are categorized and listed as follows:

Possessions: A 3 (Ta; B;X; S;Kab); B 3 Kab

Recognizability: B j� �(B)

Freshness: B j� ](Ta); A j� ](S)

Shared Secrets: A j� A
Kab
 ! B; B j� A

Kab
 ! B; A j� A

S
 ! B

Trustworthiness: B j� A j) A j� �; A j� B j) B j� �

Jurisdiction: B j� A j) A
S
 ! B

Thus, A and B both possess the key Kab and believe it to be suitable for encrypted communication. A
initially possesses the secret S and believes it to be suitable for identification purposes between himself
and B, while B believes that A is an authority on the suitability of S. A and B both consider each other
to be competent and honest. The timestamp Ta must be believed to be fresh by B, while S is believed to
be fresh by A. Lastly, B can recognize his own identifier.

For message 1, applying the inference rules E1, E5, E2 and T1:

B � �fTa; B;X;Na; SgKab
; A

S
 ! B : : : (1)

Now, applying T3, T2, T6, T4, P1, P4:

B 3 X

Then, from (1), F30, R30, C1, F5, J2 and J1:

B j� A
S
 ! B

Also, from (1), F30, R30, C1 and C9:

B j� A j� X

For message 2, applying the inference rules E1, E4, E2 and T1:

A� �H(X;< S >); A j� X : : : (2)

Now, using F30, R30, C3, P1, P2, F4 and J2:

A j� B j� A j� X

Finally, from (2), F30, R30 and C3:

A j� B 3 X

From this analysis we can determine that four important goals are attained by this protocol. Firstly, B
obtains the component X and believes that A was the one who conveyed it. And secondly, A believes
that B believes that A originated X and A also believes that B has successfully received X .



4.7.2 An Authentication Protocol 91

4.7.2 An Authentication Protocol

The authentication protocol which we will analyze appears as follows:

(1) A �! B : A;Na

(2) B �! A : fB; fNag�Kb
;K;Nbg+Ka

; fNagK

(3) A �! B : fNbgK

The aim of this protocol is to transfer the session key K from B to A. B generates the key, while A
requests it by initiating the protocol run. The two nonces, Na and Nb, are used to provide freshness and
the ability to identify that encryptions have not been corrupted. A two-way handshake takes place during
the protocol run, the first handshake being embedded in the second message, and the last being embedded
in the final message. The purpose of these handshakes is to convince the principals that each of them has
successfully received the key and believes in its suitability. The protocol parser produces the following
output after extensions have been appended to formulae which use secrets:

(1) A �! B : A;Na

(2) B �! A : fB; �fNag�Kb
; A

K

 ! B;K;Nbg+Ka
; �fNagK

(3) A �! B : �fNbgK ; A
K

 ! B

The initial assumptions are categorized and listed as follows:

Possessions: A 3 (A;Na;�Ka;+Kb); B 3 (B;Nb;+Ka;�Kb); B 3 K

Recognizability: A j� �(Na); B j� �(Nb)

Freshness: A j� ](Na); B j� ](Nb)

Public Keys: B j�
+Kb
7! B; B j�

+Ka
7! A; A j�

+Ka
7! A; A j�

+Kb
7! B

Shared Secrets: B j� A
K
 ! B

Trustworthiness: A j� B j) B j� �; B j� A j) A j� �

Jurisdiction: A j� B j) A
K
 ! B

B possesses the shared key K , A’s public key and his own private key, while A possesses his private key
and B’s public key. Both A and B regard the nonces which they originate to be recognizable and fresh,
and they also trust in the suitability of their own and each other’s public keys. B is considered by A to
be an authority on the suitability of the shared key. A and B both consider each other to be honest and
competent. Lastly, B believes that K is a suitable secret key.

For message 1, applying the postulates E1, T1 and P1:

B 3 (A;Na)

For message 2, applying the postulates E1, E7, E2, E1, E3, E9 and T1:

A� fB; �fNag�Kb
; A

K
 ! B;K;Nbg+Ka ; �fNagK : : : (1)

Now applying T4, T7 and T4:



92 CHAPTER 4. GNY-BASED PROTOCOL ANALYSIS

A� �fNag�Kb
; A

K
 ! B

Then, using C6, F9 and J2:

A j� B j� A
K
 ! B

Further, applying J1:

A j� A
K
 ! B

From (1), T4, T7, T4 (isolate K and Nb), P1 and P4:

A 3 K and A 3 Nb

From (1) and T4:

A� �fNagK

Then applying C1:

A j� B 3 K

For message 3, applying the postulates E1, E5 and T1:

B � �fNbgK ; A
K
 ! B : : : (2)

Applying C1:

B j� A 3 K

And, finally applying T2, T3, P1, F5 and J2:

B j� A j� A
K
 ! B

In this example, two of the goals which we wish to achieve for this class of protocol are in our initial
assumptions. Besides these two, another six significant goals are achieved. Firstly, A obtains the session
key K and trusts in its suitability. A also believes thatB trusts in the suitability ofK and that B possesses
K . Lastly, B is convinced that A possesses K and that A trusts in the suitability thereof.



4.8 Closing Remarks 93

4.8 Closing Remarks

GNY enhances the framework provided by BAN by defining a protocol description language and a pro-
tocol parser. It is also more general and does not need several default assumptions required by BAN. The
notion of recognizability captures a recipient’s expectation of the redundancy in an encrypted formula
and does not presuppose how redundancy is provided. Also, it is not assumed that a principal is able
to determine that he was not the first to originate certain formulae. Instead, backward replays of fresh
messages are detected during the parsing and inference rule application process. However, if a principal
has the ability to determine that he was not the first to originate certain formulae then he can express this
in his initial beliefs.

Formula extensions enable the distinction between a principal’s possessions and beliefs. Because of this
distinction a principal can convey a formula which he possesses, even though he has no confidence in
the content of the formula. This stands in contrast to BAN logic, which states that if a principal sends a
formula, then the recipient can believe that the sender has confidence in the formula.

P j� ](X); P j� Q j� X

P j� Q j� X
(BAN nonce verification rule)

The use of extensions also permits the separate treatment of the contents of a formula and the information
implied by the conveyance of such a formula. This emphasis also separates the reasoning about the
physical world from reasoning about other principals’ beliefs, bringing in the ability to reason at more
than one level. What a protocol achieves depends on the level of mutual trust among the participants.

Principals may obviously only convey formulae which they possess at the time a message is constructed.
In the same way, beliefs included in formula extensions must hold at the time the formula is conveyed.
BAN does not include checks of this nature and thus infeasible results may be obtained when ill-designed
protocols are analyzed. The notion of eligibility makes these checks automatic in the GNY analysis
process thus unifying the detection of protocol inconsistencies and protocol analysis. However, eligibility
laws do not exclude the fact that some principals may lie at runtime and convey messages with extensions
irrespective of whether they believe the extension or not. This is possible because there is no general way
in which a link can be established between what a principal believes and what a principal says he believes.
It all boils down to a matter of trust on the side of the recipient.

A replay is any act in which an attacker retransmits a message that was originally transmitted by another
principal. Replaying a message to the same recipient is a forward replay, while replaying a message to the
originator is a backward replay. When carrying out a protocol analysis, one only wants to derive beliefs
from and draw conclusions about formulae that are not replays. Formulae from which conclusions can be
drawn using the conveyance inference rules are symmetric and private-key encryptions, keyed hashes and
public-key encryptions containing a shared secret. By prefixing a star to these formulae during the parsing
process one can be certain that they are not replays from the current session. The conveyance inference
rules prevent reasoning about formulae which are possible replays by only reasoning about formulae
prefixed by a star or formulae that a principal believes he can recognize as never having originated.

A protocol analysis consists of annotating the protocol with statements and manipulating these statements
with the aid of the inference rules. A protocol is essentially a sequence of told-statements. An annotation
for a protocol consists of a sequence of assertions (conjunctions of statements) inserted before the first
told-statement and after each told-statement. The first assertion contains the assumptions and the last
contains the conclusions. As in BAN, if the assumptions hold, then each assertion should hold after the
execution of its respective protocol prefix. The assertions are derived by the syntactic application of the



94 CHAPTER 4. GNY-BASED PROTOCOL ANALYSIS

inference rules to the derived statements. The goal of an analysis should be be to derive the final positions
of each of the principals at the termination of a given protocol. This final position is represented by the
corresponding assertions.



Chapter 5

Automated GNY Analysis with GYNGER

“Security, like correctness, is not an add-on feature.”

— Andrew S. Tanenbaum

The inherent appeal in using modal logics stems from their simplicity and effectiveness for analyzing
cryptographic protocols. Logics can be systematically applied to reason about the working of protocols,
often helping to reveal missing assumptions, deficiencies or redundancies. This can then lead to the
protocol, the assumptions or the original goals being re-evaluated, after which the inference rules can be
reapplied to determine whether the goals are attainable after these modifications have been made.

However, the process of applying and reapplying the inference rules is often tedious and error-prone when
carried out manually. Another problem is that the possibility of accidentally missing conclusions drawn
from inference rules increases in logics such as GNY, which has more than eighty inference rules, some
of them being quite complex. Thus, due to the difficultly of manually analyzing protocols, a number of
automated logic-based analysis tools have been developed [20, 27, 61, 47, 14, 54]. Of these tools, the
Prolog-based analyzer in [54] and the Objective CAML-based [69] analyzer in [61] both use GNY to
analyze protocols, while the HOL-based analyzer in [14] uses a derivative of GNY, known as BGNY.

Our main aim in automating a GNY protocol analysis is to be able to determine whether one or more
statements describing the goals of a specific protocol are derivable from a given set of initial assumptions.
However, it is also desirable to generate all of the statements that are derivable for a given protocol as this
would allow us to compare the final states of each principal. For this reason, a forward-chaining based
approach would be the most suitable strategy [70], since it would result in the repeated application of
the GNY inference rules to the set of statements consisting of the protocol messages, initial assumptions
and derived statements, until all of the statements which are derivable have been generated. In contrast,
backward-chaining would merely determine whether a given goal is achievable [70].

Initially we thought of integrating the analyzer described in [54] within the SPEAR II Framework. This
decision was primarily motivated by the analyzer’s simplicity and reliance on Prolog as an implemen-
tation language. However, upon closer examination we discovered limitations in the syntax and scope
of the analyzer. These limitations were enough to severely hamper the quality of GNY analyses that
we anticipated. Thus, we decided to construct our own Prolog-based forward-chaining GNY analyzer,
named GYNGER, expanding on the concepts presented in [54]. However, because the authors of [54]
were unable to provide us with a working copy of their analyzer, we had to resort to building GYNGER
from scratch and could only use the minimal source code fragments alluded to in [54].

95



96 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

The aim of this chapter is to describe the automated GYNGER analysis tool which we have developed.
We will briefly sketch some background information and then describe the GNYGER source code, show-
ing how we implemented the GNY inference rules. Four sample protocol analyses which employ the tool
will also be discussed. We conclude with a comparison of GYNGER and the analyzer described in [54].

5.1 Preliminary Issues

Since the analyzer will be employing forward-chaining techniques, a subset of the existing GNY rules
which are incompatible with this approach will have to be removed. An informal proof will then be con-
structed to show that the remaining inference rules can be used to derive a finite number of conclusions
in a finite number of steps based on the initial assumptions and messages of a given protocol.

5.1.1 Removal of Existing GNY Rules

Sixteen of the eighty-eight GNY rules have not been incorporated within GYNGER. However, the exclu-
sion of these rules does not affect the useful inferences which can be derived, but instead helps to ensure
that the logical statements derivable from a given protocol can be deduced in a finite number of steps.

The possession rules are useful for enforcing a possession consistency check, but are of no use otherwise.
Thus, several of the possession rules have been removed, specifically P3 and P6 through to P9, since each
of these rules can be applied indefinitely to produce trivial new possessions which have no bearing on an
analysis. For example, consider the possession rule for shared keys:

P7.
P 3 X; P 3 K

P 3 fXgK ; P 3 fXg
�1

K

This rule may be applied to an initial set containing P 3 K and P 3 X to indefinitely generate multitudes
of new encryptions and decryptions, none of which would be pertinent to the analysis. Along with the
selected possession rules, we also remove all of the eligibility rules, as they too can be applied without
terminating. As a result of removing the eligibility rules, we have also removed T1, which contains an
eligibility premise.

5.1.2 Finiteness of Derivations

In this section we will sketch a proof for the following statement based on the GNY rule set presented in
Appendix A. This proof is similar to the one presented in [54].

The statements derivable from a finite set of idealized protocol steps and initial assumptions
are finite in number, and are therefore derivable in a finite number of steps.

We will use the notation (D=E) to denote a generic inference rule, where D is the set of premises in
the rule, and E is the rule’s conclusion. If a rule has multiple conclusions, then it is decomposed into
separate rules, each with a single conclusion. Now, denote the modified set of rules by R. Then, we
define an operator � on a set of statements, S , as follows:

�(S) = S [ fE : 9(D=E) 2 R such that D � Sg



5.1.2 Finiteness of Derivations 97

Thus, � returns S together with the statements derivable from S by applying the inference rules in R
once. We now want to show that there exists an integer n such that

�n(S) = �1(S), where �m(S) represents
m[

i=0

�i(S).

The key step in this proof is the definition of a relation � over the set of statements which have the form
P 3 X , P �X and P j� C . We create seven subsidiary relations ��, �3, ��

3
, �j�, �3

j�, ��j� and �j�

3

and use them as follows:

(1) P �X � P � Y , if X �� Y
(2) P 3 X � P 3 Y , if X �3 Y

(3) P 3 X � P � Y , if X ��
3
Y

(4) P j� C � P j� D, if C �j� D

(5) P j� C � P 3 X , if C �3

j�
X

(6) P j� C � P �X , if C ��
j�
X

(7) P 3 X � P j� C , if X �j�

3 C

The definition of �� is read off the being-told rules T2, T3, T4, T5, T6, T7, T8 and T9 where T4 is used
in its two symmetrical forms. The following clauses result:

(1) X �� �X

(2) X �� X ; C

(3) (i) X �� (X;Y )

(ii) X �� (Y;X)

(4) Xi �� F (X0;X1; : : : ;Xn�1)

(5) X �� fXgK
(6) X �� fXg+K
(7) X �� fXg�K
(8) S �� < S >

The definition of �3 is read off the possession rules P2, P4 and P5, where P4 is used in its two symmet-
rical forms. The following clauses are obtained:

(1) X �3 X ; C

(2) (i) X �3 (X;Y )

(ii) X �3 (Y;X)

(3) Xi �3 F (X0;X1; : : : ;Xn�1)

The definition of ��
3

consists of a single clause which is read off the possession rule P1:

(1) X ��
3
X

The definition of �j� is read off the conveyance rules C8, C9, C17 through to C22, where C9, C17 and
C19 are used in their two symmetrical forms, the jurisdiction rules J1, J2 and J3, and finally, R2 and F1,
yielding clauses as follows:



98 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

(1) Q j� X �j� Q j� X ; C

(2) (i) Q j� X �j� Q j� (X;Y )

(ii) Q j� X �j� Q j� (Y;X)

(3) (i) Q j� X ; C �j� Q j� X ; (C;C 0)

(ii) Q j� X ; C �j� Q j� X ; (C 0; C)
(4) Q 3 X �j� Q j� X

(5) (i) Q 3 X �j� Q 3 (X;Y )

(ii) Q 3 X �j� Q 3 (Y;X)

(6) Q
S
 ! P �j� P

S
 ! Q

(7) P a (X) �j� P a (X ; C)

(8) P
S
 ! Q �j� P

S;C
 ! Q

(9) C �j� Q j� C

(10) Q j� C �j� Q j� (X ; C)

(11) Q j� C �j� Q j� Q j� C

(12) �(X) �j� �(X ; C)

(13) ](X) �j� ](X ; C)

The definition of �3

j� consists of two clauses. The first is obtained from the freshness postulates F2
through to F20 and the second from the recognizability postulates R1 and R30 through to R12:

(1) ](X) �3

j� X

(2) �(X) �3

j� X

The definition of ��j� is read off the conveyance rules C1 through to C7 and C10 through to C16. Each
rule adds as many clauses to the definition as there are conclusions, resulting in the following collection:

(1) (i) Q j� X ��j� �fXgK ; C

(ii) Q j� fXgK ; C ��
j�
�fXgK ; C

(iii) Q 3 X ��
j�
�fXgK ; C

(iv) Q 3 K ��j� �fXgK ; C

(2) (i) Q j� X ��j� �fXg
�1
K ; C

(ii) Q j� fXg�1K ; C ��j� �fXg
�1
K ; C

(iii) Q 3 X ��j� �fXg
�1
K ; C

(iv) Q 3 K ��j� �fXg
�1
K ; C

(3) (i) Q j� (X;S) ��j� �H(X;< S >); C

(ii) Q j� H(X;< S >); C ��j� �H(X;< S >); C

(iii) Q 3 X ��j� �H(X;< S >); C

(iv) Q 3 S ��j� �H(X;< S >); C

(4) (i) Q j� (X;S) ��j� �fX;< S >g+K ; C

(ii) Q j� fX;< S >g+K ; C ��j� �fX;< S >g+K ; C

(iii) Q 3 X ��j� �fX;< S >g+K ; C

(iv) Q 3 S ��j� �fX;< S >g+K ; C

(v) Q 3 +K ��j� �fX;< S >g+K ; C

(5) (i) Q j� X ��j� �fXg�K ; C

(ii) Q j� fXg�K ; C ��j� �fXg�K ; C

(6) (i) Q 3 X ��j� �fXg�K



5.1.2 Finiteness of Derivations 99

2

1

4

3

3

�

3

j�
j�

j�

3
j�

�

3 represents a possesses statement.

j� represents a believes statement.
� represents a told statement.

3

Figure 5.1: A finite state machine showing chains that can be formed for the � relation.

(ii) Q 3 �K ��j� �fXg�K
(7) (i) Q j� (X;S) ��j� �fX;< S >gK ; C

(ii) Q j� fX;< S >gK ; C ��j� �fX;< S >gK ; C

(iii) Q 3 X ��j� �fX;< S >gK ; C

(iv) Q 3 S ��j� �fX;< S >gK ; C

(v) Q 3 K ��j� �fX;< S >gK ; C

Finally, the definition of �j�

3 is read off the possession rule P10:

(1) < S >�
j�

3 P
S
 ! Q

Of the seven subsidiary relations, the most critical in the analysis are ��, �3 and �j�. Each of these
relations is well-founded, which means that they do not give rise to infinitely descending chains. For ex-
ample, in the case of�� the formula on the left in each clause is syntactically shorter than the formula on
the right, so there cannot be infinitely descending chains with respect to this relation. Well-foundedness
of �3 and �j� is proved just as easily. Note that we do not require well-foundedness of the remaining
three subsidiary relations, as they cannot give rise to chains.

Thus, from the definition of � above, it is clear that � is also well-founded. In fact, any infinite descend-
ing chain with respect to � must contain an infinite descending chain of statements of one of the three
forms, namely P 3 X , P �X or P j� C . To justify this fact, notice that the finite state machine in Fig-
ure 5.1 is based on the� relation. If a chain relative to� is infinite, then we will be looping repeatedly in
either state 2, 3, or 4, since the loop between states 3 and 4 cannot be repeated infinitely and there are no
other cycles. Thus, any infinite chain will consist exclusively of statements of the form P 3 X , P �X

or P j� C . However, a chain of one of these three forms must have arisen from an infinite descending
chain with respect to one of the subsidiary relations, namely �j�, �� or �3, and this is impossible.

Another property of the seven subsidiary relations is that they are finitary, which means that given any
statement C of the form P 3 X , P �X or P j� C0, the set of statements fD : D � Cg is finite. This
is obvious in the case of ��, and is equally easily proved for the other six relations. It follows that �
is also finitary. Since � is well-founded and finitary, it follows by the contrapositive of König’s Infinity
Lemma1 that for any C the set of statements fD : D�� Cg, where�� denotes the transitive and reflexive

1König’s Infinity Lemma states that a tree is infinite (has infinitely many edges) iff it has a node of infinite degree or it has
an infinitely long path [48].



100 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

closure of �, is finite as well.

Now, the definitions of the subsidiary relations and � are constructed so as to give a straight-forward
guarantee that for each rule (D=E) 2 R, there exists C 2 D such that E � C; that is, in each rule
the conclusion is smaller, with respect to �, than at least one of the premises. Thus, if S is the set of
idealized analysis steps and initial assumptions of the protocol, and C 2 �1(S), then there exists S 2 S
such that C �� S. Thus,

�1(S) �
[

S2S

fC : C �� Sg

Since the right-hand side is a finite union of sets, given the assumption that S is finite, �1(S) is finite, as
was required.

5.2 Implementing the Analyzer

The Prolog-based analyzer that we have created relies on a forward-chaining inference engine to generate
all of the GNY beliefs and possessions that can result from the systematic application of the inference
rules to a set of initial assumptions and message steps. To conduct an analysis, a user needs to specify
the message steps and initial conditions. Upon completion of the analysis, the Prolog database can be
queried to determine whether specific GNY statements are true, or alternatively all of the derived facts
or a subset thereof can be displayed. If the user chooses, a proof can be generated for each fact in the
database, showing all of the steps and inference rules that were required to generate the result.

5.2.1 Representing GNY Structures

The Prolog language is well-suited for implementing a GNY analyzer as it is straight-forward to map all
of the GNY constructs into suitable Prolog counterparts which can be easily manipulated and queried.

5.2.1.1 Formulae and Statements

Formulae are the components which are used to construct protocol messages and typically contain con-
stants such as principal names, nonces, shared keys, etc. These constants are represented by characters
enclosed in single quotes. For example, the nonce Na is denoted as ’Na’. The remaining GNY formulas
are represented by suitable Prolog counterparts:

GNY Formula Prolog Representation
(X;Y ) [X, Y]
fXgK and fXg�1K encrypt(X, shared(K)) and decrypt(X, shared(K))
fXg+K and fXg�K encrypt(X, public(K)) and encrypt(X, private(K))
H(X) hash(H, X)
F (X) function(F, X)
< S > identifyingSecret(S)
�X star(X)
X ; C extension(X, C)



5.2.1 Representing GNY Structures 101

Logical statements are represented by appropriately named Prolog structures:

GNY Statement Prolog Representation
P �X told(P, X)
P 3 X possesses(P, X)
P j� X conveyed(P, X)
](X) fresh(X)
�(X) recognizable(X)

P
S
 ! Q secret(P, S, Q)

+K
7! Q public(K, Q)
P a (X) neverOriginated(P, X)
(C1; C2) [C1, C2]
P j� C believes(P, C)
P j=) C controls(P, C)
P j=) P j� � honest(P)

The translations shown above allow us to represent any formula or statement in GNY syntax by an
appropriate Prolog-style counterpart. For example, A�(Na; �fX;TbgK ; ](Na)) can be represented as
told(’A’, [’Na’, extension(star(encrypt([’X’, ’Tb’], shared(’K’))), fresh(’Na’))]).

5.2.1.2 Storing Statements

Apart from representing GNY constructs in Prolog syntax, we also need to store the derivation informa-
tion for statements obtained through the application the inference rules. The predicate fact/3, which
defines an inference step, is used for this purpose, and appears as follows:

fact(Index, Statement, reason(PremiseList, Rule))

The argument Statement is bound to a derived statement, while the integer Index is used to ref-
erence instances of fact/3. In the last argument, PremiseList is a list containing the indices of
the premises that were used in deriving Statement through the application of Rule. For consistency,
the statements representing the idealized protocol messages and initial assumptions are also stored as in-
stances of fact/3. In this case, PremiseList would be empty and Rule would be either ’Step’
or ’Assumption’. The following are examples of fact/3 clauses:

fact(1, told(’A’, encrypt([’Nb’, ’data’], shared(’K’))), reason([], ’Step’)).
fact(2, possesses(’A’, shared(’K’)), reason([], ’Assumption’)).
fact(3, told(’A’, [’Nb’, ’data’]), reason([1, 2], ’T6’)).

Protocol goals are represented in a similar way with the goal/2 predicate:

goal(Index, Statement)

Once an analysis is complete, a proof is constructed for each successful goal/2 predicate defined for
the protocol. As new statements are derived through the application of the inference rules, the maximum
index among the fact/3 predicates has to be extracted so that the newly derived statement will have
a unique index that is one greater than the previous maximum. The predicate getMaxFactIndex/1,
along with the helper predicate getMaxInList/2, is used for this task:



102 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

getMaxInList([Item], Max) :-
Max is Item.

getMaxInList([Head | Tail], Max) :-
getMaxInList(Tail, TempMax),
Max is max(Head, TempMax).

getMaxFactIndex(MaxIndex) :-
bagof(Index, XˆYˆfact(Index, X, Y), IndexList),
getMaxInList(IndexList, MaxIndex).

Essentially, getMaxFactIndex/1 collects all of the indices within fact/3 into a list and then finds
the maximum in this list using getMaxInList/2. The maximum index is returned in the argument
MaxIndex.

5.2.2 The Forward-Chaining Inference Engine

The GNY inference rules are all specified through the use of a rules/0 predicate. For each GNY rule,
there is at least one instance of the rules/0 predicate. For example, the rules/0 predicate for T6
follows below:

rules :-
fact(Premise1, told(P, encrypt(X, shared(K))), _),
fact(Premise2, possesses(P, shared(K)), _),
Conclusion = told(P, X),
not(fact(_, Conclusion, _)),
getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,
PremiseIndices = [Premise1, Premise2],
asserta(fact(NewIndex, Conclusion, reason(PremiseIndices, ’T6’))),
asserta(addedFacts).

The basic pattern followed in a typical instance of the rules/0 predicate is to first check that all of the
premises of the respective GNY rule are true and then to assert the conclusion in the Prolog database if it
has not yet been asserted. After asserting the conclusion, the addedFacts atom is also asserted in the
database to indicate that a conclusion was derived during the current cycle. To cycle through all of the
inference rules, the oneCycle/0 predicate is employed:

oneCycle :-
rules,
fail.

The fail clause in the oneCycle/0 predicate ensures that back-tracking takes place, resulting in all
of the rules/0 predicates being executed as Prolog attempts to satisfy the decision point prior to the
fail clause. To implement forward-chaining, the forward/1 predicate is used:

forward(Cycle) :-
Cycle > 0,
done.

forward(Cycle) :-
not(oneCycle),
NextCycle is Cycle + 1,
forward(NextCycle).



5.2.3 Coding the GNY Rules 103

The forward/1 predicate recursively calls itself until the done/0 predicate is satisfied. Notice that
since oneCycle/0 always fails, we have to take the complement using not in the second instance of
forward/1. The done/0 predicate checks whether any new beliefs or possessions have been added
to the Prolog database in the current cycle:

done :-
not(retract(addedFacts));
(

retractall(addedFacts),
fail

).

The done/0 predicate tries to determine if the addedFacts atom has been asserted by attempting to
retract it from the Prolog database. If addedFacts has been asserted, then all the remaining instances
are retracted from the database, and the done/0 predicate fails. Otherwise, if no atoms of addedFacts
can initially be retracted, then done/0 succeeds because of the or condition. Lastly, an analysis is begun
by invoking the analyze/0 predicate:

analyze :-
fact(_, _, _),
asserta(addedFacts),
forward(1).

This predicate first checks whether any facts reside in the database and then starts the forward-chaining
process by asserting the addedFacts atom and calling the forward/1 predicate with an argument
of 1 to initialize the cycle number. The reason why addedFacts is asserted is because we want to
ensure that the second instance of forward/1 is also invoked in the first cycle. If addedFacts was
not asserted then done/0 would succeed and forward-chaining would not commence.

5.2.3 Coding the GNY Rules

The analyzer implements seventy-two of the eighty-eight GNY rules listed in Appendix A, omitting
those which inhibit forward-chaining. All of these rules require at least one instance of the rules/0
predicate, some requiring more because of multiple conclusions. Thus, due to the size of the code that
was written to implement the rules, we cannot show the Prolog source for every rule. However, we will
discuss the important issues which emerged during development and illustrate these with sample code.

5.2.3.1 Being-Told and Possession Rules

The being-told rules T2, T3 and T6 through to T9, as well as the possession rules P1 and P2 are straight-
forward to implement. An example of how to code these rules in Prolog was illustrated in Section 5.2.2
using the source code for T6. However, (T4, P4), (T5, P5) and P10 require a bit more thought. When
implementing T4 and P4, we have to consider that a list of formulae may contain more than two elements.
In fact, it could contain quite a couple. So, we want to implement the intent of these two rules, while still
making sure that we do not generate too many superfluous statements. The source code for T4 appears
as follows:



104 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

rules :-
fact(Premise, told(P, [X | _]), _),
Conclusion = told(P, X),
not(fact(_, Conclusion, _)),
getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,
asserta(fact(NewIndex, Conclusion, reason([Premise], ’T4’))),
asserta(addedFacts).

rules :-
fact(Premise, told(P, [_ | Rest]), _),
length(Rest, LengthOfRest),
(

LengthOfRest > 1,
Conclusion = told(P, Rest);

LengthOfRest =:= 1,
getHead(Rest, Head),
Conclusion = told(P, Head)

),
not(fact(_, Conclusion, _)),
getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,
asserta(fact(NewIndex, Conclusion, reason([Premise], ’T4’))),
asserta(addedFacts).

This code ensures that if we are told a list of elements, then we are told the head element and the tail
elements. For example, P � (X1;X2; X3;X4) results in the conclusions P �X1 and P � (X2;X3;X4).
Continuing in this manner, we would eventually end up with P being told each of the elements in the
original list. Using P1, we could then derive that P possesses each of these elements. To determine
whether a principal possesses a list of formulae, we merely need to determine whether he possesses each
formula in the corresponding list. The above approach to T4 can be similarly applied to P4, as well as
C9, C17 and C19. One more predicate implementing T4 deserves mention:

rules :-
fact(Premise, told(P, [Head | Rest]), _),
(

Head = identifyingSecret(S),
Items = Rest;

member(identifyingSecret(S), [Head | Rest]),
delete([Head | Rest], identifyingSecret(S), Items)

),
length(Items, LengthOfItems),
(

LengthOfItems =:= 1,
getHead(Items, ItemHead),
Conclusion = told(P, ItemHead);

LengthOfItems > 1,
Conclusion = told(P, Items)

),
not(fact(_, Conclusion, _)),
getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,
asserta(fact(NewIndex, Conclusion, reason([Premise], ’T4’))),
asserta(addedFacts).



5.2.3 Coding the GNY Rules 105

This version of T4 ensures that if P�(X1;X2; : : : ; < S >; : : : ;Xn), then P�(X1;X2; : : : ; Xn) results
as a conclusion. The removal of the secret helps in the implementation of C4 and C13, since it leads to the
principal possessing all of the formulae, except for the identifying secret, thus allowing the freshness and
recognizability postulates to be applied to these remaining formulae as one single compound formula —
recall that the freshness and recognizability postulates can only be applied if the formula under scrutiny
is possessed. Let’s now examine the code for implementing T5:

rules :-
fact(Premise, told(P, function(_, Args)), _),
(

not(is_list(Args)),
Conclusion = told(P, Args),
not(fact(_, Conclusion, _)),
getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,
asserta(fact(NewIndex, Conclusion, reason([Premise], ’T5’))),
asserta(addedFacts);

is_list(Args),
assertSingleArgTold(Premise, P, Args, 0)

).

This code makes use of the assertSingleArgumentTold/4 predicate if the argument to the func-
tion is a list, for example function(’F’, [’X’, ’Y’]). However, if the argument is atomic, then
it will be asserted that the principal who was told the function was also told the argument. So, if we
have P �F (X), then the conclusion P �X would result. The assertSingleArgTold/4 predicate
appears as follows:

assertSingleArgTold(Premise, P, Args, ArgsIndex) :-
(

length(Args, LengthOfArgs),
ArgsIndex >= 0, ArgsIndex < LengthOfArgs,
nth0(ArgsIndex, Args, Nth0Item),
delete(Args, Nth0Item, SubsetArgs),
(

Conclusion = told(P, Nth0Item),
not(fact(_, Conclusion, _)),
possessesAll(P, SubsetArgs, PossessionPremiseIndices),
getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,
append([Premise], PossessionPremiseIndices, Indices),
asserta(fact(NewIndex, Conclusion, reason(Indices, ’T5’))),
asserta(addedFacts);

true
),
succ(ArgsIndex, NextArgsIndex),
assertSingleArgTold(Premise, P, Args, NextArgsIndex)

);
true.

The assertSingleArgumentTold/4 predicate loops through each of the elements in Args, using
ArgsIndex to keep track of the current position. On each iteration, a new argument list is created
with the ith element deleted from the original list, where i is the current position. If all of the elements
in this new list are possessed, then it is asserted that the principal is told the deleted element. The



106 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

implementation for P5 is very similar, however, the assertSingleArgPossessed/4 predicate is
used to assert a formula as being possessed, rather than told. The possessesAll/3 predicate is used
throughout the implementation, so it would be apt to examine it briefly:

possessesAllHelper(_, [], []).

possessesAllHelper(P, [HeadItem | MoreItems], PossessionIndices) :-
possessesAll(P, MoreItems, TempPossessionIndices),
fact(Index, possesses(P, HeadItem), _),
append(TempPossessionIndices, [Index], PossessionIndices).

possessesAll(P, List, PossessionIndices) :-
flatten(List, FlattenedList),
possessesAllHelper(P, FlattenedList, PossessionIndices).

If the principal P possesses all of the elements in List, then PossessionIndices will contain all
of the fact/3 indices proving this point. Finally, the source code for P10 appears as follows:

rules :-
fact(Premise1, possesses(P, S), _),
fact(Premise2, believes(P, secret(P, S, _)), _),
not(

S = shared(K);
S = public(K);
S = private(K)

),
Conclusion = possesses(P, identifyingSecret(S)),
not(fact(_, Conclusion, _)),
getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,
PremiseIndices = [Premise1, Premise2],
asserta(fact(NewIndex, Conclusion, reason(PremiseIndices, ’P10’))),
asserta(addedFacts).

The important point to notice here is that the side-condition specified in the GNY rule is being checked
by ensuring that S is not a shared, public or private key. This technique is also applied in the source code
for the freshness and recognizability rules, almost all of which have a side-condition.

5.2.3.2 Freshness and Recognizability Rules

The implementation of the freshness and recognizability rules is so similar that if one rule set has been
constructed, then the other can be coded by merely copying the Prolog source and substituting freshness
conditions for recognizability conditions, or visa versa. For now, let’s focus on the implementation of
the recognizability rules. The implementation of R1 and R2 is straight-forward and requires no further
explanation. However, the remaining rules require more attention, since they have to cater for both lists
and atomic arguments. Consider the source code for R30:

rules :-
fact(Premise2, possesses(P, List), _),
listMemberIsRecognizable(P, List, Premise1),
Conclusion = believes(P, recognizable(List)),
not(fact(_, Conclusion, _)),



5.2.3 Coding the GNY Rules 107

getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,
PremiseIndices = [Premise1, Premise2],
asserta(fact(NewIndex, Conclusion, reason(PremiseIndices, ’R3\’’))),
asserta(addedFacts).

This rule makes use of listMemberIsRecognizable/3, a predicate that is used in most of the
recognizability rules as well as the conveyance rules:

listMemberIsRecognizable(P, List, RecognizabilityIndex) :-
recursiveMember(X, List),
fact(RecognizabilityIndex, believes(P, recognizable(X)), _).

Notice that use is made of a predicate named recursiveMember/2. This predicate is similar to
the built-in member/2 predicate, however, it recursively checks a list to determine whether a given
argument is a member thereof. For example, the following clauses are all true:

recursiveMember(x, [x, y])
recursiveMember(x, [[x, y], a])
recursiveMember(x, [[b, [x, y], c], a])
recursiveMember([x, y], [b, [x, y]])

So, listMemberIsRecognizable/3 operates by determining whether the argument List con-
tains an embedded formula which is recognizable. If it does, then List is also recognizable. Combining
this condition with a possession requirement for List yields R30. R300 is very similar:

rules :-
fact(Premise2, possesses(P, function(F, Args)), _),
(

fact(Premise1, believes(P, recognizable(Args)), _);
listMemberIsRecognizable(P, Args, Premise1)

),
Conclusion = believes(P, recognizable(function(F, Args))),
not(fact(_, Conclusion, _)),
getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,
PremiseIndices = [Premise1, Premise2],
asserta(fact(NewIndex, Conclusion, reason(PremiseIndices, ’R3\’\’’))),
asserta(addedFacts).

However, because a function can either contain a list or an atom as an argument, we have to include the
two clauses which determines whether the argument is recognizable as it stands. The implementations
of R5, R6, R7, R10 and R11 are all very similar. Below is the source code for R6:

rules :-
fact(Premise4, possesses(P, encrypt(X, public(K))), _),
(

not(is_list(X)),
fact(Premise2, possesses(P, X), _),
PossessionIndices = [Premise2];

is_list(X),
possessesAll(P, X, PossessionIndices)

),



108 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

fact(Premise3, possesses(P, public(K)), _),
(

fact(Premise1, believes(P, recognizable(X)), _);
listMemberIsRecognizable(P, X, Premise1)

),
not(X = encrypt(_, private(K))),
Conclusion = believes(P, recognizable(encrypt(X, public(K)))),
not(fact(_, Conclusion, _)),
getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,
append([Premise1], PossessionIndices, TempPremiseIndices),
append(TempPremiseIndices, [Premise3, Premise4], PremiseIndices),
asserta(fact(NewIndex, Conclusion, reason(PremiseIndices, ’R6’))),
asserta(addedFacts).

Notice that a check is carried out to determine whether the argument to the encryption is an atom or a
list. If it is a atomic, then we just need to determine whether it is possessed and recognizable. However,
if the argument is a list then we need to ensure that all of the elements embedded within it are possessed
and that at least one of these embedded elements is recognizable. The code for R4, R8 and R9 is slightly
simpler. Below is the source for R4:

rules :-
fact(Premise1, believes(P, recognizable(X)), _),
fact(Premise2, possesses(P, shared(K)), _),
fact(Premise3, possesses(P, encrypt(X, shared(K))), _),
not(X = decrypt(_, shared(K))),
Conclusion = believes(P, recognizable(encrypt(X, shared(K)))),
not(fact(_, Conclusion, _)),
getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,
PremiseIndices = [Premise1, Premise2, Premise3],
asserta(fact(NewIndex, Conclusion, reason(PremiseIndices, ’R4’))),
asserta(addedFacts).

In the vast majority of GNY-based protocol analyses, a principal obtains possession of an encrypted
formula via a received message. This essentially means that if P 3 fXgK , P 3 fXg+K or P 3 fXg�K
hold, then the likelihood of P � fXgK , P � fXg+K or P � fXg�K also being true is quite high. In
fact the possession statements were most probably derived through the application of P1. Thus, by
applying T6, T7 or T8, followed by P1 to one of the told statements, the statement P 3 X would result,
assuming that the the correct decryption key was possessed. So, in the case of R4, R8 and R9, this
means that if X is a list, then P will most likely possess all of the list elements as one single compound
formula. Thus, the recognizability of X will be tested at some point in time through the application of
the recognizability rules, and as a result, we don’t need to determine whether a given formula embedded
in the list is recognizable by calling listMemberIsRecognizable/3.

The implementation of the freshness rules uses exactly the same principles as those employed in the rec-
ognizability rules. In fact, F1 through to F10, as well as F19 and F20 are each structurally identical to one
of the recognizability rules. The only difference lies in whether the term freshness or recognizability is
used in the premises or the conclusion. The remaining freshness rules are straight-forward to implement
based on the information that has been presented in this section.



5.2.3 Coding the GNY Rules 109

5.2.3.3 Conveyance Rules

The conveyance rules take up a substantial amount of Prolog source code due to the fact that there are
twenty-two of them and some of these can use up to four instances of the rules predicate. A number
of the rules are also quite complex and have to cater for atomic and list-type arguments to encryptions
and hashes. Rules C8, C9 and C17 through to C22 are straight-forward to implement based on what has
already been explained in the previous sections. However, the implementation of the remaining rules will
require some more explanation. The source code below is used to determine whether the first conclusion
of C1, namely P j� Q j� X , holds:

rules :-
fact(Premise1, told(P, star(encrypt(X, shared(K)))), _),
fact(Premise2, possesses(P, shared(K)), _),
fact(Premise3, believes(P, secret(P, shared(K), Q)), _),
fact(Premise4, believes(P, recognizable(X)), _),
(

fact(Premise5, believes(P, fresh(X)), _);
fact(Premise5, believes(P, fresh(shared(K))), _)

),
(

not(is_list(X)),
Conclusion = believes(P, conveyed(Q, X));

is_list(X),
length(X, LengthOfX),
(

LengthOfX =:= 1,
getHead(X, Head),
Conclusion = believes(P, conveyed(Q, Head));

LengthOfX > 1,
Conclusion = believes(P, conveyed(Q, X))

)
),
not(fact(_, Conclusion, _)),
getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,
PremiseIndices = [Premise1, Premise2, Premise3, Premise4, Premise5],
asserta(fact(NewIndex, Conclusion, reason(PremiseIndices, ’C1’))),
asserta(addedFacts).

This rules predicate is one of four that has been created to implement C1. Notice that in this code
fragment the being-told premise is P � �fXgK , instead of P � �fXgK ; C . The former premise
was selected since the conclusion of the above instance of rules does not make use of any formula
extensions. As a result, this rule can be applied to symmetrical encryptions with extensions as well as
those without extensions, since those with extensions will have them removed through the application
of T3. However, the second conclusion of C1, namely P j� Q j� fXgK ; C , has an extension,
and thus the rules instance which implements this case requires that the being-told premise include an
extension. For completeness sake, an instance of the rules predicate which produces the conclusion
P j� Q j� fXgK has also been implemented, and in this case the being-told premise is extensionless.
In fact, an extensionless being-told premise is also used for the instance of rules which determines
whether the last conclusion of C1, namely P j� Q 3 (X;K), holds. Another important point to
note is that the predicates listMemberIsRecognizable/3 and listMemberIsFresh/3 are



110 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

not invoked in the C1 implementation. This is due to the fact that the statement P 3 X can be derived,
and thus P possesses all of the formulae within X as one single compound formula if X is a list. Finally,
notice that the Prolog code caters for both atomic and list-type elements. To illustrate this fact, consider
the following being-told statements in Prolog-syntax:

told(’P’, star(encrypt(’X’, shared(’K’))))
told(’P’, star(encrypt([’X’], shared(’K’))))
told(’P’, star(encrypt([’X’, ’Y’], shared(’K’))))

Assuming that the remaining premises hold, then the conclusion produced by the application of C1 to
each of the above statements is listed below:

believes(’P’, conveyed(’Q’, ’X’))
believes(’P’, conveyed(’Q’, ’X’))
believes(’P’, conveyed(’Q’, [’X’, ’Y’]))

Notice that a single-element list is reinterpreted as an atomic element. The reason for this is that in the
context of communication protocols, the concept of a single-element list doesn’t make too much sense,
since a list of elements is usually considered to contain at least two components. Rules C10, C6 and C7
are structurally similar to C1 and employ all of the concepts which we have described. The following
code fragment is taken from the rules predicate which determines whether the first conclusion of C3,
namely P j� Q j� (X;S), holds:

fact(Premise1, told(P, star(hash(_, ArgsWithSecret))), _),
(

ArgsWithSecret = identifyingSecret(S),
Args = S,
PossessionIndices = [];

member(identifyingSecret(S), ArgsWithSecret),
delete(ArgsWithSecret, identifyingSecret(S), Args),
possessesAll(P, Args, PossessionIndices)

),
fact(PremiseIndex3, possesses(P, S), _),
fact(PremiseIndex4, believes(P, secret(P, S, Q)), _),
(

listMemberIsFresh(P, Args, PremiseIndex5);
fact(PremiseIndex5, believes(P, fresh(S)), _)

)

This code fragment checks whether all of the premises of C3 are true. As in the case with C1, the being-
told premise only includes an extension if it will appear in the conclusion. Notice that the two arguments
to the hash, namely X and S, are represented as one argument, namely ArgsWithSecret. If X
is non-empty, then the variable Args is initialized with the contents of X , otherwise, Args contains
S. Notice how the Prolog code ensures that S is always present as an argument to the hash and, more
specifically, that it is being used as an identifying secret. An important point to note is that the code
which implements checking of the C3 freshness premise makes used of the listMemberIsFresh/3
predicate when examining X , since X is not necessarily possessed as a single compound formula. Now,
consider the following being-told Prolog-style statements:



5.2.3 Coding the GNY Rules 111

told(’P’, star(hash(’H’, identifyingSecret(’S’))))
told(’P’, star(hash(’H’, [identifyingSecret(’S’)])))
told(’P’, star(hash(’H’, [’X’, identifyingSecret(’S’)])))
told(’P’, star(hash(’H’, [’X’, identifyingSecret(’S’), ’Y’])))

Assuming that the remaining premises hold, then the conclusion produced by the application of C3 to
each of the above statements is listed below:

believes(’P’, conveyed(’Q’, ’S’))
believes(’P’, conveyed(’Q’, ’S’))
believes(’P’, conveyed(’Q’, [’X’, ’S’]))
believes(’P’, conveyed(’Q’, [’X’, ’Y’, ’S’]))

As in the case of C1, a single-element list is reinterpreted as an atomic element. Notice that a single-
element list can only contain an identifying secret, otherwise the being-told premise of C3 will fail. The
rules C5, C12 and C14 all have a similar structure to C3 and all employ the concepts which we have just
described. The following fragment of code implements the freshness premise of C4:

length(Args, LengthOfArgs),
(

LengthOfArgs =:= 1,
getHead(Args, Head),
fact(Premise6, believes(P, fresh(Head)), _);

LengthOfArgs > 1,
fact(Premise6, believes(P, fresh(Args)), _)

);
fact(Premise6, believes(P, fresh(S)), _);
fact(Premise6, believes(P, fresh(public(K))), _)

The variable Args contains all of the arguments to the public-key encryption, excluding the identifying
secret, and is derived as illustrated in the code fragment for C3 shown above. An important point to note
is that C4 only requires possession of a decryption key, and hence the the possessesAll/3 predicate
is not employed in its implementation. Also, due to the special instance of T4 described in Section 5.2.3.1
all of the formulae within Args are possessed as one single compound formula if Args is a list. As a
result of this fact, the listMemberIsRecognizable/3 and listMemberIsFresh/3predicates
do not need to be used, since the recognizability and freshness of Args will be determined through the
application of the recognizability and freshness postulates. The remainder of C4 is implemented using
the techniques which have already been described in this section. C4 is also used as a model for other
conveyance implementations, namely C13, C15 and C16, all of which employ the same source code
structure. The following fragment of code is taken from the implementation of C2:

fact(PremiseIndex1, told(P, star(decrypt(Args, shared(K)))), _),
(

not(is_list(Args)),
fact(PremiseIndex2, possesses(P, Args), _),
PossessionIndices = [PremiseIndex2];

is_list(Args),
possessesAll(P, Args, PossessionIndices)

),



112 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

fact(PremiseIndex3, possesses(P, shared(K)), _),
fact(PremiseIndex4, believes(P, secret(P, shared(K), Q)), _),
(

fact(PremiseIndex5, believes(P, recognizable(Args)), _);
listMemberIsRecognizable(P, Args, PremiseIndex5)

),
(

(
fact(PremiseIndex6, believes(P, fresh(Args)), _);
listMemberIsFresh(P, Args, PremiseIndex6)

);

fact(PremiseIndex6, believes(P, fresh(shared(K))), _)
)

This code fragment determines whether all of the premises of C2 hold. Notice that the code checks
whether Args is a list, and if it is uses the possessesAll/3predicate to ensure that all of the elements
therein are possessed. Due to the fact that Args is not necessarily possessed as a single compound
formula, the listMemberIsFresh/3 and listMemberIsRecognizable/3 predicates have to
be used to determine whether an element of Args is fresh or recognizable respectively. However, just
in case Args is possessed as a single compound formula, the freshness or recognizability check is also
carried out by determining whether a fact/3 predicate indicating freshness or recognizability of Args
exists. C11 is implemented in the same way as C2.

5.2.3.4 Jurisdiction Rules

The implementation of the jurisdiction rules is straight-forward and holds no surprises. The code for J2
appears as follows:

rules :-
fact(Premise1, believes(P, honest(Q)), _),
fact(Premise2, believes(P, conveyed(Q, extension(X, C))), _),
fact(Premise3, believes(P, fresh(X)), _),
Conclusion = believes(P, believes(Q, C)),
not(fact(_, Conclusion, _)),
getMaxFactIndex(MaxIndex), NewIndex is MaxIndex + 1,
PremiseIndices = [Premise1, Premise2, Premise3],
asserta(fact(NewIndex, Conclusion, reason(PremiseIndices, ’J2’))),
asserta(addedFacts).

The source code for J1 and J3 can be generated in a similar manner.

5.2.4 Coding the Proof Generator

Assume that we have analyzed a protocol and ended up with a number of derived statements. Now, only
a subset of these derived statements will be of any use when proving the validity of any of the other
statements. So, with this in mind, consider the following ordered subset of fact/3 predicates, all of
which contribute to the proof of the final statement:

fact(1, told(’P’, encrypt([’X’, ’Y’, ’Z’], public(’K’))), reason([], ’Step’)).



5.2.4 Coding the Proof Generator 113

fact(2, possesses(’P’, private(’K’)), reason([], ’Assumption’)).
fact(4, told(’P’, [’X’, ’Y’, ’Z’]), reason([1, 2], ’T7’)).
fact(12, told(’P’, [’Y’, ’Z’]), reason([4], ’T4’)).
fact(16, told(’P’, ’Z’), reason([12], ’T4’)).

Now, we want to produce a proof where each line is numbered in a sequential fashion, with the first
line starting at 1. We also want to indicate which lines were involved in the application of a particular
inference rule. So, essentially we want to re-map the fact/3 indices and format the proof list into
something which appears as follows:

1. told(P, encrypt([X, Y, Z], public(k))) {Step}
2. possesses(P, private(K)) {Assumption}
3. told(P, [X, Y, Z]) {1, 2, T7}
4. told(P, [Y, Z]) {3, T4}
5. told(P, Z) {4, T4}

If we translate the above Prolog statements into an English syntax we can end up with a more readable
proof which a larger segment of people would more easily be able to interpret:

1. P was told E(+K : X, Y, Z). {Step}
2. P possesses -K. {Assumption}
3. P was told (X, Y, Z). {1, 2, T7}
4. P was told (Y, Z). {3, T4}
5. P was told Z. {4, T4}

The above example illustrates the style and quality of the GNY proofs which the analyzer is able to
generate. In the subsections that follow we will explain how we have coded the proof generation engine
of the analyzer. The discussion will be illustrated with the code fragments that have been constructed to
aid in this process.

5.2.4.1 Converting Prolog-Based GNY Statements into English

In the text that follows we partition all of the GNY statements into four classes. We will explain which
statements fall into each class and how the conversion to English is coded for the class using the pro-
logGNYToEnglish/3 predicate. Note that in the code fragments a reference to the variable State-
ment denotes the Prolog-style GNY statement, while the resultant English text is returned in the variable
English.

Class A: Formulae Only

The GNY statements ](X) and �(X) fall into this category. The following code segment shows how the
conversion is carried out for a statement regarding freshness:

Statement = fresh(X),
prologFormulaToStandardNotation(X, XStd),
(

is_list(X),
length(X, LengthOfX),
(

LengthOfX =:= 1,
concat_atom([XStd, ’ is fresh’], English);



114 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

LengthOfX > 1,
concat_atom([’(’, XStd, ’) is fresh’], English)

);

not(is_list(X)),
concat_atom([XStd, ’ is fresh’], English)

);

The code fragment for statements regarding recognizability can be generated by simple substitution. In
the code fragment above, the prologFormulaToStandardNotation/2 predicate ensures that a
formula is converted to an appropriate textual representation. Details on this predicate follow in Sec-
tion 5.2.4.2.

Class B: Principals and Formulae

In this category we find the GNY statements P �X , P 3 X , P j� X and P ` X . The code segment
illustrating how to carry out a conversion for a told statement follows:

Statement = told(P, X),
prologFormulaToStandardNotation(X, XStd),
(

is_list(X),
length(X, LengthOfX),
(

LengthOfX =:= 1,
concat_atom([P, ’ was told ’, XStd], English);

LengthOfX > 1,
concat_atom([P, ’ was told (’, XStd, ’)’], English)

);

not(is_list(X)),
concat_atom([P, ’ was told ’, XStd], English)

);

In a similar way, we can code the conversion to English for the remaining statements in this category.

Class C: Principals and Statements

The GNY statements P j� C and P j=) C fall into this category. The following code segment details
how the conversion is carried out for a statement regarding a principal’s beliefs:

Statement = believes(P, C),
(

is_list(C),
prologGNYListToEnglish(C, BelievesEnglish),
concat_atom([P, ’ believes that (’, BelievesEnglish, ’)’], English);

not(is_list(C)),
prologGNYToEnglish(noFullStop, C, BelievesEnglish),
concat_atom([P, ’ believes that ’, BelievesEnglish], English)

);

The GNY controls statement can be coded in a similar way. Notice the reference to the predicate pro-
logGNYListToEnglish/2. This predicate takes a list of Prolog-style GNY statements and then
cycles through this list, converting each statement into its English equivalent.



5.2.4 Coding the Proof Generator 115

Class D: Principals and Atomic Formulae

The last category contains the statements P j=) P j� �,
+K
7! Q, P

S
 ! Q and P

K
 ! Q. The code for

converting all of these Prolog statements to English is shown below:

Statement = honest(P),
concat_atom([P, ’ is trustworthy’], English);

Statement = public(K, P),
concat_atom([’+’, K, ’ is a suitable public key for ’, P], English);

Statement = secret(P, S, Q),
concat_atom([S, ’ is a suitable secret for use between ’, P, ’ and ’, Q], English);

Statement = secret(P, shared(K), Q),
concat_atom([K, ’ is a suitable secret for use between ’, P, ’ and ’, Q], English);

Out of all of the classes, this is the most straight-forward to convert into English since no calls to helper
predicates are necessary during a conversion.

5.2.4.2 Converting Prolog-Based GNY Formulae into GYPSIE Representation

The predicate prologFormulaToStandardNotation/2 is used to convert a formula into its anal-
ogous GYPSIE representation. We use the GYPSIE notation since it is clear and easy to read. Maintain-
ing consistency for integration with GYPSIE is also a priority. In the text that follows, we divide all of the
GNY formulae into three classes and then elaborate on how each of the formulae in these classes are con-
verted into GYPSIE notation. Note that the variable Formula represents the formula being converted
and the variable StandardNotation contains the result of the conversion.

Class A: Atomic Formulae

The formulae in this class consist of secrets and keys, namely formulae of the form < S >, K , +K and
�K . Sample Prolog code to convert an identifying secret is shown below:

Formula = identifyingSecret(S),
concat_atom([’<’, S, ’>’], StandardNotation);

Of course, the other conversions are just as simple to implement.

Class B: Compound Formulae

The formulae in this class comprise of encryptions, decryptions, functions, hashes and formulae with a
star. These are translated as expected, however the encryption syntax, which is similar to that in [23],
might need some explanation:

Prolog Representation GYPSIE Notation
encrypt(X, shared(K)) E(K : X)
decrypt(X, shared(K)) D(K : X)
encrypt(X, public(K)) E(+K : X)
encrypt(X, private(K)) E(-K : X)

With this in mind, sample code for converting a public key encryption is shown below:



116 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

Formula = encrypt(X, public(K)),
prologFormulaToStandardNotation(X, XText),
concat_atom([’E(+’, K, ’ : ’, XText, ’)’], StdNotation);

The other conversions are just as straight-forward. Notice that a recursive call takes place since the
compound formulae contain other formulae that also need to be converted. In fact, one of the very first
checks made by prologFormulaToStandardNotation/2 is whether the formula to be converted
is a list. If it is, then listToStandardNotation/2 is called. This predicate takes a list as a
parameter and then converts each formula in the list to its GYPSIE representation, returning the resultant
list in the second argument.

Class C: Formulae with Statements

The final class consists of formulae with an attached extension. In this case the extension statement must
be converted into English and the formula into its corresponding GYPSIE notation. These two results
can then be combined to form the output.

5.2.4.3 Generating a Proof

Before we can generate a GNY proof for a derived statement, the subset of fact/3 predicates that are
involved in the proof must be extracted and sorted in ascending order by their indices. Any duplicates in
this list must also be removed. To determine all of the fact/3 indices involved, we use the proof/2
predicate:

proof(Index, ProofList) :-
fact(Index, _, reason(Premises, _)),
append(Premises, ProofOfPremises, ProofList),
prooflist(Premises, ProofOfPremises).

prooflist([], []).

prooflist([Premise | Premises], TotalProof) :-
proof(Premise, ProofOfPremise),
prooflist(Premises, ProofOfPremises),
append(ProofOfPremise, ProofOfPremises, TotalProof).

The proof/2 predicate appends the list of indices in the fact/3 predicate denoted by Index to the
list of indices generated by prooflist/2, returning the result in ProofList. In the same vein, the
prooflist/2 predicate takes a list of fact/3 indices as an argument and then for each element in
the list recursively extracts the fact/3 indices that are involved in proving it, returning the result in
TotalProof. This process ensures that all of the indices applicable to the proof for a given statement
have been acquired. The list that is returned by proof/2 is not sorted and may contain duplicates.
However, the built-in sort/2 predicate can be used to sort the list and remove duplicates at the same
time. Re-mapping indices is accomplished by the printShiftedReasonPremises/2 predicate,
however, let’s first examine a predicate that assists in this cause:

getIndex1(List, Element, Index) :-
findIndex1(List, Element, 1, Index).

findIndex1([], _, _, ActualIndex) :-
ActualIndex is -1.



5.2.4 Coding the Proof Generator 117

findIndex1([Head | Tail], Element, TestIndex, ActualIndex) :-
Element = Head,
ActualIndex is TestIndex;

succ(TestIndex, NextTestIndex),
findIndex1(Tail, Element, NextTestIndex, ActualIndex).

The getIndex1/3 predicate returns the index of an element in a list, the index position being based on
a starting offset of 1. For example, in the list [7, 8, 9], the indices of 7 and 9 are 1 and 3 respectively.
This predicate is used extensively for determining the re-mapped premise indices when generating a GNY
proof. Specifically, getIndex1/3 is called from shiftAndPrintReasonPremise/2, which is
in turn called from printShiftedReasonPremises/2:

shiftAndPrintReasonPremise(ReasonList, ReasonPremise) :-
getIndex1(ReasonList, ReasonPremise, ShiftedPremise),
write(ShiftedPremise), write(’, ’).

printShiftedReasonPremises(_, []).

printShiftedReasonPremises(ReasonList, [HeadReason | Reasons]) :-
shiftAndPrintReasonPremise(ReasonList, HeadReason),
printShiftedReasonPremises(ReasonList, Reasons).

The printShiftedReasonPremises/2predicate takes two arguments, the first argument contain-
ing a sorted list of all of the fact/3 indices involved in a particular proof, and the second argument con-
taining a subset of fact/3 indices referenced in a particular line of the same proof. It then recursively
cycles through each of the elements in the second list, using shiftAndPrintReasonPremise/2
to re-map each element and write it to the output device. The re-mapping of the fact/3 index is carried
out by using the getIndex1/3 predicate to determine the position of the index in the first list that was
passed to printShiftedReasonPremises/2. For example, if the first list is [3, 7, 17, 21],
then this means that the fact/3 indices involved in the proof are 3, 7, 17 and 21 and that fact 3 is found
on line 1 of the proof, fact 7 on line 2, fact 17 on line 3 and fact 21 on line 4. Thus, using getIndex1/3
to re-map the fact/3 indices to their position in the first list yields the correct result. To write out an
English-style proof with re-mapped indices we use the writeOutProofInEnglish/3 predicate:

writeOutProofInEnglish(_, _, []).

writeOutProofInEnglish(Line, ReasonList, [Reason | Reasons]) :-
fact(Reason, Statement, reason(ReasonPremises, Justification)),
prologGNYToEnglish(Statement, EnglishStatement),
write(Line), write(’. ’), write(EnglishStatement), write(’ {’),
(

(Justification = ’Step’; Justification = ’Assumption’),
write(Justification);

printShiftedReasonPremises(ReasonList, ReasonPremises),
write(Justification),
true

),
write(’}’), nl,
succ(Line, NextLine),
writeOutProofInEnglish(NextLine, ReasonList, Reasons).



118 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

Finally, linking everything together is the explainProofInEnglish/1predicate which either takes
a fact/3 index or a statement in Prolog syntax as an argument and then generates a proof if the state-
ment is valid:

explainProofInEnglish(Statement) :-
fact(Index, Statement, _),
explainProofInEnglish(Index).

explainProofInEnglish(Index) :-
integer(Index),
proof(Index, TempProofList),
append([Index], TempProofList, UnsortedProofList),
sort(UnsortedProofList, ProofList),
writeOutProofInEnglish(1, ProofList, ProofList).

So, once an analysis has been completed, a proof can be generated in an English-style syntax by merely
calling the explainProofInEnglish/1predicate. Two other predicates named explainProof/1
and writeOutProof/3 don’t convert a proof into English but instead leave all of the GNY statements
in Prolog.

5.2.5 Running the Analyzer

Before conducting an automated GNY-based analysis, the messages and initial assumptions pertaining
to the protocol to be analyzed must be specified in a Prolog file in the form of fact/3 predicates. Any
target goals must also be specified in the same file by using goal/2 predicates. The following is an
example of how such an analysis specification file may appear:

% Idealized Protocol Steps:
fact(1, told(’Q’, ’Np’), reason([], ’Step’)).
fact(2, told(’P’, star(encrypt(’Np’, shared(’K’)))), reason([], ’Step’)).

% Initial Assumptions:
fact(3, possesses(’P’, shared(’K’)), reason([], ’Assumption’)).
fact(4, believes(’P’, secret(’P’, shared(’K’), ’Q’)), reason([], ’Assumption’)).
fact(5, believes(’P’, recognizable(’Np’)), reason([], ’Assumption’)).
fact(6, believes(’P’, fresh(’Np’)), reason([], ’Assumption’)).

% Protocol Goals:
goal(1, believes(’P’, conveyed(’Q’, ’Np’))).
goal(2, believes(’Q’, recognizable(’Np’))).
goal(3, possesses(’Q’, ’Np’)).

Every analysis specification file must also contain a go/0 predicate. This predicate uses the built-in
Prolog predicate consult/1 to load the clauses contained in the source file gny.pl. This file contains
the source code for the GYNGER analyzer. The other two predicates invoked in go/0 are both defined
within the GYNGER analyzer, analyze/0 being used to begin the analysis process, and print-
AnalysisResults/1 being used to display the results thereof. The code for go/0 appears below:

go :-
consult(gny),
analyze,
printAnalysisResults(’results.txt’).



5.3 Experiments with the Analyzer 119

Thus, the go/0 predicate loads the predicates stored in gny.pl, carries out an analysis and then pipes
all of the derived statements, as well as the proofs for the successful goals, to the file specified in the
argument to printAnalysisResults/1. If a goal fails, then a proof cannot be generated, and the
text ‘FAILED!’ appears instead of a proof. Output generated from the analysis of the above protocol
definition appears below (for the sake of brevity, we have omitted most of the derived statements):

[1] Proof for P believes that Q once conveyed Np:
1. P was told *E(K : Np). {Step}
2. P possesses K. {Assumption}
3. P believes that K is a suitable secret for use between P and Q. {Assumption}
4. P believes that Np is recognizable. {Assumption}
5. P believes that Np is fresh. {Assumption}
6. P believes that Q once conveyed Np. {1, 2, 3, 4, 5, C1}

[2] Proof for Q believes that Np is recognizable:
FAILED!

[3] Proof for Q possesses Np:
1. Q was told Np. {Step}
2. Q possesses Np. {1, P1}

All Derived Statements:
P was told Np.
P was told E(K : Np).
Q was told Np.
P was told *E(K : Np).

.

.

.
P believes that E(K : Np) is recognizable.
P believes that K is a suitable secret for use between P and Q.
P believes that Np is recognizable.
P believes that Np is fresh.

Once an analysis specification file has been defined, executing the analyzer requires the following com-
mand when using SWI-Prolog for Windows [83]:

plwin -f <analysis_file.pl> -g go -t halt

A Prolog system must obviously be available and the gny.pl containing GYNGER file must reside in the
directory specified within the go/0 predicate.

5.3 Experiments with the Analyzer

During the implementation of the analyzer, each rule was tested individually to ensure that it produced
the correct results for different inputs. However, to test the analyzer under more ‘realistic operating
conditions’ we decided to use it to analyze four cryptographic protocols of the calibre that would be found
in real-world systems. Four protocols were tested in total. The Information Exchange and Authentication
Protocols are taken from Chapter 4, while the Voting and Needham-Schroeder Protocols are from [33].
In the sections that follow we will give a formal description of each protocol, show the initial conditions
that were used and the goals which the analyzer proved correct.



120 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

5.3.1 A Voting Protocol

This protocol can be used to coordinate elections in a distributed system. Principal Q coordinates the
elections in which principals P1; : : : ; Pn take part. The coordinator shares a secret, Si with each par-
ticipant, and each participant is only allowed to vote once. Q determines the winner according to some
agreed-upon procedure. The following idealized protocol definition was used by the analyzer:

(1) Q �! Pi : Nq

(2) Pi �! Q : Pi; Ni; vi; �H(Nq; < Si >; vi)

(3) Q �! Pi : result; �H(Ni; < Si >; result)

The initial assumptions that were used for the analysis appear as follows:

Possessions: Pi 3 (Si; Ni; vi); Q 3 (Si; Nq)

Freshness: Pi j� ](Ni); Q j� ](Nq)

Shared Secrets: Pi j� Q
Si
 ! Pi Q j� Q

Si
 ! Pi

Finally, upon running the analyzer, 67 statements were derived after five passes through the GNY rule
set. Four significant goals that were found to be true are shown below:

1. Q j� Pi j� vi 2. Pi j� Q j� result

3. Q j� ](H(Nq; < Si >; vi)) 4. Pi j� ](H(Ni; < Si >; result))

The proof of these four goals may be found in Appendix B.

5.3.2 An Information Exchange Protocol

Information exchange protocols seek to securely transfer information between participants, ensuring that
authentication of the sender, non-repudiation and integrity are achieved. The idealized protocol definition
for the information-exchange protocol which we will analyze appears as follows:

(1) A �! B : �fTa; B;X; SgKab
; A

S

 ! B

(2) B �! A : �H(X;< S >); A j� X

The initial assumptions that were employed for the analysis were as follows:

Possessions: A 3 (Ta; B;X; S;Kab); B 3 Kab

Recognizability: B j� �(B)

Freshness: B j� ](Ta); A j� ](S)

Shared Secrets: A j� A
Kab
 ! B; B j� A

Kab
 ! B; A j� A

S
 ! B

Trustworthiness: B j� A j) A j� �; A j� B j) B j� �

Jurisdiction: B j� A j) A
S
 ! B

Finally, once the analysis had been completed, the analyzer had derived 94 statements after six passes
through the GNY rule set. Four significant goals that were found to be true appear below:



5.3.3 An Authentication Protocol 121

1. B 3 X 2. B j� A j� X

3. A j� B j� A j� X 4. A j� B 3 X

The proof for each of these four goals may be found in Appendix B.

5.3.3 An Authentication Protocol

Authentication protocols are normally run as precursors to communication sessions which require con-
fidentiality. Once an authentication protocol has executed, the participants should be convinced of each
other’s identity and share a key which can be used to encrypt formulae to be transmitted. The idealized
representation of the authentication protocol which the analyzer examined appears as follows:

(1) A �! B : A;Na

(2) B �! A : fB; �fNag�Kb
; A

K

 ! B;K;Nbg+Ka
; �fNagK

(3) A �! B : �fNbgK ; A
K

 ! B

The initial assumptions that were used for the analysis appear below:

Possessions: A 3 (A;Na;�Ka;+Kb); B 3 (B;Nb;+Ka;�Kb;K)

Recognizability: A j� �(Na); B j� �(Nb)

Freshness: A j� ](Na); B j� ](Nb)

Public Keys: B j�
+Kb
7! B; B j�

+Ka
7! A; A j�

+Ka
7! A; A j�

+Kb
7! B

Shared Secrets: B j� A
K
 ! B

Trustworthiness: A j� B j) B j� �; B j� A j) A j� �

Jurisdiction: A j� B j) A
K
 ! B

Upon completion of the analysis, 105 statements had been generated after eleven passes through the
GNY rule set. Six significant goals that were found to be true are listed below:

1. A 3 K 2. A j� B 3 K

3. B j� A 3 K 4. A j� A
K
 ! B

5. A j� B j� A
K
 ! B 6. B j� A j� A

K
 ! B

A proof generated by the analyzer is given in Appendix B for each of these goals.

5.3.4 The Needham-Schroeder Protocol

The protocol presented in this section is based on the original Needham-Schroeder protocol [63] which
has influenced the design of many authentication protocols. The protocol makes use of an authentica-
tion server S to provide two principals, P and Q, with a suitable session key. Below is the idealized
representation of the protocol that was used by the analyzer:

(1) P �! Q : P

(2) Q �! P : �fP;Nq1
gKqs



122 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

(3) P �! S : P;Q;Np; �fP;Nq1
gKqs

(4) S �! P : �fNp; Q;K; �fK;Nq1
; PgKqs

; P
K

 ! QgKps
; P

K

 ! Q

(5) P �! Q : Np1
; �fK;Nq1

; PgKqs
; P

K

 ! Q

(6) Q �! P : �fNq; Np1
gK ; P

K

 ! Q

(7) P �! Q : �fF (Nq)gK ; P
K

 ! Q

The initial assumptions that were used in the analysis appear below:

Possessions: P 3 (P;Q;Np; Np1 ;Kps); Q 3 (Nq; Nq1 ;Kqs); S 3 (Kps;Kqs;K)

Recognizability: P j� �(Np1); P j� �(Np);
Q j� �(Nq1); Q j� �(Nq)

Freshness: P j� ](Np1); P j� ](Np)

Q j� ](Nq1); Q j� ](Nq)

Shared Secrets: P j� P
Kps
 ! S; Q j� P

Kqs
 ! S; S j� P

K
 ! Q

Trustworthiness: P j� S j) S j� �; P j� Q j) Q j� �

Q j� S j) S j� �; Q j� P j) P j� �

Jurisdiction: P j� S j) P
K
 ! Q; Q j� S j) P

K
 ! Q

After the analysis had run to completion, 215 facts had been generated as a result of eleven passes through
the GNY rule set. Ten of these goals that merit mention are shown below:

1. P 3 K 2. Q 3 K

3. P j� P
K
 ! Q 4. Q j� P

K
 ! Q

5. P j� S j� K 6. Q j� S j� K

7. P j� Q j� P
K
 ! Q 8. Q j� P j� P

K
 ! Q

9. P j� Q 3 K 10. Q j� P 3 K

The proof for each of these goals may be found in Appendix B.

5.4 Closing Remarks

In this chapter we have described the GYNGER GNY analyzer which we implemented using approx-
imately 3600 lines of Prolog source code. As a reference point for this implementation we used the
publicly-available details of the GNY analyzer of Mathuria, Safavi-Naini and Nickolas [54]. However,
because their analyzer only implemented a limited subset of the GNY rules and was not available for
distribution, GYNGER was coded from scratch. The most significant feature of GYNGER is that it au-
tomates the tedious application of GNY inference rules, allowing all derivable GNY statements to be
generated quickly, accurately and efficiently. To conduct an analysis with GYNGER a protocol engineer
needs to specify a protocol’s messages, initial assumptions and target goals in a Prolog-style GNY syn-
tax. The GNY rule set is then imported and employed in the analysis, after which a proof is generated in
an English-style syntax for every successful goal that was specified. This English-style proof lists all of
the statements involved in the derivation of the successful goal, indicating the postulates that were used
and the premises which were employed in the postulate’s application. The fact that the proof is in an
English-style syntax makes it more readable and comprehensible.



5.4 Closing Remarks 123

GYNGER incorporates all of the functionality of Mathuria, Safavi-Naini and Nickolas’s analyzer, and
improves on certain areas that were lacking. In particular, GYNGER implements the latest GNY rule
set as specified in Gong’s thesis [33], combined with improvements recommended in [53, 54] and some
of our own additions. In total, GYNGER implements seventy-two GNY rules, while the analyzer of
Mathuria, Safavi-Naini and Nickolas implements forty-eight. GYNGER also checks the side conditions
that have been placed on some of the freshness and recognizability rules to ensure that sound conclusions
are obtained. It is not known whether Mathuria, Safavi-Naini and Nickolas’s analyzer examines these
conditions as the tool could not be tested in any way. Each GNY rule implemented in GYNGER was
tested individually by specifying all of the premises using fact/3 predicates, running the analyzer, and
then examining the results. Four cryptographic protocols were also analyzed, including the Needham-
Schroeder protocol [63] and a voting protocol [33]. In each case, GYNGER was able to prove all of
the goals that we had specified. For each goal that was proved GYNGER was also able to provide a
corresponding English-style proof, something that the analyzer of Mathuria, Safavi-Naini and Nickolas
could not do.

Certain GNY constructs are also represented differently by GYNGER when compared to Mathuria,
Safavi-Naini and Nickolas’s syntax. Since GYNGER uses characters enclosed in single quotes to repre-
sent formulae and principals, the original case is preserved. Mathuria, Safavi-Naini and Nickolas simply
represent formulae and principals by lowercase characters, thus Na and P are represented as na and p re-
spectively. Another fundamental distinction is the manner in which functions and hashes are represented.
GYNGER’s syntax includes the name of the function or hash as a parameter, while Mathuria, Safavi-
Naini and Nickolas hard-code the function name. For example, Mathuria, Safavi-Naini and Nickolas use
the syntax inc(x, delta) to represent the function inc(x; delta), while GYNGER represents it as
function(’inc’, [’x’, ’delta’]). A disadvantage of the former representation is that the GNY
rules related to functions and hashes have to be continually upgraded to incorporate every function and
hash that appears in a protocol, since the name of the function or hash cannot be a variable. A useful
advantage of the latter representation is that multiple arguments are represented as a list, and thus the
GNY rules don’t need to be rewritten for functions and hashes with differing numbers of parameters.

In the description of their analyzer, Mathuria, Safavi-Naini and Nickolas fail to mention how they repre-
sent identifying secrets embedded in hashes and encryptions. These secrets are crucial to the operation
of some of the conveyance rules. We have choosen to represent identifying secrets by using the notation
identifyingSecret(’S’) to refer to < S >. When referring to a formula which has an extension,
Mathuria, Safavi-Naini and Nickolas use the notation ext(X, C) to represent X ; C . GYNGER uses
the same technique, however, the keyword employed is extension. To represent a formula without
an extension, Mathuria, Safavi-Naini and Nickolas use the representation ext(X, nil), while we just
write X. Although our representation is not as formal, it is less tedious from an end-user perspective.
Since it is based on the latest version of GNY, GYNGER also implements the ‘never-originated-here’
binary operator, representing the statement P a (X) as neverOriginated(’P’, ’X’).

The notation of eligibility was added to the GNY logic to ensure the consistency of a protocol specifi-
cation to be analyzed. However, the eligibility postulates are not conducive to forward-chaining since
their application would result in an infinitely executing analysis. For this reason, neither GYNGER nor
the analyzer of Mathuria, Safavi-Naini and Nickolas implements eligibility checking. This means that
the consistency check for a protocol to be analyzed must be carried out by another analysis tool. To a
large degree this situation reflects the current state of security protocol analysis, as there is no single tool
or application that can examine all aspects of a protocol’s security. For this reason, a multi-dimensional
approach such as the one offered by SPEAR II is exceptionally useful, as it incorporates a diverse range
of tools and techniques which all work together to examine different aspects of a protocol’s security and



124 CHAPTER 5. AUTOMATED GNY ANALYSIS WITH GYNGER

correctness. A possible addition to the SPEAR II Framework would be a system to examine protocol
consistency using eligibility-type constructs. Thus, when using GYNGER within the SPEAR II envi-
ronment, a protocol engineer would have the option of first checking the protocol’s consistency and then
performing an analysis with GYNGER.



Chapter 6

Visual GNY

“Cryptography is like literacy in the Dark Ages. Infinitely potent, for good and ill : : : yet basically an intellectual construct, an idea, which by

its nature will resist efforts to restrict it to bureaucrats and others who deem only themselves worthy of such Privilege.”

— Vin McLellan

Before conducting a GNY analysis, a protocol engineer needs to create a protocol specification and
determine its initial conditions, goals and formula extensions. If the analysis is to be automated, then
this information must be supplied in a format accepted by the analysis system. However, supplying this
representation of the information is not always a simple and straight-forward task and its prompt, efficient
and error-free delivery often depends on the type of software being used.

Consider an analysis system which employs a text editor in combination with a Prolog analyzer such as
GYNGER. In order to use this system, a protocol engineer must be acquainted with the Prolog syntax
used to represent GNY statements. The necessary GNY statements must then be constructed in the
text editor and the Prolog analyzer must be executed, using the text saved in the editor as input. Any
syntactic errors that are detected during compilation must then be corrected. When experimenting with
the GYNGER analyzer we used it in combination with a text editor and found that the following issues
surfaced rather frequently:

� Incorrect formulae names, predicates and mismatched brackets were used.

� Construction of complex statements was cumbersome due to a lack of visualization aids.

� Lists of formulae were sometimes not enclosed in square brackets.

� Incorrect syntax was sometimes employed for encryptions, and functions.

Not all of these syntactic and semantic errors were detected by the Prolog compiler. In fact, we were of-
ten able to isolate many of these undetectable errors only because we knew what output the analyzer was
meant to generate, since we had already carried out all of the analyses by hand. However, an automated
analysis system is meant to remove manual analysis and not make it mandatory for error detection! Thus,
based on our experience with GYNGER, we can conclude that a specification environment which elim-
inates the need for syntax recall and checks formula names for validity would aid greatly in making the
construction of GNY statements simpler and less pain-staking. In fact, in an ideal world, an interleaving
layer of software would always be present between the user and an analysis tool so as to facilitate the
construction of syntactically correct input.

125



126 CHAPTER 6. VISUAL GNY

One of the most well-established findings in memory research is that people can recognize material far
more easily than they can recall it [68]. This fact has clearly been applied in the design of graphical user
interfaces over the past decade. For example, many user interfaces now make use of an extensive range
of menus containing text or iconic lists of operations, options, files and so on. Instead of having to recall
a name or a particular combination of function keys to perform an operation, users only need to scan
through a menu until they recognize the name or the icon representing the operation which is required.

So, if we make use of a graphical user interface with sufficient cognitive aids and then combine this
interface with the GYNGER analyzer, we could possibly improve the speed and quality of GNY analyses,
while at the same time decreasing the difficulty which some individuals experience while conducting
such analyses. The GYNGER analyzer already solves a large number of problems associated with the
actual mechanics of an analysis, such as postulate application, constructing proofs for successful goals
and determining goals which failed. However, what is still required is an environment from which to
manage, structure, organize and conduct a GNY analysis.

The aim of this chapter is to describe the Visual GNY environment which we have created to facilitate
GNY-based protocol analysis. We will briefly introduce the problems associated with manual GNY anal-
ysis, before moving on to describe two graphical interfaces for BAN and GNY-based analyses. Thereafter
we will discuss the structured tree approach that we have implemented, followed by an overview of the
Visual GNY environment. User experiments that were conducted in the environment will then be de-
scribed. This will be followed by an examination of key portions of the Visual GNY implementation.
In effect, we will attempt to show through the course of this chapter how the Visual GNY environment
helps to distance protocol engineers from the syntactical element of GNY analysis, allowing them to
focus more on the associated semantics and distil the critical issues that arise during protocol analysis.

6.1 GNY Analysis Difficulties

GNY analyses can appear complicated to the uninitiated, or non-mathematically inclined individuals.
While teaching students in security courses at the University of Cape Town how to analyze protocols
with GNY, we noticed that many of them balked or got bogged down in syntactic issues, instead of
focusing on the actual analysis. This apprehension regarding the GNY syntax, as well as the size of the
postulate set, often restrained individuals from effectively utilizing the logic to uncover protocol flaws.
The following list describes some of the difficulties that people struggle with when they carry out GNY
analyses by hand:

1. Incorrect protocol parsing: Parsing a protocol correctly is essential for ensuring that the con-
veyance rules can be properly applied. However, protocols are often parsed incorrectly by not
inserting stars in the correct locations, or by inserting stars in front of incorrect or inappropriate
formulae. A common mistake made in this area is that individuals forget to insert stars in front of
formulae that are embedded within encryptions and functions.

2. Semantically incorrect statements: An understanding of the GNY syntax does not necessarily
imply that semantically correct statements will be constructed. Two common semantic mistakes
include writing the statement A j� ](Na; Tb) when A j� ](Na) and A j� ](Tb) is intended, and
using an incorrect or inappropriate type, such as a nonce or timestamp, in a shared secret or public
key suitability statement. Semantic mistakes occasionally stem from transcription errors. However,
their presence, more often than not, implies a lack of understanding regarding the fundamentals of
GNY analysis.



6.1 GNY Analysis Difficulties 127

3. Transcription errors: Because a GNY analysis often includes numerous derived statements and
formulae, it is not difficult to commit transcription errors and copy information incorrectly between
steps. These errors are then propagated through the remainder of the analysis, resulting in incorrect
conclusions being derived. Because an analysis can sometimes be tedious, individuals also tend to
lose interest, resulting in them losing perspective of what is taking place. Also, when an analysis
spans multiple pages, as is often the case, flipping between these pages can cause frustration,
causing errors to creep in.

4. Syntactically incorrect statements: Students usually take some time to fully grasp the notation and
syntactic issues related to GNY analysis. What they essentially try to resolve when learning the
syntax is how to translate a given GNY statement in mathematical notation into an understandable
English statement which they can relate to their existing knowledge. GNY notation which normally
causes difficulties includes the shared secret, public key and jurisdiction syntax, as well as the
notation for indicating trust. We noticed that once students had carried out a number of analyses,
their mastery of the syntax improved rapidly. However, this knowledge was usually forgotten after
a few weeks.

5. Confusion from information overload: A standard GNY analysis often includes a plethora of initial
beliefs, possessions and target goals to keep in check, not to mention all of the statements that are
deduced from the application of the postulates. While utilizing these preconditions and derived
statements one sometimes loses track of what is taking place in the analysis. A major defense
against confusion and disorientation is structure and organization. However, when one is in a hurry
or under pressure, beneficial practices are not always applied, resulting in GNY preconditions not
being used and errors being made in proofs.

6. Not working towards specific goals: When carrying out a GNY analysis, it is vital to spend time
beforehand contemplating what goals the protocol under inspection should achieve. Merely draft-
ing some initial conditions and then blindly applying the postulates does not always produce useful
results. For example, an analysis of the Needham-Schroeder protocol results in over two hundred
derived statements, but only a handful of these actually tell us about what the protocol achieves
(see Section 5.3.4 for details). Taking time out to consider the purpose of a protocol also helps to
produce more meaningful and optimal initial belief and possession sets.

7. Incorrect postulate application: The GNY postulate set which we presently use contains sev-
enty rules. Applying these postulates systematically can often be a tedious and error-prone pro-
cess. Certain postulates are sometimes applied incorrectly. For example, we have encountered
analyses where T2 is applied to a statement of the form A � �f�fX;NagK ; TsgKas to produce
A � ffX;NagK ; TsgKas , thus incorrectly losing the star attached to the embedded encryption.
Sometimes individuals do not know of the existence of a particular postulate and do not apply it
during a particular analysis. In fact, most people do not want to be bothered with searching through
the entire postulate set during every step in an analysis to determine which postulates can be ap-
plied as it is such a tedious task. Also, when carrying out an analysis under pressure, a postulate
might be applied even though its premises are not properly fulfilled.

GNY analysis has its usability issues, just like most other formal methods. However, by leveraging
specially developed tools and techniques, a large portion of the difficulties that individuals encounter
can be resolved. An automated analysis system such as GYNGER solves the transcription and postulate
application problems — assuming that GNY statements have been input into the analyzer free from



128 CHAPTER 6. VISUAL GNY

errors. Parsing a protocol and inserting stars where necessary can be carried out by the environment
wherein the protocol has been specified. The remaining issues, specifically enforcing syntax, structuring
analysis information, and to some extent ensuring semantic correctness, can be supported through the
use of a Visual GNY specification environment. The process of guiding a user in the choice of protocol
goals is more complicated, but we will demonstrate how such a system can be incorporated within the
Visual GNY framework.

6.2 Graphically Representing GNY Statements

As we have shown, conducting a GNY analysis manually is often tedious, error-prone and not very
productive in the majority of situations. Analysis tools for GNY logic exist, however none of these tools
has a graphical front-end to specify the GNY statements needed to define initial beliefs, possessions
and goals. We want to create a system which most people who have been schooled in GNY at some
point in time can walk up to and use almost immediately. These users must obviously understand the
functioning and semantic issues associated with logic-based analysis and the graphical front-end to the
analyzer should not impede them from effectively putting this knowledge into practice.

6.2.1 Objectives of a Graphical GNY Representation

A graphical environment supporting the creation of GNY statements should fulfil the following set of
criteria. Some of these issues pertain to a GNY analysis environment, while others describe properties
of the graphical representation:

1. The user should not be expected to recall the GNY syntax and associated mathematical symbols.
However, she should have a working knowledge of GNY and be acquainted with the associated
semantics.

2. The representation of GNY beliefs and possessions should be as concise as possible, yet it should
be possible to easily view and construct all of the defined statements.

3. Belief and possession statements which have been constructed should be structured and organized
so that it is easy to locate them for later modification or referral.

4. The specification environment must allow all possible GNY statements to be constructed. How-
ever, no syntactically incorrect statements or type errors should be permitted.

5. The efficiency and effectiveness of an individual using the environment should not be hampered
or restrained in any way. The specification environment should also be intuitive and simple to use,
requiring minimal keystrokes and mouse clicks.

6. There should be a clear separation between the initial conditions, extensions, goals and analysis
results, with possessions and beliefs being distinguished within each of these categories.

To represent GNY statements, we have chosen to make use of a tree-based view with pop-up menus being
used to add formulae, principals and belief categories. This approach imposes a hierarchical structure
on the GNY statements and makes the representation of these statements as concise as possible. A tree-
based view combined with pop-up menus also aids users in specifying GNY beliefs and possessions by
ensuring that they do not have to recall any cryptic GNY syntax, notation or symbols.



6.2.2 Environments for Constructing BAN and GNY Statements 129

6.2.2 Environments for Constructing BAN and GNY Statements

There are, with all likelihood, a number of graphical techniques which can be employed to specify GNY
statements. Each of these will obviously have its own advantages and disadvantages. In this section
we will examine two specification environments with which we experimented before developing our
structured tree approach. While reading, bear in mind that the system which we wish to use for GNY
statement specification must be simple to use, uncluttered, and able to provide the user with appropriate
guidance so that syntactically correct statements employing the proper types can be constructed.

Figure 6.1: The SPEAR I BAN Builder dialog.

6.2.2.1 SPEAR I BAN Builder

The BAN Builder dialog, illustrated in Figure 6.1, is used in the SPEAR I application (described in
Section 2.3) to specify initial BAN beliefs. A BAN statement is constructed by double-clicking on the
text contained within the Entities, BAN Constructs or Possessions list boxes. When double-clicking the
text, it is appended to the end of the statement contained within the edit box, situated below the list boxes.
All of the BAN statements which have already been constructed are listed in the Beliefs list box. Beliefs
are added to and removed from this list box by using the Add Belief and Remove Belief(s) buttons.

No guidance is currently provided within this environment to ensure that syntactically correct statements
are constructed. In fact, the text within the three left-most list boxes can be double-clicked in any order,
allowing meaningless statements to be produced. The Check Belief Correctness button can be used to
initiate a BAN parser which examines the statement being constructed for syntactic correctness, produc-
ing appropriate error messages if it is malformed. However, it is not mandatory to perform a syntactic
check, with the result that any arbitrary statement can be added to the list of beliefs.

A degree of guidance could be provided by enabling and disabling the three left-most list boxes appro-
priately. For example, when specifying the statement Na is fresh, only the Entities and Possessions
list boxes should initially be enabled. Then, once Na has been added to the statement text, only the
BAN Constructs box should be enabled so that the construct is fresh can be appended to the existing
text. Upon completion of this statement, all of the list boxes should be disabled. Furthermore, within
the BAN Constructs list box, selected constructs should be disabled or hidden so that a statement such
as Na said Kas cannot be constructed. Inappropriate types within the Possessions list should also be
rendered invisible or disabled.



130 CHAPTER 6. VISUAL GNY

A problem with this specification system emerges when statements such as A believes A shares
key Kab with B are created. Essentially, the issue boils down to the fact that this statement is com-
posed of five components, namely A, believes, A, shares key Kab with, and B. Now,
the fourth component contains the name of the shared key, but this name is embedded within the text.
Thus, the user has to edit the text manually so that the statement can be completed. In the interim, a
question mark is displayed, as shown in Figure 6.1. Another problem is that there is no way of specifying
a statement such as (HalfOne, HalfTwo) is fresh, without manually modifying the statement
in the edit box.

Another issue at hand is that there is no clear, logical layout of the BAN statements within the Beliefs list
box. All of the beliefs are just lumped together in no particular order. The statements within the list box
could be ordered, however, this would require more list boxes to separate different categories, leading
to more components within the dialog, thereby increasing the visual clutter. A tree-based view could
be used to structure the beliefs into different categories, such as freshness, delegation and possession
statements, thereby making it easier to access and view the different categories. Alternatively, tabbed
panes could be used to distinguish these categories. The three left-most list boxes could also be replaced
with a single contextualized pop-up menu, that presents only the appropriate options available when
constructing a statement.

Figure 6.2: Two views from a tabbed pane-based GNY specification environment.

6.2.2.2 Tabbed Pane Dialog for Specifying GNY Statements

Another approach that can be used to specify GNY statements is a tabbed pane-based environment. Such
a system consists of a number of tabbed panes within a dialog box, each tab representing a belief cate-
gory. Within each of these tabbed panes the user provides the information that is required for a specific
statement in that category. For example, a freshness pane would require that the formula considered to be
fresh be specified, while a public key suitability pane would require that the public key and the principal
who believes in its suitability be defined. Figure 6.2 shows two tabbed pane-based dialogs illustrating
the layout of the freshness and public key belief categories.



6.2.3 Using a Structured Tree to Represent GNY Statements 131

gtPrincipal

gtSuitableSecretComponent

gtSharingPrincipals

gtAuthoritativePrincipal

1

4 5 6 7

gtPrincipal

32

gtHoldingPrincipal

gtComponent

gtRecognizableComponents
gtFreshComponents

gtOtherBeliefs gtPublicKeys gtJurisdiction

gtTrustworthyPrincipalsgtOtherConveyed
gtOtherPossesses

gtNeverOriginatedHere
gtOtherTold

gtEligible

gtSuitableSecrets

gtComponent

gtBelievingPrincipal gtSuitablePublicKeyComponent

Figure 6.3: Relative hierarchy of tree nodes within our structured GNY tree representation.

In theory the tabbed pane-based environment is well laid out and logical, however, in practice it can be
difficult to use as there is too much text, and far too many tabs. Also, as the number of GNY statements
increases, some of the panes can become cluttered and confusing, depending on how they have been
structured. In fact, a fundamental problem is that there is no uniformity in the layout of the panes since
different panes will utilize different input techniques. Laying out all of the components within each pane
is also quite a tedious task from a development and usability point of view.

However, a more significant difficultly emerges when representing jurisdiction statements and beliefs
of other principals. Essentially, the question boils down to how we represent statements of the form
A j� B j� C or A j� B j) C , where C can be any GNY statement. In effect, to allow for the
specification of these statements, another tabbed pane dialog has to be invoked from the Jurisdiction
or Beliefs of Others tabbed pane so that the nested statement can be constructed. This could result
in a cascade of dialog boxes and a large amount of confusion for most users as the number of nested
statements increases.

6.2.3 Using a Structured Tree to Represent GNY Statements

So far we have examined two specification environments, one for constructing BAN statements, and
another for constructing GNY statements. The BAN specification environment allows a user to create
BAN text strings by double-clicking BAN constructs contained within list boxes, while the tabbed pane-
based environment utilizes forms within tabbed panes to gather the information needed to construct a
given GNY statement. The GNY representation technique which we will now present allows any GNY
statement to be viewed as a tree-like structure. Each node within this tree will have an assigned type,
and its position within the tree will be determined by that type. We will see that this approach leads to a
clean, concise, consistent and uncluttered graphical representation.



132 CHAPTER 6. VISUAL GNY

When using our structured tree approach, a set of GNY statements will be represented by of a collection
of trees, each of the statements of a particular type belonging to the same tree. For example, a set of
statements that only contains freshness and conveyance statements would be represented by two trees,
each containing only freshness and conveyance statements respectively. Before we describe our struc-
tured tree approach any further, we need to partition all possible GNY statements into seven groups. All
of the statements within a given group share the same structured tree representation.

Group 1: ](X), �(X)

Group 2: P j� X , P 3 X , P a (X), P �X , P / X

Group 3: P j) P j� �

Group 4: P j� C

Group 5:
+K
7! P

Group 6: P
S
 ! Q

Group 7: P j) C

The illustration in Figure 6.3 lists the GNY types in each group and the manner in which nodes belonging
to a given group are structured. For example, when representing a statement in Group 5, the root node
must be of type gtPublicKeys, followed by a child node of type gtSuitablePublicKeyComponent, termi-
nating with a child node of type gtPrincipal. GNY types, prefaced by the letters gt, are used to identify
tree nodes so that the correct captions, icons and pop-up menus will be displayed. Thus, if a node is
of type gtPrincipal, then the principal’s name and a principal icon will be used to represent the node in
the tree-view. However, if a node is of type gtFreshComponents, then the text ‘Fresh Components’ will
be used as the node caption and the icon for the freshness category will be displayed beside the text. A
collection of graphical GNY statements is illustrated in Figure 6.4.

Nb is recognizable

+Ka is a suitable public key for B

B possesses Nb

Sab is a suitable secret for use
between A and B

S has jurisdiction over the statement "Kab is
a suitable secret for use between A and B"

gtOtherPossesses
gtHoldingPrincipal

gtComponent

gtJurisdiction
gtAuthoritativePrincipal

gtSuitableSecrets
gtSuitableSecretComponent

gtSharingPrincipals

gtRecognizableComponents
gtComponent

B is trustworthy

Figure 6.4: GNY statements specified in our structured tree-view.



6.2.3 Using a Structured Tree to Represent GNY Statements 133

The statements represented by the structured trees of Figure 6.4 form the initial belief set of principal A,
as indicated by the tabbed pane, combo-box and radio button selections. Thus, every statement within
these trees has the implicit prefix ‘A believes that’. When using structured trees to store extensions, there
is no implied prefix since an extension statement is merely an expression that must be believed to be true
before a formula can be transmitted. An important point to note is that we do not require structured trees
to specify the possession set for a given principal, since possession statements only have one operator
and two operands, the left operand being the principal name and the right operand a formula. In fact,
all that we require is a collection of one-node trees, each node having type gtComponent. Thus, when
determining the GNY statement represented by a particular node in this collection of trees, we merely
need to prefix the statement ‘A possesses’ to the name of the formula represented by each tree node.

Table 6.1 below lists the icons and captions which are used to represent nodes in a structured tree. In
the interests of brevity we have omitted all of the component and principal types. The icon used for a
component node is the same as that used for the corresponding formula in the GYPSIE component view,
while the caption is the textual representation of the formula. In the case of a principal type, the picture
of a person is used as the icon, while the caption contains the name of the principal.

GNY Type Icon Caption

gtFreshComponents Fresh Components

gtRecognizableComponents Recognizable Components

gtTrustworthyPrincipals Trustworthy Principals

gtSuitablePublicKeys Suitable Public Keys

gtSuitableSecrets Suitable Secrets

gtOtherPossesses Formulae Possessed by Principals

gtOtherConveyed Formulae Conveyed by Principals

gtJurisdiction Jurisdiction

gtOtherBeliefs Beliefs of Principals

gtNeverOriginatedHere Never Originated Here Components

Table 6.1: Icons and captions used for representing nodes in the structured tree.

At this point we should mention that the Visual GNY environment which we have created does not
represent statements of the form A j� B �X and A / X , even though our structured tree approach is
capable of representing them. We have never encountered an expression of the form A j� B �X in a
GNY analysis. This expression is not used in any premises of the postulate set, neither is it the conclusion
of any postulate. In fact, the expression A j� B 3 X is of greater significance and can be derived from
A j� B�X by using rationality and P1. Now, the statements in the Visual GNY environment will serve
as input to the GYNGER GNY analyzer. However, GYNGER does not use eligibility statements, since it
is a forward-chaining analyzer and the application of the eligibility postulates would result in an infinite
loop. In fact, eligibility statements do not need to be specified in any principal’s initial or target belief
sets since they are only used during the GNY postulate application process to ensure consistency within
a protocol specification.



134 CHAPTER 6. VISUAL GNY

6.2.4 Completeness of the Structured Tree Representation

We will now give an informal proof to show that any GNY statement can be represented by the structured
GNY statement tree. We define the statement ‘A ) B ) C’ to represent a tree where A is the root,
B is a child of A and C is a child of B. So, assume that P and Q range over principals, C ranges over
statements, X ranges over formulae, +K is a public key and S is a shared secret. The 2 symbol ranges
over all of the captions listed in Table 6.1, while ? ranges over all GNY operators. From the context, it
will be clear what 2 and ? represent.

1. The eligibility, told, possession and conveyance statements all have the form Q ? X and can be
represented in the tree as 2) Q) X .

2. Freshness and recognizability statements both have the form ?(X) and are displayed in the tree as
2) X .

3. The belief in the suitability of a secret shared between P and Q can be represented in the tree as
2 ) S ) (P; Q).

4. The belief in the suitability of a public key belonging to Q can be represented as 2 ) +K ) Q.

5. The fact that principal Q is considered to be honest and competent can simply be represented as
2) Q in the tree. Notice that the cryptic GNY syntax for this fact is totally removed.

6. Jurisdiction and belief statements both have the form Q ? C . Since C is a statement, it can be any
one of those which we have already described in this informal proof. To represent jurisdiction or
belief we merely use the arrangement 2) Q) C in the tree.

Thus, all GNY statements can be represented in the tree by structuring nodes correctly. The enforcement
of this structure is handled by pop-up menus and as a result only syntactically correct GNY statements
can be generated.

6.3 Overview of the Visual GNY Environment

The structured tree approach which we have developed is implemented in the Visual GNY environment
which is part of the SPEAR II Framework. For each principal within a given protocol specification, up to
four sets of structured trees are created, two for the storage of initial beliefs and possessions, and another
two for the storage of target beliefs and possessions. A further four sets of trees can be used to store the
successful beliefs, successful possessions, failed beliefs and failed possessions for each principal upon
the completion of a successful GNY analysis. A set of structured trees is also created for every formula
that has extensions, these extensions being defined in the Visual GNY environment.

The Visual GNY environment runs in tandem with the GYPSIE protocol specification environment and
the GYNGER protocol analyzer. Principals and formulae specified in GYPSIE are imported and used for
constructing GNY statements, while completed GNY statements are exported to GYNGER for analysis.
Results from completed GNY analyses are retrieved from GYNGER so that they can be partitioned and
displayed appropriately. All of the GNY statements derived during an analysis, as well as the proofs for
successful goals, are stored within the Visual GNY environment and are accessible through the Results
pane, illustrated in Figure 6.5.



6.3.1 The Visual GNY Interface 135

Figure 6.5: The Goals, Extensions and Results Panes from the Visual GNY environment.

6.3.1 The Visual GNY Interface

The Visual GNY interface is composed of five tabbed panes. Within each of these tabbed panes, a drop-
down combo-box and a selection of radio buttons are used to select the appropriate set of structured trees
to modify or view. The currently selected set of structured trees is displayed in a tree-view component
centered within the client area of the tabbed pane. Changing either the combo-box or radio button
selection changes the set of structured trees being displayed in the tree-view. A label situated below the
tree-view indicates the number of GNY statements represented by the set of structured trees displayed
in the tree-view. All interaction with the structured tree takes place through pop-up menus that are
dynamically constructed depending on the selected tree node.

The Assumptions tabbed pane, illustrated in Figure 6.4, is used to specify the initial belief and possession
sets of principals involved in a protocol. The Goals tabbed pane, displayed in Figure 6.5, is structured in
the same way as the Assumptions pane, but is used to store the target belief and possession sets of a given
principal. In both the Goals and the Assumptions panes, the radio buttons are used to switch between the
belief and possession sets, while the combo-box is used to select the believing or possessing principal.
The Extensions tabbed pane, also shown in Figure 6.5, allows a user to specify extension statements that
are attached to a formula specified in the protocol messages. This tabbed pane does not include any radio
buttons, as only one set of structured trees is ever used to store the extension statements attached to a
formula. The combo-box is used to select the formula to which a user wishes to append extensions.

The Analysis pane allows one to invoke a GNY analysis using the GYNGER protocol analyzer. Within
this tabbed pane information such as the location of the Prolog interpreter, working directories, results
files and the location of the GNY rules in Prolog format must be supplied. Finally, the Results tabbed
pane, shown in Figure 6.5, displays the outcome of a GNY analysis. Radio buttons are used to switch
between the valid beliefs, valid possessions, failed beliefs and failed possession sets for the principal
selected by the drop-down combo-box. If one of these sets is missing, then the radio button for that set
is disabled, thereby allowing one to obtain a quick indication of what occurred during the analysis. The
proof for a valid goal can be obtained by right-clicking its structured tree representation, while all of the
derived statements are obtained by clicking the button in the lower right corner of the Results pane.



136 CHAPTER 6. VISUAL GNY

(a) (b)

(c)

(d)

(e)

(f)

(g) (h)

(i)

(j)
(k)

(l)

(f)

(m)

Figure 6.6: Pop-up menus and a dialog used in the Visual GNY environment.

6.3.2 Contextualized Pop-Up Menus

When using the Visual GNY interface, all that is required to specify a GNY statement is a pointing
device, such as a mouse or trackball. The power of the Visual GNY interface stems from the fact that
a user is ‘guided’ while constructing a GNY statement. This guidance is implemented through the use
of pop-up menus. For example, to add the statement P j� Q 3 Kpq to principal P ’s target belief set,
the user right-clicks in an open area of the tree-view representing P ’s target beliefs. A pop-up menu will
then be displayed from which she can specify that she wants to add a ‘Formulae Possessed by Principals’
belief category. A parent-less tree node of type gtOtherPossesses will then be inserted in the tree-view.
When right-clicking on this node, the user will be presented with a pop-up menu that contains a list of
principals. She selects principal Q from the list and a tree node of type gtHoldingPrincipal is added to
the tree-view, the node of type gtOtherPossesses being its parent. Then, when right-clicking on the node
of type gtHoldingPrincipalNode, a list of formulae that have been specified in the GYPSIE environment
is displayed, the formulae being sorted by their type. Upon selecting Kpq from the list of symmetric
keys, a tree node of type gtComponent is added as a child of the node of type gtHoldingPrincipal. At
this point, right-clicking on the formula node only presents a Delete option. Also, once the formula node
has been added, the statement counter at the bottom of the dialog is updated.



6.3.2 Contextualized Pop-Up Menus 137

The pop-up menus and dialog box used to construct a structured tree representing a GNY statement are
presented in Figure 6.6. When right-clicking on a tree node, the pop-up menu created to service that
node will be displayed. This pop-up menu selection is based on the GNY type of the tree node. In the
list that follows we will describe each pop-up menu, and list the GNY types that it services.

(a) This pop-up menu is presented when right-clicking on an open area of space in a tree-view meant
to contain a set of initial beliefs, target beliefs or extensions. The Add Category menu item is used
to create and insert a structured tree root that will contain tree nodes making up statements of a
specific type, such as freshness or conveyance statements. The View as Text command converts all
of the the structured trees in the tree-view into English-style GNY text and then appends an implicit
prefix to each, dumping the results in a dialog box containing a text viewer. Lastly, the Expand All
item expands all tree nodes, ensuring that every one of their descendant nodes are visible.

(b) This pop-up menu is displayed when right-clicking on an open area of space in a tree-view meant
to contain a set of initial or target possessions. The Add Formula command is used to add a formula
to one of these possession sets. Notice how the existing formulae in the protocol are sorted by type
using an extra layer of menus, so that it is easy to locate a given item. The same menu structure
is used by the GYPSIE component view. The Suggestions menu-item contains a list of formulae
which are likely to be in a principal’s initial possession set. This saves the user from having to
search through the formula list presented by the Add Formula command. Of course, this menu
item is hidden when right-clicking in a target possession set tree-view. Lastly, the View as Text
command displays all of the formulae in the possessions tree-view in a dialog box containing a
text viewer, appending the applicable implicit prefix to each.

(c) This pop-up menu appears when right-clicking a tree node of type gtSuitableSecretComponent.
The Add Principals command is used to invoke the dialog labelled as (j) in Figure 6.6, allowing
a user to specify the two principals who share an identifying secret or symmetric key. The Delete
menu item causes the node to be deleted.

(d) This pop-up menu is invoked when right-clicking on a node of type gtTrustworthyPrincipals or
gtSuitablePublicKeyComponent. The Add Principal item presents a list of principals involved in
the protocol. When selecting one of these principals, it is appended as a child to the node. The
Suggestions menu item is only displayed when the tree node type is gtSuitablePublicKeyCompo-
nent. In this case, a list of principals who possess the private key partner of the public key node
that was right-clicked is displayed. If there are no such principals, then the Suggestions menu item
is hidden. Lastly, the Delete option allows one to remove the node.

(e) This pop-up menu appears when right-clicking on a tree node of type gtBelievingPrincipal or
gtAuthoritativePrincipal. The Add Category menu item presents a list of GNY statement categories
that can be added to the selected node, allowing the root of a new nested GNY statement to be
created. Because we can add new belief categories in this fashion, the height of a node of type
gtBelievingPrincipal or gtAuthoritativePrincipal can vary, while all other nodes must have a fixed
height, since they do not include further nested statements. The Delete menu item causes the
node and all of its descendants to be deleted, while the Expand All command expands all of the
descendant tree nodes, ensuring that every descendant node is visible in the tree-view.



138 CHAPTER 6. VISUAL GNY

(f) This pop-up menu is displayed when right-clicking on a node of type gtComponent. Now, once a
formula node has been added to the structured tree, it cannot grow vertically by gaining any chil-
dren, however, it can still grow horizontally. Essentially, what we mean is that once a formula such
as Na has been added to the structured tree, another formula can be appended to form a compound
formula such as (Na;Data). Thus, statements such as P j� �(X;Y ) can be created, even if the
compound formula (X;Y ) does not exist in the protocol specification — only the components X
and Y need to be defined. So, to append a formula to the node that was right-clicked, the Append
Formula menu item is used. This menu item displays a list of formulae similar to the one used
for the Add Formula menu item in (b). To remove a formula from a compound expression, the
Remove Formula command is used. This command presents a list of the components within the
compound expression, allowing each to be deleted individually. For example, if we right-clicked
on the compound formula (X;Y;Z), then the Remove Formula menu item would contain the ele-
ments X , Y and Z respectively. If the formula that was right-clicked is not a compound formula,
then the Remove Formula menu item is not displayed. A very important point to note is that the
Append Formula menu item is not displayed when right-clicking on a possession node belonging
to a target possession set. This is because GYNGER does not implement P3 and P6 through to
P9 as they cause an infinite loop when analyzing protocols using forward chaining. Thus, all tar-
get possession statements are enforced to be of the form P 3 X , where X is defined within the
protocol specification. The Delete command removes the formula node from the structured tree.

(g) This pop-up menu appears when right-clicking on a node of type gtPrincipal or gtSharingPrinci-
pals. The only command present on this menu is the Delete command, which, as expected, deletes
the principal node from a structured tree.

(h) This pop-up menu is invoked when right-clicking on a node of type gtOtherPossesses, gtOther-
Conveyed, gtOtherBeliefs, gtJurisdiction or gtNeverOriginatedHere. The Add Principal menu item
presents a list of principals involved in the protocol. When selecting one of these principals, it is
appended as a child to the node. The Delete command, deletes the principal node and all of its
descendants from a structured tree, while the Expand All command expands all of the descendant
tree nodes so that every one of these nodes is visible. Notice that this pop-up menu is similar to (d).
However, because the gtOtherPossesses, gtOtherConveyed, gtOtherBeliefs, gtJurisdiction and gt-
NeverOriginatedHere nodes contain nodes that also contain children, the Expand All command is
present.

(i) This pop-up menu is invoked when right-clicking on a node of type gtRecognizableComponents
or gtFreshComponents. The Add Formula menu item displays a list of formulae similar to the one
used for the Add Formula menu item in (b). When selecting a formula from this list, it is added
as a child of the node which was right-clicked. The Suggestions menu item contains formulae that
are likely candidates for freshness or recognizability in an initial belief set. Obviously, this set of
formulae is based on the focused principal. The Suggestions menu item is hidden if there are no
eligible formulae for suggestion, or the node which was right-clicked is part of a structured tree
that represents an extension statement. Lastly, the Delete command removes the principal node
from a structured tree.



6.3.2 Contextualized Pop-Up Menus 139

Na has been
added as a 
child node.

Both Na and
Nb visible 
at this point.

Pop-up menu prior to 
adding Na as a child. 1 Pop-up menu after

adding Na as a child. 
2

Only Nb visible 
at this point.

Figure 6.7: Illustration of the dynamic update of pop-up menus.

(k) This pop-up menu appears when right-clicking on a node of type gtSuitableSecrets. The Add
Secret menu item contains a list of shared secrets and symmetric keys used within the protocol
specification. These two formula types are partitioned to aid searching and semantic understand-
ing. Because we only allow shared secrets and symmetric keys to be used within a shared secret
suitability statement, type errors cannot be committed. The Delete menu item deletes the node and
all of its descendants. The Expand All command expands all descendant nodes.

(l) This pop-up menu is used when right-clicking on a node of type gtSuitablePublicKeys. The Add
Public Key menu item contains all of the public keys created within the protocol specification.
When clicking on one of these public keys, it is added as a child node of the gtSuitablePublicKeys
node. As in (k), because we only allow public keys to be used within a public key suitability
statement, type errors cannot be committed. The Delete menu item deletes the node and all of its
descendants. The Expand All command expands all descendant nodes.

(m) This pop-up menu is displayed when right-clicking on a node of type gtHoldingPrincipal. The Add
Formula menu item displays a list of formulae similar to the one used for the Add Formula menu
item in (b). Finally, the Delete menu item is used to remove the principal node from a structured
tree displayed in the tree-view.

The dialog box labelled as (j) in Figure 6.6 is used to define the two principals who share an identifying
secret or symmetric key. We have chosen to use a dialog box for this operation so that it can be completed
in one step, as opposed to having to define each of the two principals separately using a pop-up menu.
The dialog also prevents users from specifying identical names for the sharing principals by disabling
the OK button if this is the case. Another way to ensure distinct principal names is by deleting the
name of the highlighted principal in Combo-Box 1, from the principal list in Combo-Box 2, and vice-
versa. Before this deletion takes place, the list must be updated with the names of all of the principals
involved in the protocol. However, when using this approach a user will be prevented from swapping
the order of principal names if there are only two principals in the specification, since Combo-Box 1 and
Combo-Box 2 will only contain one principal name each.



140 CHAPTER 6. VISUAL GNY

An important point to note about the pop-up menus is that their content is updated dynamically. Con-
sider the following example, illustrated in Figure 6.7. Assume we create a node with type gtRecogniz-
ableComponents that will serve as the root of a structured tree to store recognizability statements. Also,
assume that there are two nonces defined in the protocol specification, namely Na and Nb. When initially
right-clicking on the gtRecognizableComponents node both nonces will be visible in the resultant pop-up
menu. Assume that we click on Na so that it is added as a child to the gtRecognizableComponents node.
Now, the next time we right-click on the gtRecognizableComponents node only Nb will be displayed,
since Na has already been added to the gtRecognizableComponents node. Essentially, the principle used
is that a formula, principal or belief category is only available for selection from a pop-up menu if it has
not yet been added as a child of the node which was right-clicked. As a result of this fact, individuals
cannot create duplicate GNY statements in a structured tree.

6.3.3 Enforcing Syntactic and Semantic Correctness

A significant advantage of the Visual GNY environment is that it ensures that syntactically correct state-
ments are constructed. Because the pop-up menus enforce the predefined order of the nodes in the
structured tree, it is not possible to specify a tree node that has an inappropriate type or to graft a node
into an incorrect location. In fact, it is also not possible to specify an incomplete tree, since a user will
not be allowed to change to another structured tree set, or press the OK button, unless all of the structured
trees are complete. If a given tree is incomplete, then the node requiring a child will be highlighted and
a message box indicating this fact will be displayed. The dynamic construction of the contextualized
pop-up menus also ensures that no duplicate GNY statements can be generated. This elimination of du-
plication helps to ensure that an efficient and more optimal set of GNY statements are exported to the
GYNGER analyzer. Besides this, it also helps to eliminate confusion by ensuring that there is only one
copy of any given statement.

Enforcing semantic correctness is a lot more difficult than ensuring syntactic compliance. Some seman-
tic checking has been added into the Visual GNY environment, but it is not capable of eliminating every
semantic error. When specifying the principals who share a secret, the specification dialog ensures that
the two principal names are distinct, thus preventing nonsensical statements, such as A j� B

S

 ! B from
being generated. Type correctness is enforced for the suitable secret and suitable public key statements
by ensuring that a user is only able to use components of the appropriate type when constructing these
expressions with pop-up menus. Because formula and principal names are imported from the protocol
specification, all constructed GNY statements should refer to components that exist in the protocol spec-
ification. If a user imports a formula into a structured tree, and then removes all of its instances from the
protocol specification, a bright red question mark is displayed as the structured tree node icon and the
statement represented by the node is not considered as valid or exportable.

6.3.4 Exporting Visual GNY Statements

The ability to convert structured trees into a format which is compatible with an external GNY analysis
tool or usable by a protocol engineer is fundamental to the operation of the Visual GNY environment.
The structured trees defined within the Visual GNY interface can be exported to text, LATEX and Prolog-
style formats. The textual format displays each GNY statement in an English-style syntax, so that a
statement such as A j� ](Na) is represented by the text string “A believes that Na is fresh”. When
exporting to LATEX, each of the structured trees is translated into native GNY mathematical notation. As



6.3.4 Exporting Visual GNY Statements 141

can be imagined, this feature is exceptionally useful for type-setting LATEX documents which contain
GNY statements. Finally, the Prolog-style output is directly compatible with GYNGER, allowing all of
the GNY statements constructed in the visual interface to be used for automated analysis without any
tedious manual translation.

When constructing the export algorithms, we encountered some interesting issues related to the repre-
sentation of GNY statements. These issues are very subtle, yet they need to be addressed to ensure that
the output produced when mapping from the structured trees is both correct and usable. Consider the
following set of GNY statements:

(1) A� �H(fNagK ; A
K
 ! B;< S >)

(2) A 3 (fNagK ; S)

(3) A j� A
K
 ! B

(4) A j� ](fNagK)

Now, we would like to apply C3, but this is not possible because the encryption formulae in the statements
(2) and (4) do not contain an extension and thus do not match the encryption passed as an argument to the
hash. This may sound pedantic, however, to an analyzer like GYNGER, issues such as this are crucial,
as the extension cannot be dropped from the encryption in the hash by using any of the GNY postulates.
Also, there is no postulate which allows us to add an extension to the encryptions in (2) and (4), and
even if there was, a forward-chaining analyzer would not be able to use it as it would cause an infinite
loop. So, the solution in this case is to append the extension attached to the encryption in (1) to the all of
its instances, resulting in the encryptions in statements (2) and (4) each being augmented with the same
extension.

So, in practice this means that when exporting GNY statements, any formulae which have extensions
must be exported with these extensions attached. An extension cannot be removed from the formula to
which it refers. During the export phase, the formula and the extension must be viewed as one inseparable
item. Later, during an analysis, the extensions can be removed through the use of the appropriate GNY
postulates, if possible. This principle works well in practice, however, there is a situation when it fails.
Assume that an extension statement refers to the formula to which it is attached. If this is the case, then
we obtain an infinitely long string referring to the formula. For example, if Na has the extension ‘Na is
fresh’, then this would be represented as Na ; ](Na ; ](Na ; ](: : :)))!

There are two solutions to the self-referencing extension problem which we have just described. The first
solution is to not allow a formula extension to contain references to the formula to which it is attached.
This rule is simple to implement in Visual GNY by modifying the algorithms which dynamically update
the pop-up menus. However, it is also rather limiting. We want to be able to construct formulae such as
Na ; ](Na), as it makes sense logically and semantically — Na can only be transmitted if it is believed
to be fresh by the sender. A second solution is to ban the use of extensions within extensions. We have
implemented this approach within the Visual GNY environment and found that it works well, preventing
circular references. Essentially, the choice as to which solution is used to prevent circular references
boils down to a question of compromise. We have chosen to ban nested extensions, at the expense that
certain esoteric analyses may not be possible.

There are two cases in which we do not attach extensions to formulae when exporting structured GNY
trees. The first is when a key is used in an encryption statement, such as fXgK . In this case the
formula representing the encryption key, K , does not have an attached extension. However, the remaining
instances of K which are not used in encryption statements would include an extension if there was one,



142 CHAPTER 6. VISUAL GNY

for example A j� ](K ; B 3 K). The second instance in which we do not use extensions is in the case
of public key suitability statements, such as A j�+K7�! B. In this situation, even if +K has an extension,
we do not write it. However, this is the only case in which +K is written without its extension. In other
statements, such as A j� �(H(X;+K ; B j� X;Z)), the extension is included.

Now, a natural question to ask is whether our approach of always attaching extensions, except in the
situations outlined above, results in analysis difficulties. The answer is that with the existing GNY
postulate set, resolution is facilitated, as there are laws that allow for extensions to be dropped. In other
situations, such as formulae embedded within hashes, keeping extensions does not result in difficulties.
Consider the following two sets of GNY statements:

Set 1:
P � �fXgK

P 3 K ; C 0

P j� P
K;C0

 ! Q

P j� �(X)

P j� ](K ; C)

Set 2:
P � �H(X;< S ; C 00 >)

P 3 (X;S ; C 00)

P j� P
S;C00

 ! Q

P j� ](S ; C 00)

In the analysis on the left, we have to drop extension C0 so that C1 can be applied. The extension is
dropped as the representation of the symmetric key K must be consistant throughout, especially for an
analyzer such as GYNGER. The postulates used to drop the extensions are P2, C22 and F2. In the
analysis on the right, no extensions need to be dropped and C3 can be applied immediately. To see that
leaving the extension out for public key suitability states does not result in problems, one merely needs
to examine the postulates that employ this construct, viz C4 through to C7, C13 and C14. Finally, as
a slight aside, let us clarify the GYNGER-compatible Prolog-style syntax for two GNY constructs that
Visual GNY produces:

� hash(’H’, [’X’, identifyingSecret(extension(’S’, fresh(’X’)))]) is the
same as H(X;< S ; ](X) >).

� extension(star(encrypt(’N a’, shared(’K’))), secret(’A’, ’K’, ’B’))

corresponds to �fNagK ; A
K
 ! B.

Now, let’s briefly examine how the Visual GNY environment exports GNY statements to the text, LATEX
and Prolog formats which it supports. Obtaining the GNY statements from the structured trees is ac-
complished through calls to the appropriate structured tree APIs, which will be described later. The
exported output contains all of the defined GNY statements and analysis results, if any, in the order that
follows: initial belief statements, initial possession statements, target belief statements, target posses-
sion statements, valid possession statements, failed possession statements, valid belief statements and
valid possession statements. As we have mentioned, extensions are appended to formulae for which an
extension set has been created in the Extensions tabbed pane.

Along with the GNY statements defined in the Visual GNY environment, the list of protocol messages
is also output using being-told statements. This list is created through interaction with the GYPSIE
protocol specification environment wherein the messages, their receivers and relative order are defined.
The GYPSIE API calls allow this protocol output to be generated with or without stars. In fact, the
protocol parsing and appending of stars is all carried out by GYPSIE since it is easily automated. No



6.3.5 Organizing and Managing Statement Construction 143

Figure 6.8: The View as Text facility and Visual GNY tooltip cue in action.

user-interaction is required for protocol parsing, ensuring that this analysis phase is free from errors.
A subtle point to consider is that stars cannot be removed from a formula if it is embedded in a hash.
Consider the following set of GNY statements:

(1) A�H(�fXgK ; Na)

(2) A 3 (fXgK ; Na)

(3) A j� ](Na)

Applying F30 to (2) and (3), results in A j� ](fXgK ; Na), while applying P1 to (1) gives us the statement
A 3 H(�fXgK ; Na). However, we cannot apply F4 as P possesses the compound formula, (fXgK ; Na)

not (�fXgK ; Na), which is syntactically distinct. So, a way around this issue is to generate two lists of
protocol messages in being-told format. The list first includes stars, while the second does not. This
approach is used when generating Prolog output for GYNGER to ensure that the automated analysis
derives all possible resultant GNY statements. However, in the text and LATEX output, we only use the
first list of messages which contains stars, as we do not expect this exported information to be used with
any automated analysis tools.

6.3.5 Organizing and Managing Statement Construction

Within the Visual GNY environment, we have tried to create an environment that facilitates simple and
straight-forward construction of GNY statements. Now, while working in one of the tree-views, a user
might need to know the GNY statement which is represented by a specific set of nodes. To facilitate
such a query, a feature which displays the GNY statement represented by a given node through the use
of tooltips has been created. When hovering over a valid terminal node of a structured tree, the GNY
statement which this node represents is displayed, as illustrated in Figure 6.8. This feature prevents users
from having to navigate a tree and derive the GNY statement which it represents. Tooltips also give an
indication of what the implicit prefix for a given set of structured is. For example, the implicit prefix



144 CHAPTER 6. VISUAL GNY

of the structured trees illustrated in Figure 6.8 is ‘A believes that’. To view all of the GNY statements
represented by the set of structured trees, a user can right-click in any open area and select the View as
Text option from the resultant pop-up menu. A dialog containing an English-style list of GNY statements
in an edit box is then displayed, as illustrated in Figure 6.8.

Another way in which the Visual GNY environment ‘guides’ a user is by helping her to structure and or-
der the analysis process. The tabbed panes give an indication of the information required for an analysis,
and are roughly laid out in the order that this information would be supplied. Belief and possession sets
for a given principal are grouped into a single tabbed pane, only one set being visible at a time through
the selection of radio buttons. The statement counter at the bottom of a tabbed pane also helps to give an
indication of the number of GNY statements already specified. Nodes within a given structured tree can
be expanded or collapsed as required. If a node contains children then a clickable token is displayed to its
left. Clicking on this token allows the node to be collapsed or expanded, thus allowing a user to control
the amount of information which is presented. In this way the level of detail provided by the interface
can be varied appropriately, allowing a user to control any possible disorientation to some degree. Also,
because only one type of statement occurs in any given structured tree, the user does not have to ‘search
around’ for similar statements, as is the case with the SPEAR I BAN Builder dialog and some manual
paper-based analyses. The Analysis results pane allows a user to determine at a glance whether there are
any valid or failed possessions and beliefs. This is accomplished through the use of enabled and disabled
radio buttons in the Results pane. All of these results sets can be viewed by selecting the appropriate
radio button, if it is enabled.

6.3.6 Suggested Statement Completion

Within the Visual GNY environment, we have attempted to add some primitive intelligence to aid with
the construction of GNY statements. This help is provided through the Suggestions menu field found on
some of the pop-up menus. In the list below, we describe the rationale behind the suggestions we have
automated:

� Initial Possession Sets: Anything that a principal originates is suggested to be part of his initial
possession set. For example, if we have the message specification A �! B : X; fY gK ;H(Z),
then the components X , Y , fY gK , K , Z and H(Z) are placed within the appropriate Suggestions
menu item if these items were not received in a prior transmission.

� Recognizable Formula: Any nonce that a principal originates is suggested to be recognizable and
placed within the appropriate Suggestions menu item.

� Fresh Formulae: Any timestamp that a principal receives or any nonce which he originates is
suggested to be fresh and also inserted within the appropriate Suggestions menu item.

� Public Key Owners: Assume that a GNY possession statement exists which states that a given
principal possesses a private key. Then, when constructing a suitable public key statement, the
owner of the private key is also suggested to be the owner of the public key and placed within the
appropriate Suggestions menu.

We have tried to provide hints that will not introduce errors into the GNY specification being constructed.
As would be imagined, the addition of these suggestions, especially the initial possession set suggestions,
help to speed up the creation of GNY analysis preconditions. In future, we envisage smarter heuristics
being used in conjunction with more suggestions menus.



6.3.7 Integration within the SPEAR II Framework 145

Figure 6.9: Pull-down menu commands and GNY statements being viewed as text.

6.3.7 Integration within the SPEAR II Framework

The Visual GNY feature set is accessible within the SPEAR II Framework through the use of pull-down
menus. Within the main SPEAR II window, the GNY menu shown in Figure 6.9 allows one to have direct
access to each of the Visual GNY tabbed panes. The top four items on the pull-down menu give access
to the Assumptions, Goals, Extensions and Analysis panes respectively. When selecting one of these
menu items, the Visual GNY environment appears in the foreground with the respective pane in focus.
All of the pull-down menu items are dimmed and disabled if no messages have been defined within the
GYPSIE environment. However, all of these menu items, excluding the View Analysis Results item, will
be enabled if at least one message has been defined.

To export or view the current set of GNY statements, the Export GNY Statements and View GNY State-
ments pull-down menu items are employed. Both of these menu items reveal a submenu presenting one
with the option of generating LATEX, English-style text or GYNGER-compatible Prolog output. If an item
is selected from the Export GNY Statements submenu, then all of the constructed GNY statements and the
idealized message passing specification will be output to a file of the user’s choice. However, if an item
is selected from the View GNY Statements submenu, then a dialog is displayed containing the text that
would have been exported to file. An example of viewing GNY statements as English-style text is shown
in Figure 6.9. An advantage of the export and view menu items is that they allow one to obtain a concise
summary of the idealized protocol message passing specification and the GNY statements that have been
constructed. If this feature did not exist, then collating the information would require having to tediously
cycle through each of the tabbed panes while switching between the radio buttons and combo-boxes that
controls the set structured trees being displayed.

If an analysis has recently taken place, the View Analysis Results menu item will be enabled if the results
were saved by pressing the OK button when closing the Visual GNY environment. If no results are
available for viewing the menu item will be dimmed and disabled. The analysis results from the most
recent analysis session are also included in the statements that are exported or viewed. However, these
results are not included in the output if any of the associated initial assumptions were deleted after the
analysis occurred. In a similar vein, the View Analysis Results menu item is dimmed and disabled if there
are no analysis results to view in the Analysis tabbed pane. This could be due to no analysis having been
conducted or the results being invalidated due to the deletion of an initial assumption.



146 CHAPTER 6. VISUAL GNY

1

Define the protocol specification in GYPSIE.

2

Define the initial belief and
possession sets for each principal.

3

Define the target belief and
possession sets for each principal.

4

Attach extensions to selected formulae.

5

Provide execution details for the GYNGER
analyzer and then invoke the analysis.

View valid and failed possession
and belief sets for each principal.

6

7

View all derived GNY statements in English-style
textual form.

8

View the annotated English-style GNY proof
for a successful possession or belief statement.

Figure 6.10: Steps undertaken when conducting a GNY protocol analysis.

6.4 Conducting an Analysis with the Visual GNY Environment

The SPEAR II Framework currently facilitates protocol engineering by making it easier to specify proto-
col messages, construct the GNY statements related thereto and conduct rigorous GNY-based analyses.
However, at this stage the Visual GNY environment does not contain heuristics or artificial intelligence
techniques that aid in suggesting goal statements, nor does it offer any form of advice or guidance when
a specified goal fails to be achieved. Certain basic heuristics, such as ensuring that an encryption always
contains recognizable and fresh formulae, and suggestions for completing specific statements, are not
difficult to incorporate within an analysis environment of this nature. However, features that carry out
more complex tasks, such as proposing formula extensions or jurisdiction statements, require more ad-
vanced implementations and theory. In effect, the responsibility of performing an analysis in a purposeful
and targeted manner rests with the protocol engineer — the SPEAR II Framework being a tool which
can assist her in this endeavour. In fact, the major contribution of the current SPEAR II Framework to
security protocol engineering is that it removes the tedium and syntactical issues associated with protocol
design and analysis, making a given analysis session easier to manage, conduct and conclude.



6.4.1 A Typical Analysis Session 147

6.4.1 A Typical Analysis Session

In Figure 6.10 we sketch the steps that are undertaken during a typical analysis session. Such a ses-
sion normally begins by specifying the principals, messages and formulae of the protocol in question
within the GYPSIE specification environment. Once this phase has been completed, the Visual GNY
environment is invoked and the initial assumptions and goals of each principal are specified as required.
Extensions are also appended to formulae. Once all of the necessary preconditions have been defined,
details such as the location of the Prolog interpreter, the location of the GNY rules Prolog source, work-
ing directories and output files are defined within the Analysis tabbed pane. If these details are correctly
defined, then the Analyze button in the Analysis pane is enabled so that it can be pressed to invoked the
analysis process. Upon the initiation of the analysis process, the structured GNY trees are all translated
into GYNGER-compatible Prolog syntax and run through the analyzer. The Visual GNY environment
monitors the analysis thread, and when it is complete, retrieves the results from the output files, parses
these results, and then constructs the appropriate structured trees to display in the Results pane. Proofs
and the list of all derived statements are also stored.

As we can see, a typical analysis session is very visual, with the graphical environment being used as
much as possible to aid and guide the user. The Results tab is only displayed if an analysis has been
conducted, and is automatically hidden if any deletions are made from the GNY preconditions. To
view the proof for a successful target goal, one merely needs to right-click on the terminal node of the
statement’s structured tree representation and then select the View GNY Proof menu item. To view all of
the GNY statements derived during the most recent analysis, the button in the lower right of the Analysis
tabbed pane is pressed. All of the constructed GNY statements and analysis results are saved together
with the GYPSIE protocol specification. The analysis results are also saved to an output file defined
within the Analysis tabbed pane. The undo and redo feature within GYPSIE is very useful for protocol
analysis, since it allows a user to conduct analyses on variations of the same protocol. For instance, an
analysis can be conducted with a certain formula contained within the protocol messages. This formula
can then be deleted and another analysis conducted, with the two results being compared at the end. If
the first results are better, then the deletion of the formula can be undone. In this way, we can determine
whether a given formula is redundant with respect to its effect on helping to achieve protocol goals.

6.4.2 Issues Introduced by Subprotocols

The GYPSIE environment includes the ability to specify subprotocols within a protocol specification.
Subprotocols are equivalent to subroutines in a programming sense and are either invoked sequentially by
the protocol execution thread or selectively when certain conditions are fulfilled. Now, when generating
being-told statements and constructing structured trees in the Visual GNY environment, we exclude ref-
erences to formulae and messages in embedded subprotocols, as illustrated in Figure 6.11. This approach
essentially limits a protocol engineer to analyzing only those messages that are visible within a GYPSIE
specification window. An advantage of this limitation is the simplicity that results, as the exchange of
derived statements between subprotocols and their parents is not necessary during an analysis. In fact,
GYNGER can only deal with initial conditions that are specified at the start of a protocol analysis and no
statements can be injected while the analyzer is executing, thus preventing such exchanges from being
used at all. This simplistic approach also solves the problem of what to do with the messages that belong
to subprotocols which are only executed selectively, since these messages are not included in an analysis.
However, even though analyzing terminal subprotocols gives an indication of what each achieves, we
would still like to view an entire protocol analysis in perspective and see how the components interact.



148 CHAPTER 6. VISUAL GNY

Figure 6.11: A GYPSIE specification including subprotocols and the resultant being-told statements.

The Flatten Subprotocol Hierarchy feature, described in detail in Section 3.2.1.6, can be used to extract
messages from embedded subprotocols so that all of these messages are present together in the topmost
layer of the subprotocol hierarchy. In this way, the entire protocol can be examined by the GYNGER
analyzer as there are no nested messages, all subprotocols being deleted after the extraction process. In
the case of selectively executed subprotocols, a protocol engineer would have to decide which of these
messages to include in the list of messages that constitute the protocol scenario under inspection. Thus,
the approach that we have created to analyze a protocol that includes a subprotocol hierarchy requires
the extraction of all messages to the same hierarchical layer, after which these messages are structured
and selected appropriately to form a viable scenario to be analyzed by GYNGER.

6.5 Experiments with the Visual GNY Environment

In order to examine the suitability of the Visual GNY environment for specifying GNY statements, we
decided to conduct a number of user experiments. Within these experiments, we decided to pit the Visual
GNY environment against manual, hand-written GNY statement construction. Our major objective was
to determine whether Visual GNY facilitates the effective construction of syntactically and semantically
correct GNY expressions. We also wanted to gain an understanding of how users who had never been
schooled in GNY analysis techniques would be able to use the structured tree approach, as opposed to
those who had completed some vestige of a course in security protocol analysis. The subjects involved in
the experiments consisted of two groups of users, namely those educated in GNY analysis techniques and
those who had never even heard of GNY. Each of the GNY novices had completed a course in network
security principles. None of those who had been educated in GNY analysis techniques had carried out
a GNY analysis for the last six months. In total, we involved fifteen educated users, and five novice
users in the experiments. The number of novice users was rather small. However, this did not present a
problem as we were more interested in how the educated users responded to the environment, since they
are more representative of those who will use GNY analysis in the workplace or research arena due to
their prior exposure. In effect, the novice users were merely tested for comparative reasons.



6.5 Experiments with the Visual GNY Environment 149

The experiment that we developed took the form of three tests. The first test required users to translate
a given set of English-style GNY statements into both mathematical GNY notation and structured trees.
During this test, individuals made use of Visual GNY to construct the trees. The second test required
the translation of GNY statements in mathematical-style notation into English-style expressions. Finally,
during the third test individuals had to convert structured trees into equivalent English-style GNY state-
ments. In each test, we ensured that every type of GNY statement was exercised. Before testing the
novices, we gave each of them a brief introduction to GNY analysis techniques. Both groups of users
were also briefly instructed in how to use the Visual GNY interface. The Visual GNY tooltips feature
and the ability to view all of the structured trees as English-style text were both disabled.

Prior to conducting the experiments, we realized that certain individuals might not be able to recall or
remember the meaning of a large portion of the GNY notation. Such a situation might totally bias the
results in favour of Visual GNY. So, we decided to give the test subjects the option of using the Visual
GNY pop-up menu captions as a reference for the mathematical-style GNY notation. Since the pop-up
menus only provide descriptive text and a mathematical-style GNY icon for each type of GNY state-
ment, the examination of an individual’s ability to recall the mathematical-style GNY syntax, construct
coherent GNY statements and understand them semantically was not biased by allowing this type of ref-
erencing. In fact, when presented with the option of using Visual GNY as a reference, every one of the
test subjects accepted, indicating their apprehension regarding the GNY notation. In this respect, we can
say that the Visual GNY environment assisted in the construction and interpretation of the hand-written
mathematical-style statements to some degree. The experiments test sheet can be found in Appendix D,
while the results for each of the tests appears in Table 6.2.

15 Educated Users 5 Novice Users
95% Confidence 95% Confidence

Sample Interval for Sample Interval for
Task Mean Population Mean Mean Population Mean

English to GNY 78.46% (76.91%, 80.02%) 72.31% (71.47%, 73.15%)
English to Visual GNY 98.46% (98.15%, 98.77%) 100.00% (100.00%, 100.00%)
GNY to English 87.22% (86.36%, 88.08%) 85.00% (84.75%, 85.25%)
Visual GNY to English 87.78% (86.82%, 88.73%) 91.67% (91.28%, 92.06%)

Table 6.2: Results of tests pertaining to the accuracy of GNY statement construction.

Listed within Table 6.2 are the average scores that were obtained by users from each group for the
respective tests. From the data obtained, we also calculated the 95% confidence interval indicating where
the population mean should lie. This computation assumes that the set of users are a representative
sample of our envisaged user base. Since the sample size for our set of novice users consisted of only
five individuals, the confidence intervals obtained are not as accurate as those of the educated users,
which had a larger sample of fifteen individuals. The following is a sample of what some of the test
subjects had to say about the Visual GNY environment:

“[Visual GNY] makes understanding GNY straight-forward. However, the hierarchical
structure may be confusing for some people. On the whole, it seems beneficial with a short
learning curve.”

“I felt that constructing GNY statements was much easier using Visual GNY. There was not
the overhead of having to remember the plethora of GNY symbols. I think Visual GNY’s
power definitely lies in the ease with which you can rapidly and easily construct statements.”



150 CHAPTER 6. VISUAL GNY

“Visual GNY really accelerates the learning of GNY expressions and syntax.”

“As a tool to introduce the layout of GNY expressions, and to allow for quick construction
of these statements in a visual environment, [Visual GNY] looks very effective.”

An important conclusion that we can derive from the first two tests is that Visual GNY effectively helps
users to construct GNY statements. All of the statements that were specified with Visual GNY turned out
to be syntactically correct. Those individuals who did not score perfect results for the English to Visual
GNY test committed semantic errors, specifically the use of incorrect formulae within expressions. The
reason why users always constructed syntactically correct structured trees was because the Visual GNY
environment did not allow them to exit or change tabs unless all of the trees were complete. The fact
that the novice users all got 100% of the Visual GNY statements correct and the educated users only got
98% correct is not very significant. It merely indicates that the novice users concentrated more closely
on the formulae which they inserted into the structured tree. With a larger sample of novice users, we
would have definitely encountered someone who would have made a substitution error. A noteworthy
conclusion that we can draw is that using Visual GNY produces significantly better results than specifying
GNY statements by hand. When using Visual GNY individuals scored almost 20% higher. Essentially,
what the Visual GNY environment has done is to totally remove the syntactical and notational issues
associated with the construction of GNY statements, thus allowing individuals to concentrate on the
actual protocol analysis process, which is far more fundamental and important.

The final two tests revealed some interesting results. The scores for reading off mathematical and struc-
tured tree-style GNY statements were almost identical for the educated users, and not significantly dif-
ferent in the case of novice users. This seems to indicate that the structured tree representation of a given
GNY statement is not any more readable than its corresponding mathematical-style rendering. Difficul-
ties encountered when reading from a structured tree can be attributed to having to jump from node to
node, and sometimes having to skip nodes and only return to them later. The fact that mathematical-style
GNY is primarily structured in a linear fashion means that it is not that difficult to interpret once the
symbols have been understood. Since the novice users had never used GNY before, they did not have
any preconceived notions as to how it should be written or structured. This fact might offer a possible
explanation as to why they scored better than the educated users when reading from the tree. An interest-
ing point to note is that the test subjects found it easier to read mathematical-style GNY statements than
to construct them. This could be because construction of these statements requires recalling the function
of each symbol and then stringing these symbols together correctly, while writing out the meaning of
mathematical-style GNY statements merely requires one to have an idea of what each symbol represents.

During the course of this brief experimental analysis, we have noticed that many individuals struggle to
recall the mathematical-style GNY notation if they have not been using it for some time. As a result of
this fact, individuals will not immediately make use of GNY to analyze protocols, since their notational
ineptitude would serve as a hindrance to the specification of assumptions and goals. Because of this
issue, we chose to develop Visual GNY, empowering those who have used GNY in the past to use it
again with ease. The experiments which we have carried out have confirmed that the construction of
GNY statements in the Visual GNY environment is a straight-forward and painless operation, producing
high-quality syntactically correct statements. However, reading GNY statements from the structured
tree is not necessarily a simple task, sometimes confusing individuals. For this reason, the addition of
the tooltips and View as Text features are exceptionally useful, since they help to create a system which
virtually ensures that users construct error free statements — the pop-up menus accelerating and aiding
the construction process, and the tooltips and View as Text features being used to validate, verify and
view the constructed statements.



6.6 Implementation Details 151

6.6 Implementation Details

An object-orientated approach was employed when creating the Visual GNY environment in order to
facilitate expansion and understanding of the source code. The environment itself was prototyped and
written using the Borland C++ Builder package which significantly aids in the creation of event-driven
Windows applications. The Visual GNY source code interacts very closely with the GYPSIE API due
to the fact that information about the protocol and message formulae can only be obtained in this way.
Interaction with the GYNGER analyzer takes place primarily through system calls which invoke external
processes, in this case a Prolog analyzer.

0..4

GNYStatements

ExtensionStatements PrincipalStatements

GNYInformation StatementNode

1..*

GNYStatementsTreeNode

1..*

1

1..*

1

Figure 6.12: Diagram of the classes used in the Visual GNY implementation.

6.6.1 Class Hierarchy

The Visual GNY class hierarchy consists of six classes and is illustrated in Figure 6.12. The GNYS-
tatements, PrincipalStatements and ExtensionStatements classes are used to store
GNY statements, while the GNYStatementsTreeNode and StatementNode classes are used to
represent a structured GNY tree. The GNYInformation class contains all of the GNY statements
applicable to a given protocol.

6.6.1.1 Representing Structured Trees

The StatementNode class stores the information that is contained within a structured tree node.
This information is either a list of formula references, a GNY statement category or a list of princi-
pal names. Only one of these three items is contained in a given StatementNode at any one time.
The GNYStatementsTreeNode provides a mechanism for representing the structure of a GNY state-
ment tree through the use of a sibling-child tree approach (see Figure 6.13). Pointers to other GNYS-
tatementsTreeNode objects are stored within a given GNYStatementsTreeNode to reference
a node’s parent, left sibling, right sibling and first child. An object of type StatementNode en-
capsulated within a GNYStatementsTreeNode stores the node information. Methods within the
GNYStatementsTreeNode allow one to write to and initialize from a graphical tree-view compo-
nent. Obtaining the equivalent English, LATEX or Prolog-style GNY statements from a structured tree can
be accomplished with a simple method call. Tree manipulation, saving, loading and search routines are
also provided within the GNYStatementsTreeNode class definition.



152 CHAPTER 6. VISUAL GNY

Suitable Secrets

Left Sibling

First
Child

Child
First

Child
First

Sibling−Child Representation

Suitable Secrets
Parent

Parent Parent

Parent

Standard Tree Representation

Right Sibling

P , Q P , R

Kpq
Spr

Spr

P , R

Kpq

P , Q

Figure 6.13: Two representations of a structured GNY tree.

6.6.1.2 Storing GNY Statements

The GNYStatements class is used to store GNY statements without a believes or possesses prefix. An
encapsulated pointer to a structured tree is used to reference the tree storing the GNY statements. The
ExtensionStatements class inherits from GNYStatements. It contains a reference to a formula
so that the component to which GNY extension statements are attached can be stored. To store statements
with a believes or possesses prefix, the PrincipalStatements class is used. This class also inherits
from GNYStatements. Two pointers to structured trees are stored within the PrincipalState-
ments class. The first is inherited from GNYStatements and used to store principal beliefs, while the
second has been added to the class and is used to record possession statements. Besides the pointers to
these two trees, the name of the principal who is the subject of the stored statements is also recorded so
that the believes and possesses prefixes can be correctly constructed. The ability to save, load and access
stored GNY statements is provided by appropriate methods within each class.

6.6.1.3 Storing GNY Information

The GNYInformation class is used to store all of the belief, possession and extension statements appli-
cable to a given protocol. Three linked lists within the class named principalPreconditionsList,
principalGoalsList and extensionsList are used to store initial assumptions, target goals and
extensions respectively. Each element of principalPreconditionsList and principalGoal-

sList is of type PrincipalStatements and contains a principal’s initial assumptions and target
goals respectively. Similarly, every element of extensionsList is of type ExtensionStatements

and contains the statements attached to a formula. Another two linked lists named principalValid-

GoalsList and principalFailedGoalsList are used to store successful and failed goal statements
respectively. The elements within these lists are of type PrincipalStatements. Other information
related to an analysis, such as the name of the results file containing GYNGER output and all gener-
ated GNY statements are also stored in this class. Methods that allow one to obtain the structured trees
containing a given principal’s initial assumptions, target goals, failed goals or valid goals, as well as a
formula’s extensions, exist within the class definition. The GNY statements contained within the protocol
can also be saved, loaded and exported to an appropriate English-style text, LATEX or Prolog format.



6.6.2 Saving and Loading Structured Trees 153

6.6.2 Saving and Loading Structured Trees

All GNY statements created in the Visual GNY environment, as well as any analysis results, are saved
along with the GYPSIE specification of a protocol as ASCII text. When loading a GYPSIE specification,
the GNY portion of the source file is parsed, resulting in the Visual GNY environment and all of its
associated data structures being initialized. Within each of the Visual GNY classes, a constructor exists
that will read a subset of the saved specification from a file and then create an appropriate object. Each
class also contains methods that allow it to be written to a file.

In the text fragment that follows we illustrate how a structured tree is stored as ASCII text. The code on
the left represents the structured tree containing the freshness statements ](Tb) and ](Na), while the code

on the right represents the structured tree containing the shared secret suitability statement Q Si
 ! Pi:

GNY_NODE {
CAPTION = "Fresh Components"
TYPE = "gtFreshComponents"
EXPANDED = 1
GNY_NODE {

CAPTION = "Tb"
TYPE = "gtComponent"
EXPANDED = 0
PAYLOADS {

19123592
}

}
GNY_NODE {

CAPTION = "Na"
TYPE = "gtComponent"
EXPANDED = 0
PAYLOADS {

13143522
}

}
}

GNY_NODE {
CAPTION = "Suitable Secrets"
TYPE = "gtSuitableSecrets"
EXPANDED = 1
GNY_NODE {

CAPTION = "Si"
TYPE = "gtSuitableSecretComponent"
EXPANDED = 1
PAYLOADS {

14128813
}
GNY_NODE {

CAPTION = "Q, Pi"
TYPE = "gtSharingPrincipals"
EXPANDED = 0
Principal_1 = "Q"
Principal_2 = "Pi"

}
}

Common to each GNY NODE are the caption, type and expansion status fields. A ‘zero’ value for the
expansion status indicates that a node is collapsed, while a ‘one’ indicates that it is expanded. The
remaining fields depend on the node’s type. When reconstructing the structured tree from saved informa-
tion, adjacent GNY NODEs are interpreted as siblings, while nested GNY NODEs are viewed as children
of the container. The numeric codes used within the PAYLOADS section are used to reference formulae
defined in GYPSIE. The codes are written to file by GYPSIE prior to saving any Visual GNY informa-
tion. Obtaining the information applicable to a given formula merely involves performing a look-up on
its numeric code in the saved source file.

To save initial assumptions, target goals, successful goals and failed goals, the appropriate structured
trees and principal to whom the statements therein apply are written to file. The belief and possession
statements are saved separately. When saving successful goals, the GNY NODE for each terminal node
in the corresponding set of structured trees contains a proof in English-style GNY as one of its fields.
When saving extensions, the relevant GNY statements as well as the formula to which they are attached
is saved. Along with the GNY statements defined in the visual environment, analysis information such
as the name of the results file containing GYNGER output and the list of all derived statements is also
saved.



154 CHAPTER 6. VISUAL GNY

In the text fragment that follows we illustrate how GNY statement collections and extensions are saved.
The code on the left represents the initial assumptions for principal P , the code in the middle describes
the successful goals of principal S, while the code on the right represents the extensions attached to the
component with the numeric GYPSIE code of 19135980. In the interests of brevity, we have omitted the
information contained in the GNY NODE structures:

PRECONDITIONS {
PRINCIPAL = "P"
BELIEFS {

GNY NODE {
...

}
...

}
POSSESSIONS {

GNY NODE {
...

}
...

}
}

VALID GOALS {
PRINCIPAL = "S"
BELIEFS {

GNY NODE {
...

}
...

}
POSSESSIONS {

GNY NODE {
...

}
...

}
}

EXTENSIONS (19135980) {
GNY NODE {

...
}
...

}

If no beliefs or possessions exist for a principal in a given collection, then the corresponding BELIEFS
or POSSESSIONS section is not present. If a given principal has no beliefs and possessions for one of
the statement collections, then it will not have a record in that collection. For example, if principal R
does not have any target beliefs and possessions, then there is no entry in the principalGoalsList
of the encapsulating GNYInformation object, and hence when saving all GNY statements to file there
will be no GOALS record for R.

6.6.3 Exporting Structured Trees

A set of recursive methods belonging to the GNYStatementsTreeNode class is used to export struc-
tured trees to English, LATEX or Prolog. These methods effectively navigate a path in a structured tree
from the tree’s root to the terminal node completing a GNY statement. During this journey the GNY
statement to be exported is progressively constructed as each node along the path is visited. Assume
that exportStructuredTree() is one of these recursive methods. When invoking the export-
StructuredTree() method of a structured tree node the resultant execution thread first weaves its
way to the root of the structured tree by invoking the exportStructuredTree() method of each
node’s parent. Upon reaching the root, these recursive calls terminate and the process of unravelling
them commences. Thus, each node along the original execution path is effectively visited twice by the
execution thread. The first visit occurs when invoking the exportStructuredTree() method of
a node’s parent, and the second when this method has completed execution. During this second visit
the exported statement is updated by appending or inserting text based on the node’s type. The code
fragment which follows illustrates how the recursive methods which export structured trees appear. Note
that three such methods exist — one to export to English text, one to create LATEX statements and one to
create GYNGER-compatible Prolog.



6.6.3 Exporting Structured Trees 155

AnsiString GNYStatementsTreeNode::exportStructuredTree() {

AnsiString exportedText;

GNYTypes nodeType = statementNode->getType();

if (parent != NULL) exportedText = parent->exportStructuredTree();

switch(nodeType) {
...

}

return exportedText;

}

Within the switch statement of the above code fragment, text is appended to or inserted into the ex-
portedText variable depending on the value of nodeType. Recall that in Section 6.2.3 we divided
all twelve possible GNY statements into seven groups. In the diagrams that follow, we illustrate how
the statements in each of these groups are converted into English text, LATEX or Prolog statements from
a given structured tree. On the left side of each diagram we show a structured tree with each of the
nodes labelled sequentially, starting at the root. On the right side we illustrate the text that is appended
or inserted when the execution thread passes through a given node during the construction process. Let’s
begin by considering a freshness statement from Group 1:

Fresh Components 1

X 2

English: X 2 is fresh 1

LATEX: nsharp( 1 X) 2

Prolog: fresh( 1 X) 2

When the execution thread passes through node (1) the output text is initialized with the phrase ‘nsharp(’
or ‘fresh(’ for LATEX or Prolog output respectively. Upon entering node (2), the appropriate textual
representation of the fresh formula is appended to the text being constructed — in this case ‘X)’ for LATEX
output, or ‘X)’ for Prolog output. The situation differs with English-style output because the individual
components of the English statement are not structured in the same order as their counterparts in the tree.
When passing through node (1), the text ‘$ is fresh’ is created and passed on to the next node. Then when
entering node (2) the ‘$’ placeholder character is replaced with the textual representation of the correct
formula, which in this case is X . We now consider a conveyance statement from Group 2:

Formulae Conveyed by Principals 1

A 2

X 3

English: A 2 once conveyed 1 X 3

LATEX: A 2
nmidnsim 1 X 3

Prolog: conveyed( 1 A, 2 X) 3

When constructing the conveyance statements in English or LATEX, we first output the statement with a
placeholder for the principal name when evaluating node (1). When passing through node (2), this place-
holder is replaced with the actual principal name. The evaluation of node (3) merely requires appending
the appropriate textual representation of X to the statement being constructed. When generating Prolog
output, all of the respective components making up the statement follow sequentially and thus the appro-
priate Prolog text merely needs to be appended to the current output when passing through each node.
We now examine the trustworthiness statement from Group 3:



156 CHAPTER 6. VISUAL GNY

Trustworthy Principals 1

A 2

English: A 2 is trustworthy 1

LATEX: A 2
nmidnLongrightarrow A 2

nmidnequiv � 1

Prolog: honest( 1 A) 2

The techniques that we have seen in the past two explanations are again applied to to the generation of
trustworthiness statements. However, when generating the corresponding LATEX output two placeholders
are inserted into the text output from node (1). As a result, when entering node (2), two substitutions
have to be carried out. We now present the suitable public key statement from Group 5:

Suitable Public Keys 1

+K 2

A 3

English: +K 2 is a suitable public key for 1 A 3

LATEX: nstackrelf +K 2
g fnlongmapstog 1 A) 3

Prolog: public( 1 +K, 2 A) 3

Generating the English, LATEX and Prolog forms of the public key suitability statement from a structured
tree is carried out using the same principles that were described for the statements in Group 2. We now
examine how a shared secret suitability statement from Group 6 is constructed:

Suitable Secrets 1

S 2

B;C 3

English: S 2 is a suitable secret for use between 1 B and C 3

LATEX: B 3
nstackrelf 1 Sgfnlongleftrightarrowg 2 C 3

Prolog: secret( 1 B 3, S, 2 C) 3

The terminal node in a shared secret suitability tree contains the names of the two principals who share
the secret. In both the LATEX and Prolog representations of this statement these two names are separated,
thus making substitutions imperative when exporting the statement from a tree. As can be seen in the
explanatory diagram above, the substitution of the first principal name (B is this case) takes place when
visiting node (3), while the remaining principal name is appended to the end of the statement. When
generating English-style output, the two principal names are appended to the statement when the execu-
tion thread passes through node (3). We now examine how a believes statement belonging to Group 4 is
constructed:

Beliefs of Principals 1

A 2

: : :

English: A 2 believes that 1 : : :

LATEX: A 2
nmidnequiv 1 : : :

Prolog: believes( 1 A, 2 : : : ) n+1

A believes statement essentially consists of a believes prefix concatenated with a GNY statement. When
exporting a structured tree containing such a statement, the appropriate believes prefix is generated and
then concatenated with the text that results from exporting the remainder of the tree. When generating
English and LATEX GNY statements this technique works correctly. However, when generating Prolog
output the closing bracket that terminates the clause must be included. This is done by keeping count



6.6.4 Conducting an Analysis with GYNGER 157

of the number of closing brackets required through the use of a counter which is incremented each time
node (1) is encountered. The appropriate number of closing braces are then appended once the terminal
node of the believes statement has been visited and processed. Finally, we examine how the jurisdiction
statement from Group 7 is exported:

Jurisdiction 1

A 2

: : :

English: A 2 has jurisdiction over the statement “ 1 : : : ” n+1

LATEX: A 2
nmidnLongrightarrow 1 : : :

Prolog: controls( 1 A, 2 : : : ) n+1

A structured tree representing a jurisdiction statement is exported in the same way as one representing a
believes tree. However, because quotes surround the statement over which a principal has jurisdiction, a
counter is used to keep track of how many quotes to append at the end of the statement. Once the nested
statement is complete, the appropriate number of quotes are appended to the end of the statement.

6.6.4 Conducting an Analysis with GYNGER

Since the executable code for the GYNGER analyzer is not embedded within the SPEAR II application,
calls to the analyzer take place by creating, executing and monitoring an external Prolog process. Input
for the GYNGER analyzer is generated from structured trees by the Visual GNY environment and then
output to file. When GYNGER is finished with the analysis process, the results are dumped to a file
which is then parsed by the Visual GNY system. These results are converted into structured trees and
displayed in the Results pane. The following is a high-level overview of how we have coded this analysis
process:

1. Export structured trees to executable GYNGER-compatible Prolog: Each initial assumption and
target goal is assigned a unique numerical identifier. This identifier ensures that the analyzer out-
put for each target goal can be matched with the appropriate structured tree representation. In this
way we can determine which goals were successful and which failed, displaying the appropriate
structured trees in the Visual GNY Results pane. The structured trees are exported in the following
order: initial possession trees, initial belief trees, target possession trees and target belief trees.
Within each of these exported collections, the individual statements are sorted by principal, the
order of the principals being determined by where the principal appears in the principalPre-
conditionsList and principalGoalsList linked lists. Once the structured trees have
been exported to Prolog syntax, the resulting text is extended by attaching the go/0 predicate
described in Section 5.2.5. This generated Prolog output is then dumped to file.

2. Execute GYNGER and monitor the analysis process: Once the Prolog output has been gener-
ated and dumped to file, the GYNGER analyzer can be invoked by executing the SWI-Prolog
interpreter with the command-line parameters described in Section 5.2.5. The Windows Cre-
ateProcess() API call is used to start the interpreter, all of the command-line parameters
being passed as an argument to CreateProcess(). The CreateProcess() function call
returns a handle to the executing process which it spawns. At this point a modal dialog box that
monitors the execution handle using the GetExitCodeProcess() API call is displayed. The
dialog box contains a progress bar which is continuously incremented by a background thread.
Once the execution of the Prolog process is complete, the modal dialog is closed and the Visual
GNY system is then free to examine the analysis results that GYNGER dumped to file.



158 CHAPTER 6. VISUAL GNY

3. Parse and process the results of the GNY analysis: Once GYNGER has completed an analysis, the
results are dumped to file and then read in by the Visual GNY system. The format of the analysis
results returned by GYNGER is described in Section 5.2.5. A proof is generated for each successful
goal statement. If the goal failed, then the text ‘FAILED!’ appears instead of a proof. The parser
that we have constructed reads this GYNGER output and then for each goal statement converts the
corresponding proof into a linked list of strings, which is in turn placed into a linked list of goal
results. If the goal failed, then the text ‘FAILED!’ is inserted as the proof text in the linked list
of goal results. After this parsing process is complete, the linked lists of strings associated with a
failed goal are each replaced by a NULL value. Thus, we are left with a linked list of proofs for
each specified goal, a proof being NULL if the goal failed, and containing a linked list of strings
otherwise. The index of the proof in the linked list corresponds to the numerical identifier that
the corresponding goal statement was assigned during the export phase of the analysis. All of the
derived statements are also extracted from the GYNGER output file and stored.

4. Display the analysis results in the Visual GNY environment: Once the analysis results returned
from GYNGER have been parsed, recorded and appropriately structured, we can initialize the
Results pane with this information. We will now briefly describe how the structured trees which
store these analysis results are constructed. The steps performed to initialize the trees containing
the successful and failed possession goals are listed below:

for i = 1 to (number of principal goal records stored in principalGoalsList) f
Extract the possession statements in principalGoalsList[i].
Create two structured trees named validTree and failedTree.
Initialize validTree and failedTree with the extracted possession statements.
for j = 1 to (number of possession statements in principalGoalsList[i]) f

if (proof for possession goal j is NULL) f
Remove possession goal j from validTree.

g else if (proof for possession goal j exists) f
Remove possession goal j from failedTree.
Add proof to terminal node of possession goal j in validTree.

g

Save the validTree and failedTree structured trees.
g

Use the appropriate methods to initialize the Results tree-views and combo-box.

In a similar way, we initialize the trees that store the successful and failed target beliefs. Once all
of the results trees have been initialized and saved in the Visual GNY data structures, the linked list
of proofs created in step (3) is discarded as the proof for each goal is stored in the terminal node
associated with the structured tree representation of a given goal.

Once the structured trees are displayed in the Results pane tree-views, the associated proofs can be
viewed by right-clicking on the terminal node of a successful goal and then selecting the View GNY Proof
option. If a failed goal is right-clicked, no pop-up menu appears. The proof for a successful goal that
is stored within the StatementNode object associated with the terminal node is extracted by calling
the getProofStringList()method. All of the derived statements are stored within the associated
GNYInformation object and are extracted by using the getAllGeneratedGNYStatements()
method. After a successful analysis has been conducted, the results are saved if the user presses the OK
button, and discarded if Cancel is pressed.



6.6.5 Interaction with GYPSIE 159

6.6.5 Interaction with GYPSIE

The most obvious interaction that takes place between the GYPSIE and Visual GNY environments is
the exchange of formulae and principal names that are involved in a protocol. When inserting formulae
into the Visual GNY pop-up menus, the getPayloadsUsedInMessages() method belonging to
the DesignController class is employed. This method returns a linked list containing references to
each of the formulae defined within a protocol’s message passing specification. This list of formulae is
also used to initialize the Extensions pane combo-box. To obtain individual principal names, the get-
PrincipalName() method belonging to the DesignController class is used to iterate through
all of the principal names specified in the protocol so that the relevant Visual GNY combo-boxes can
be initialized. An important point to note is that no principal names or formulae defined within nested
subprotocols are exchanged between GYPSIE and Visual GNY.

Generating the text, LATEX and GYNGER-compatible Prolog versions of the being-told GNY statements
associated with a given protocol is the responsibility of the GYPSIE environment. To determine whether
a formula within a given being-told statement is eligible for a star, the payloadHasPrefixed-
Star() method belonging to the DesignController class is used. This method takes the ob-
jects representing a formula and the encapsulating message as parameters, returning a boolean value of
true if a star is allowed, and false otherwise. To generate being-told statements for a given message,
four methods belonging to the Message class are used to export the message contents. The get-
PrologWithExtensions() method is used to generate Prolog-style being-told statements. This
method does not attach stars to formulae, but it does include their extensions in the output. The meth-
ods getTextWithExtensionsAndStars(), getLatexWithExtensionsAndStars() and
getPrologWithExtensionsAndStars() all generate their respective output with stars and ex-
tensions. Each of the four preceding methods parses the component tree stored within a message object,
using the payloadHasPrefixedStar() method to determine whether a given formula is eligible
for a star. Thereafter, the appropriate being-told prefix is added to the output.

To determine whether a formula used in a structured tree still exists within the GYPSIE specification, the
DesignController method componentIDExistsAmongMessages() is used. If the formula
exists, a boolean value of true is returned, otherwise a value of false results. A question mark icon is dis-
played in a structured tree if the associated formula no longer exists in the protocol specification to which
the GNY statement tree is related. Methods within the GYPSIE DesignController class are also
employed to populate the Suggestions pop-up menu items. To obtain the list of formulae which are ini-
tially possessed by a principal, the getPossibleInitialPossessions() method is used. This
method takes a principal name as a parameter, and returns a linked list of formula references. Similarly,
to determine the nonces a principal has originated and the timestamps he has received, we can use the
getNoncesOriginatedByPrincipal() and getTimestampsReceivedByPrincipal()
methods respectively.

The GYPSIE environment makes use of embedded GNYInformation objects to store the GNY state-
ments related to a given protocol. Every DesignController contains a GNYInformation object
that holds the GNY statements applicable to the protocol specification which it manages. When the Vi-
sual GNY environment is launched, a backup copy of this GNYInformationobject is stored alongside
the data structures associated with the Visual GNY dialog. Thereafter, any changes made to the structured
GNY trees only result in the GNYInformation object embedded within the DesignController
container being updated. The GNY statements stored within the saved GNYInformation object are
copied back into the the GNYInformation object contained within the DesignController only
if the Cancel button is pressed when exiting from the Visual GNY environment.



160 CHAPTER 6. VISUAL GNY

When executing the SPEAR II application, the user preferences and analysis settings are read from an
initialization file named spear2.ini. These settings are stored in a preferences object and every De-
signController in the system has a pointer attribute that references these preferences. The location
of the SWI-Prolog executable, working directory and GYNGER source code are all retrieved from this
preferences object and used to initialize the GNYInformation object contained within the Design-
Controller. Whenever the settings are changed in the Visual GNY Analysis pane, they are resaved if
the OK button is pressed when exiting from the Visual GNY environment.

6.7 Closing Remarks

In this chapter we have described a method for graphically representing all possible GNY statements. The
approach which we have devised represents a given GNY statement as a collection of successive nodes in
a tree-like structure, each node being a child of its predecessor. All statements of the same type form part
of the same tree, a heterogeneous set of GNY statements being represented by a collection of separate
trees. Each node within a GNY tree has an assigned type and its position within the tree is determined
by that type. Hence we use the term ‘structured tree’ to refer to this tree-like representation, since the
tree nodes are ordered according to a predefined pattern in order to produce a meaningful representation
of GNY information. The Visual GNY environment is the interface which a protocol engineer uses to
conduct a GNY analysis within the SPEAR II Framework. Collections of structured trees are used within
this environment to represent initial assumptions, extensions, goals and analysis results. To view and
modify a set of structured trees, a number of common GUI components such as tree-views, tabbed panes
and pop-up menus are used. When an analysis needs to be conducted, the GYNGER analyzer is invoked
by the Visual GNY system with the GNY statements constructed therein being used as input. Once the
analysis is complete, the results are displayed in the Visual GNY environment using structured trees and
English-style GNY syntax.

The most significant contribution of the Visual GNY environment to security protocol engineering is
that it removes the tedium and syntactical issues associated with GNY-based analysis, making a given
analysis session easier to manage, conduct and conclude. Within the confines of the Visual GNY envi-
ronment, it is impossible to specify a syntactically incorrect GNY statement as the structured trees are
constructed using dynamic pop-up menus which limit a user’s choice regarding the set of nodes which
can be appended or attached to an existing node. The set of formulae and principal names which can be
used in a GNY statement are extracted from the GYPSIE specification of a protocol so that no irrelevant
information is used. However, we cannot guarantee that statements which use the correct formulae or
principal names will always be constructed. In effect, it is still the responsibility of a protocol engineer
to intelligently and purposefully carry out a GNY analysis. Another major benefit of the Visual GNY
environment is that it appears simple, clean and concise and does not intimidate users with any apparent
complexity. During our experiments which focused on the structured tree dimension of the environment,
we found that users were able to construct a set of GNY statements with 98% accuracy using when the
Visual GNY environment. When asked to construct a similar set of statements using mathematical-style
GNY, their accuracy rate was only 78%.

To manage and organize an analysis, the Visual GNY environment makes use of tabbed panes to group
related sets of GNY statements. Within each of these panes, the set of structured trees applicable to a
given principal or formula is selected by using a combination of radio buttons and combo-boxes. Within
each tree-view that contains the structured trees, statements are grouped according to their type. Nodes
within a structured tree representation can be expanded or collapsed to vary the level of detail. Expanding



6.7 Closing Remarks 161

a node reveals its direct descendants, while collapsing a node hides all of its descendants. An important
issue that we noticed during our experimentation was that users did not always find it easy to read a
statement represented as a structured tree. In fact, most users felt that reading a linear statement in English
or Mathematical-style GNY was a lot easier. Thus, in order to facilitate reading structured tree-style
GNY statements, we implemented a feature that reveals the GNY statement represented by a collection
of nodes through the use of tooltips — when a user’s mouse pointer hovers over a terminal node in a
structured tree, English-style text describing the statement to which the node belongs is displayed. In this
way we have the best of both worlds, with the structured trees aiding in efficient statement construction,
and the tooltips helping to read these constructed statements.

A limitation of the current Visual GNY interface is that it does not present a protocol engineer with
a central, easily accessible view of all the GNY statements that have been constructed. Instead, GNY
statements are rigidly organized according to their type and the principal or formula with which they are
associated. This approach allows one to quickly locate a given statement or find and modify the set of
statements applicable to a given principal or formula. However, obtaining an overall impression of what
has been specified is not that straight-forward. For example, determining which formulae have extensions
involves having to cycle through all of the formulae listed in the Extensions tabbed pane of the Visual
GNY environment. So, to address this situation we have added a feature to the SPEAR II Framework
which displays all of the constructed GNY statements in English-style GNY text within a dialog box
window. These statements are displayed in the following order: parsed protocol specification including
extensions, initial beliefs and possessions, target beliefs and possessions, and analysis results showing
the failed and successful beliefs and possessions. Besides allowing users to view all the GNY statements
in English text, statements can also be exported to file in two more additional formats, namely LATEX and
GYNGER-compatible Prolog, using commands accessible from the SPEAR II application.

When conducting experiments that involved users and the Visual GNY environment, our main concern
was to examine the feasibility of the structured tree approach for representing GNY statements. The ex-
periments that we conducted pitted hand-written GNY statement construction against construction in the
Visual GNY environment. In many respects it was clear that the structured tree approach would domi-
nate, however we were interested in how much better it would be and how easily individuals would adapt
to it. Our findings showed that the structured tree approach aids significantly in statement construction
due to the rigorous syntactic and partial semantic guidance that it offers through pop-up menus. In fact,
many of the people who used the system were particularly enthusiastic about it and the students that we
employed were particularly keen to use it for future assignments. To examine the functionality of the
SPEAR II environment, we used it within four fully fledged protocol analyses. The protocols we used
are the same that were used when testing GYNGER in Section 5.3. For each protocol the messages were
defined in GYPSIE and the related GNY statements in Visual GNY. The GYNGER analyzer was invoked
by the Visual GNY environment and the appropriate goals were all found to have succeeded, a correct
proof being generated for each. These results were saved along with the GYPSIE protocol specification.

Visual GNY in combination with the SPEAR II Framework can play a significant enabling role within the
context of security protocol engineering and analysis. By minimizing the effort that protocol engineers
have to expend on the syntactic and repetitive portions of an analysis, the SPEAR II Framework frees
these engineers to concentrate more on the essential portions an analysis. Through the course of this
chapter we have tried to show that the Visual GNY environment is a more than viable system to use
when conducting GNY-based protocol analysis. By effectively partitioning GNY statements and aiding
in their construction, the system helps to produce an engineering environment that is more robust and less
daunting to use than others. All of the textual logic-based analysis environments that we have examined
entail the user having to learn the specification syntax of the system [14, 54, 27, 61, 47], while the



162 CHAPTER 6. VISUAL GNY

graphical techniques that we examined in Section 6.2.2 have weaknesses that limit their expressiveness
or usability. In comparison, the Visual GNY environment provides an interface that is a clean, concise,
consistent and uncluttered. However, it is still expressive, easy to learn and able to represent all GNY
statements. Based on the comments from users and our experimental results, we feel that the Visual GNY
approach to protocol analysis is headed in the right direction and is a step forwards towards implementing
more wide-scale and usable protocol analysis and modelling tools.



Chapter 7

Conclusion

“Most of the application of formal methods to cryptographic protocols has concentrated on applying formal methods to existing protocols.

However, it would be cheaper and more effective to use formal methods in the design of a protocol, and so save on the expense of redesign.”

— Catherine Meadows, “Formal Verification of Cryptographic Protocols: A Survey”

Protocol engineering is not an easy task and the development of tools and techniques that make it less bur-
densome should be encouraged. A multi-dimensional approach to protocol engineering helps to increase
the confidence we place in protocols, since it achieves a higher level of assurance than individual engi-
neering techniques can attain when used in isolation. The SPEAR II application that we have developed
implements a multi-dimensional approach to security protocol engineering by incorporating modelling
and analysis functionality in a single application. Besides the current set of implemented features, the
SPEAR II project is ongoing and extensible, and we envisage the implementation of a number of addi-
tional engineering dimensions, such as code generation and attack analysis.

In this dissertation, we have refined the original SPEAR I Multi-Dimensional Protocol Engineering
Framework, resulting in the development and partial implementation of the SPEAR II Framework. As it
currently stands, the SPEAR II application, which realizes the SPEAR II Framework, contains a protocol
modelling environment (GYPSIE), a GNY analysis environment which helps to collate and construct
GNY statements (Visual GNY), and a Prolog-based GNY analyzer (GYNGER). A rounds calculator
that determines both synchronous and optimal rounds has also been included to aid in simple perfor-
mance analysis. To accommodate the addition of further protocol engineering dimensions and tech-
niques, SPEAR II has been written in a modular fashion so that expansion can take place by embedding
the source code for the additional modules directly within SPEAR II, or by manipulating the execution
of an external application using system calls and then retrieving the results. In both cases, the SPEAR II
user interface will have to be upgraded to facilitate interaction with the new engineering modules.

To a large extent, the majority of this dissertation has focused on the facilitation of GNY-based protocol
analysis. We have aimed to make GNY analysis accessible to a wider range of individuals by freeing
them to focus more on the semantic issues related to analysis, instead of getting bogged down in the
associated syntax. Through the creation of GYPSIE, GYNGER and Visual GNY, we have produced
an application that assists in the entire GNY analysis process, aiding in the specification of a protocol,
construction of its associated GNY preconditions and goals, application of the GNY inference rules and
the retrieval and presentation of the final analysis results. As a result, we have focused primarily on the
use of GNY logic and have not concentrated on its suitability from an academic viewpoint.

163



164 CHAPTER 7. CONCLUSION

7.1 Summary of Results

In this section we will present the highlights of this dissertation, summarizing key features and conclu-
sions that we have developed during the implementation of the GYPSIE, GYNGER and Visual GNY
modules of the SPEAR II Framework. To illustrate the potential and value of the SPEAR II application
we have used it to conduct GNY analyses of fifteen published protocols. The source files for all of these
analyses are included in the SPEAR II distribution, the results of twelve of these analyses being shown in
Appendix B and Appendix E. The analyses described in Appendix E are all taken from [1] and [35] and
include well-known protocols such as the Yahalom, Wide-Mouth Frog, Needham-Schroeder Public-Key,
Otway-Rees, Kerberos and Andrew Secure RPC Handshake Protocols. The protocols in Appendix B
were used to initially test the GYNGER analyzer. Testing of the rounds analyzer was conducted using
protocols from [35].

7.1.1 Security Protocol Modelling with GYPSIE

The GYPSIE environment facilitates the modelling of cryptographic protocols through the use of a graph-
ical user interface divided into three levels of abstraction. GYPSIE currently functions as the core in-
terface to the SPEAR II Framework and a given protocol must be specified therein before any further
engineering operations can take place. The following list summarizes the salient features of GYPSIE:

� Divided into three views to facilitate abstraction and help protocol engineers distil the critical issues
in a specification:

– The High-Level View describes the overall flow of messages, using a formalism based on
MSCs and SDL to represent the message passing specification.

– The Navigator View appears adjacent to the High-Level View and summarizes the contents
and structure of a protocol using a tree-view with expandable and collapsible nodes.

– The Component View is invoked from the High-Level View and allows one to view and edit
the contents of protocol messages, each message being displayed as a hierarchical tree.

� Includes support for embedding subprotocols in a specification. The use of subprotocols allows
one to construct a subprotocol hierarchy, with the subprotocols in this hierarchy being executed
sequentially or conditionally.

� Supports drag-and-drop operations in all three views to facilitate the reordering, copying and mov-
ing of messages, principals and components. The Navigator and High-Level Views are tightly
integrated so that messages and principals can be dragged from the Navigator View into the High-
Level View to facilitate copying between subprotocols.

� Protocol engineering operations can be performed on objects in all three views using pop-up or
pull-down menus. Using pop-up menus or cut, copy and paste facilities, message components can
be duplicated among messages, even if these messages reside in different subprotocols.

� Reference count-based garbage collection is used to ensure the consistency and uniformity of the
memory used to store protocol specifications.

� Undo and redo functionality has been provided to facilitate experimentation and to allow users to
easily recover from accidental engineering operations, such as deletions and edits.



7.1.2 Calculating Message Rounds 165

� Includes a Component Tracker to help protocol engineers deal with the complexity that results
from having a large number of components defined in a protocol. The Component Tracker allows
users to highlight all of the locations where a given component appears on the design canvas in
the High-Level View. Using this feature, components can be easily located and their movement
through the protocol message passing specification can be clearly followed.

� Every component embedded within a message has an associated type. These types range from
terminal types, such as nonces, timestamps and symmetric keys, to non-terminal types, such as
hashes and public key encryptions. Non-terminal components serve as anchor points to which
other components are attached. This approach leads to a hierarchical message representation which
is displayed using a tree-view with expandable and collapsible nodes in the Component View.
Different properties, behaviour and iconic representations are assigned to each individual type.

� Specifications can be saved for later use and exported to other formats. Once a protocol specifica-
tion has been created, a user can generate plain text, LATEX or Prolog output thereof. The Prolog
output is used in conjunction with the GYNGER GNY-based protocol analyzer.

� Supports the incorporation of code generation routines. The message formalism allows one to
specify actions to be executed and conditions to be examined before or after a message is sent or
received. A properties tab has been added to components whose structure can be defined through
the use of an ASN.1 specification. Finally, communications settings for principals and messages
can be specified. These settings currently include details such as transport protocols, IP addresses
and communications ports.

� A specification can be queried and manipulated by using the associated GYPSIE API. The API
facilitates the expansion of the SPEAR II Framework by allowing engineering modules to easily
retrieve information about a protocol that has been specified. The Visual GNY environment and
message rounds calculator both use the API extensively.

Usability experiments were conducted with twenty individuals, each of whom had a security protocol
engineering background. Each of them was asked to specify three cryptographic protocols in the GYPSIE
environment and every one of them was able to construct the specifications in a reasonable amount of
time, each specification being completed in under ten minutes on average. The error level was also
reasonably low, with 75% of the resultant sixty specifications being error free.

7.1.2 Calculating Message Rounds

The message rounds calculator receives a message passing specification from GYPSIE and then returns
the messages that can be sent together in parallel. This information helps to ensure that the most efficient
protocol design in terms of message rounds can be deployed at the implementation stage, since the num-
ber of rounds resulting from the protocol model can be compared to the optimal number required for the
protocol class into which the specification falls [35]. The SPEAR I tool carried out synchronous mes-
sage rounds calculations. Synchronous rounds calculations assume that a principal can only transmit a
given message once he has received all of the previous messages in the specification which were destined
for him. Optimal rounds calculations assume that message transmission can take place asynchronously.
SPEAR II implements both synchronous and optimal message rounds calculations and is thus able to
assist protocol engineers in bridging the gap from design to actual implementation.



166 CHAPTER 7. CONCLUSION

7.1.3 Automated GNY Analysis with GYNGER

GYNGER is a Prolog-based GNY analyzer that can be used to analyze cryptographic protocols. It
is based on the analyzer described in [54] and allows one to represent all possible GNY statements,
except for those involving eligibility. The most significant feature of GYNGER is that it uses a forward-
chaining approach to automate the tedious application of GNY inference rules, allowing all derivable
GNY statements to be generated quickly, accurately and efficiently. GYNGER includes some noteworthy
improvements when compared to the analyzer in [54]:

� Implements seventy-two of the eighty-eight GNY inference rules, as opposed to the forty-eight
implemented by the analyzer in [54].

� Incorporates syntax to represent shared secrets that are being used as identifiers in hashes, public
key encryptions and symmetric encryptions.

� Includes support for the ‘never-originated-here’ binary operator.

� Features a vastly improved syntax for representing functions. This new syntax ensures that the
GNY inference rules do not need to be reformulated for every function included in a protocol
specification.

GYNGER does not implement all of the GNY inference rules since some of these rules are not suitable
for forward-chaining as they give rise to infinite loops. However, the exclusion of these rules does
not affect the useful inferences that can be derived. To conduct an analysis with GYNGER a protocol
engineer needs to specify a protocol’s messages, initial assumptions and target goals in a Prolog-style
GNY syntax. The GNY rule set is then imported and employed in the analysis, after which a proof is
generated in an English-style GNY syntax for every successful goal that was specified. This English-style
proof lists all of the statements involved in the derivation of the successful goal, indicating the postulates
that were used and the premises which were employed in the postulate’s application. The fact that the
proof is in an English-style syntax makes it more readable and comprehensible.

7.1.4 Visual GNY

The Visual GNY environment was created to facilitate GNY-based protocol analysis and works in close
conjunction with the GYPSIE design environment. All of the information related to a protocol specifica-
tion, specifically the message components and principals involved, are obtained by querying the GYPSIE
environment. In essence, the Visual GNY environment functions as a user-friendly interface to the GY-
NGER analyzer. GNY statements necessary for an analysis are constructed in the Visual GNY interface
and then passed on to GYNGER. Results from GYNGER are returned to the Visual GNY environment.
The following list summarizes the salient features of the Visual GNY interface:

� GNY statements are represented as a collection of successive nodes in a tree-like structure, each
node being a child of its predecessor. All statements of the same type form part of the same tree,
a heterogeneous set of GNY statements being represented by a collection of separate trees. Each
node within a GNY tree has an assigned type and its position within the tree is determined by that
type. The term ‘structured tree’ is used to refer to this tree-like representation, since the tree nodes
are ordered according to a predefined pattern in order to produce a meaningful representation of
GNY information.



7.1.4 Visual GNY 167

� GNY statements are grouped and collated in the environment using tabbed panes. There are four
tabbed panes within the Visual GNY interface that store GNY statements. The Assumptions pane
holds the structured trees representing a principal’s initial belief and possession sets. Within this
tabbed pane, the principal whose belief and possession sets are being examined is selected from a
drop-down combo-box. The Goals pane contains the target belief and possession sets for each prin-
cipal, while the Results pane contains the structured trees which describe the failed and successful
target goals for each principal. A drop-down combo-box embedded in the Extensions tabbed pane
is used to select the formula whose extensions appear in the tree-view associated with this pane.

� Users are guided through the use of pop-up menus when constructing structured trees that represent
a collection of GNY statements. The pop-up menu which is displayed depends on the type of node
which is currently selected. In this way, a user is given a limited, yet appropriate choice as to the
nodes that can be attached to the one which is currently selected. As a result, the Visual GNY
environment is able to guarantee that only syntactically correct structured trees are created. All
formulae and principal names presented for insertion in a structured tree are extracted from the
GYPSIE specification of the protocol, ensuring that no irrelevant information is used.

� Assistance is provided when reading a collection of structured trees. When hovering a mouse
pointer over a terminal node in a given structured tree, the English-style GNY statement repre-
sented by that node is displayed. To view the GNY statements represented by a collection of struc-
tured trees in a given tree-view, the View as Text command, accessible from the pop-up menus, is
used. The execution of this command causes a text dialog to be displayed which lists the English-
style statements represented by each terminal node within the given tree-view.

� To aid in the construction of structured trees, selected pop-up menus suggest components that could
be inserted at a given point in a structured tree. For example, if a principal originates a nonce, then
he can believe that nonce to be fresh and recognizable.

� To avoid the duplication of statements within a given collection of structured trees, the contents
of the pop-up menus are dynamically updated depending on the current state of the Visual GNY
environment and the structured trees specified therein.

� The layout of the Visual GNY environment provides direction during the analysis process. The
presence of the tabbed panes and the order in which they appear helps to remind users what needs to
be specified before an analysis can proceed. Once all of the preconditions for an analysis have been
specified, the postulate application process can be invoked by using the Analyze command which is
available in the Analysis tabbed pane. This action initiates protocol parsing and then executes the
GYNGER analyzer, passing all the information needed for analysis on to the GYNGER engine in
the appropriate GYNGER syntax. Once an analysis is complete, the resulting output is retrieved,
parsed and then displayed in the Results tabbed pane.

� The Results pane allows a user to easily access the GNY statements derived during a GNY analysis.
The successful and failed possession and belief goals for each principal are displayed using struc-
tured tree sets. If a given set for a principal is empty, then that set is not accessible and the radio
button used to switch to the set is dimmed. This allows one to quickly determine whether there are
any failed or successful goals. All of the GNY statements generated by GYNGER can be viewed
as English-style text, and the proof for a successful target goal can be viewed by right-clicking on
the terminal node of its structured tree representation and selecting the View Proof command from
the resulting pop-up menu.



168 CHAPTER 7. CONCLUSION

Experiments were carried out to examine how well the structured tree metaphor facilitates GNY state-
ment construction. Each of the twenty individuals involved in the experiments had previously been
instructed in GNY analysis techniques and they had all carried out GNY analyses in the past. The ex-
periments that we conducted required that they construct GNY statements by hand using mathematical
notation, and in the Visual GNY environment using structured trees. We found that when using Visual
GNY, they were able to correctly transcribe 98% of the GNY statements we presented to them. When
transcribing a similar set of statements by hand into mathematical notation, their accuracy rate was only
78%. Errors made in the Visual GNY construction resulted from using incorrect components of the same
type, for example using the symmetric key Kas instead of Kab.

7.2 Future Work

The implementation of the SPEAR II Framework has been brought to the point where key areas of
protocol specification and analysis have been realized. We hope to witness the expansion of the SPEAR II
application through the implementation of additional engineering dimensions and techniques as per the
diagram in Figure 1.2. In the list that follows, we suggest some projects that can be tackled to expand the
current feature set of the SPEAR II tool:

� The GYNGER analyzer does not yet implement eligibility checking. In the context of this disser-
tation this feature was not that important as GYNGER is still able to perform high-quality analysis
without having to concern itself with the feasibility of a protocol specification. However, the ad-
dition of eligibility checking would add a further level of completeness to the Security Logics
dimension. Eligibility checking would probably have to be conducted apart from GYNGER, as it
would cause the forward-chaining based analyzer to loop infinitely.

� The Visual GNY environment has presented a mechanism that can be used to automate protocol
analysis using modal logics. We hope to see this approach expanded to incorporate other logics,
such as BAN and SVO. Initially, BAN and SVO analyzers will have to be created, followed by
suitable statement specification environments that integrate within the SPEAR II Framework. An
interesting investigation would be to examine the feasibility of combining all of these specification
environments into one unified interface that can cater for a wide array of logics.

� The goal of a GNY analysis is to determine whether a protocol achieves its design goals. How-
ever, individuals often struggle to determine what these goals should be or what initial conditions
should exist in an analysis. We have tried to provide some guidance in this respect by offering ini-
tial belief and possession suggestions within the Visual GNY environment. However, the current
level of guidance is minimal. We envisage the creation of a more advanced statement suggestion
engine that would examine a protocol or use information supplied about a protocol to build a list
of possible statements that would describe the initial and target states of a protocol.

� When carrying out an analysis, some of the initial beliefs, possessions or formula extensions spec-
ified in the Visual GNY environment do not get used in any of the proofs generated by GYNGER.
Instead of being content with this situation, it would be convenient to be informed of these redun-
dant statements. Such a feature would allow protocol engineers to add a number of initial beliefs,
possessions and extensions to a protocol, conduct an analysis, and then afterwards examine which
of these are redundant and not needed for a given collection of goals to succeed. In this way, we
can work towards determining the optimal precondition sets.



7.3 Contributions of This Dissertation 169

� The Interrogator [24] and NRL Protocol Analyzer [57] are both powerful applications that can
be used to reveal replay attacks to which a given protocol is susceptible. The GYPSIE design
environment does not require any significant modifications to accommodate an attack analysis
module of a similar nature, since most attack analyses only requires a message passing specification
to proceed. However, an environment that can be used to specify penetration objectives and view
the analysis results would have to be created to facilitate user interaction with the module.

� The addition of multiclass queuing network analysis to the Performance Analysis dimension would
aid in building a protocol model that can help to predict the performance, likely bottlenecks and
points of optimization in a given protocol specification. Such an analysis could be carried out as
described in [8]. First performance measurements can be obtained through simulation or meta-
execution of a number of protocol sessions. Then, this information can then be used to construct
a queuing model in a stochastic analysis programming language such as SnapL [11]. Finally, this
model can be analyzed for performance using a tool such as MicroSnap [26].

� The development of a source code generation module will significantly boost the practical value
of the SPEAR II application. This module should have the ability to generate the necessary source
code that will encode, send, receive and decode the messages defined in the message passing spec-
ification. Source code would effectively have to be produced for each of the principals taking part
in a protocol. Target languages could include Java, C++ and SDL/PR. Implementations produced
with the code generation module would have a higher confidence level, as the specification can
be tested in the SPEAR II Framework by using the tools and techniques that exist therein before
it is deployed. Furthermore, the chances of random bugs affecting the generated source code are
smaller, since the code generation engine will remove the need for error-prone, repetitious and
mundane programming tasks often carried out by programmers.

� The GYPSIE formalism can be upgraded to enable the modelling of multi-cast protocols. What is
needed is the ability to add more receiver boxes to a given message so that there can be multiple
recipients, but only one sender. These boxes would be linked with a solid line in the same way that
current sender and receiver boxes are joined together. Multi-cast protocol compatibility would be
complimented by a code generation dimension, allowing protocol engineers to easily create multi-
cast protocols. However, the creation of multi-cast mechanisms could complicate some analysis
techniques which are not able to accommodate multi-cast formalisms.

This list is by no means exhaustive and merely serves to illustrate how we envisage the development
of the SPEAR II platform to progress. Our aim is to see the current SPEAR II application grow into a
suite of protocol analysis tools, with GYPSIE or a similar environment acting as a unifying modelling
environment. The implementation of the Visual GNY and GYNGER tools have shown the viability of
the SPEAR II multi-dimensional approach by illustrating how an environment of this nature can be used
to facilitate and enable techniques that are deemed complex and tedious to conduct by hand.

7.3 Contributions of This Dissertation

Through the course of this dissertation we have described an application that we developed to realize
portions of the SPEAR II Multi-Dimensional Security Protocol Engineering Framework. The details
of this work have primarily focused on implementation issues, graphical components, user interfaces,
GNY syntax and Prolog source code. However, despite all of these intricate details, the motivating factor



170 CHAPTER 7. CONCLUSION

behind this work has always been to aid protocol engineers in distilling the critical issues during a
protocol engineering session, presenting them with an appropriate level of detail and guiding them as
much as possible in analysis and engineering processes.

A novel outcome of this work has been the development of the Visual GNY environment. Research
in the past has focused on the suitability and correctness of the GNY logic. Instead of delving into
these issues, we have focused on developing a system that will facilitate rapid, accurate and high-quality
GNY analyses. The Visual GNY environment frees protocol engineers to concentrate on an analysis and
shields them from being burdened by the mechanics associated with inference rule application. Users
of the Visual GNY environment must still be familiar with GNY logic and its underlying principles.
However, they do not need to memorize the GNY notation, syntax and inference rules since Visual GNY
and GYNGER handle all of these issues by using appropriate guidance and automation.

The GYNGER analyzer delivers on the functionality that Visual GNY and GYPSIE enable by actually
implementing the mechanics of the analyses which they initially specify. When put into practice, GYN-
GER works solidly, delivering the expected results for every one of the GNY analyses it has been used to
conduct. The fact that GYNGER is able to generate proofs in English-style syntax is a huge advantage
to protocol engineers who want to be able to validate and closely examine the analysis process. The ex-
tensive syntax also helps to ensure that GYNGER can carry out a broad range of GNY analyses, catering
for a number of diverse protocol types and GNY statements.

Steve Brackin has developed a graphically-based analysis system based on the BGNY modal logic [16].
His Convince toolkit includes a graphical interface for protocol design, and a HOL-based protocol ana-
lyzer. In essence, this dissertation is similar to the work Brackin has carried out. However, our aims are
slightly divergent. Convince focuses primarily on protocol analysis. The associated analyzer, known as
the AAPA2, is powerful, robust and well-known, however, the interface is textually-based, resulting in
users having to familiarize themselves with its syntax. On the other hand, our focus has been on the user
interface aspect of GNY analysis and we have attempted to create a usable and effective framework which
can be employed to facilitate GNY analyses. Our system has a powerful and intuitive user interface, and
a Prolog-based analyzer which has been tested on fifteen published cryptographic protocols.

Besides the creation of the Visual GNY environment, we have also designed and implemented a protocol
design environment that is completely graphically-based. The concept of abstracting the protocol de-
sign into three complementary views helps engineers to visualize and manipulate a given protocol more
easily. The GYPSIE environment essentially functions as the core enabler in the SPEAR II Framework
and for this reason we have spent time making it as rich, robust and usable as possible. The modular
implementation of the SPEAR II Framework, combined with the GYPSIE API, makes it viable to up-
grade and extend the SPEAR II application to include more powerful cryptographic routines, such as
code generation and attack analysis.

The SPEAR II tool has applications in both academic and commercial disciplines. In an academic sense
it can be used when teaching and illustrating GNY analysis techniques [74], since it helps students to
focus more on the important issues in an analysis, instead of burdening them with sideline issues such
as inference rule application, syntactical and notational issues. In both the commercial and academic
spheres, SPEAR II can be used to model and analyze cryptographic protocols that are to be or have
already been implemented. The current implementation of the SPEAR II Framework supports GNY
analysis and message rounds calculations. However, as more dimensions and techniques are added to the
SPEAR II application, we feel that it will become a very valuable and effective tool to drive the concept
and adoption of multi-dimensional protocol engineering.



APPENDICES

171





Appendix A

GNY Inference Rules

This appendix contains all eighty-eight of the GNY inference rules we have referenced through the course
of this dissertation. The rules are categorized by type and each has an associated identification code that
can be cited in proofs.

A.1 Being Told Rules

T1.
P ! Q: X; P / X

Q � X

T2. P � �X
P � X

T3. P � X ; C
P � X

T4.
P � (X; Y )

P � X

T5.
P � F (X0; X1; :::; Xn�1); P 3 (X0; :::; Xi�1; Xi+1;:::; Xn�1)

P � Xi

T6.
P � fXgK; P 3 K

P � X

T7.
P � fXg+K; P 3 �K

P � X

T8.
P � fXg�K; P 3 +K

P � X

T9. P � <S>
P � S

A.2 Possession Rules

P1. P � X
P 3 X

173



174 APPENDIX A. GNY INFERENCE RULES

P2. P 3 X ; C
P 3 X

P3.
P 3 X; P 3 Y

P 3 (X;Y ); P 3 F (X;Y )

P4.
P 3 (X; Y )

P 3 X

P5.
P 3 F (X0; X1; :::; Xn�1); P 3 (X0; :::; Xi�1; Xi+1;:::; Xn�1)

P 3 Xi

P6. P 3 X
P 3 H(X)

P7.
P 3 X; P 3 K

P 3 fXgK; P 3 fXg
�1

K

P8.
P 3 X; P 3 +K
P 3 fXg+K

P9.
P 3 X; P 3 �K
P 3 fXg�K

P10.
P 3 S; P j� P

S

 ! Q

P 3 <S>
, S 62 fK;+K;�Kg

A.3 Eligibility Rules

E1. P 3 X
P / X

E2. P / X
P / �X

E3.
P / X; P / Y

P / (X; Y ); P / F (X; Y )

E4.
P / X; P 3 S; P j� P

S

 ! Q; P j� C

P / H(X; <S>); C

E5.
P / X; P 3 K; P j� P

K

 ! Q; P j� C

P / fXgK ; C; P / fXg�1
K
; C

E6.
P / X; P 3 (S; +K); P j� P

S

 ! Q; P j�
+K
7! Q; P j� C

P / fX; <S>g+K ; C

E7.
P / X; P 3 �K; P j�

+K
7! P; P j� C

P / fXg�K ; C

E8. P / X
P / H(X)



A.4 Recognizability Rules 175

E9.
P / X; P 3 +K; P j�

+K
7! Q

P / fXg+K

E10.
P / X; P 3 (S;K); P j� P

S

 ! Q; P j� C

P / fX;<S>gK

A.4 Recognizability Rules

R1.
P j� �(X); P 3 X ; C

P j� �(X ; C)

R2.
P j� �(X ; C); P 3 X

P j� �(X)

R30.
P j� �(X); P 3 (X; Y )

P j� �(X; Y )

R300.
P j� �(X); P 3 F (X)

P j� �(F (X))

R4.
P j� �(X); P 3 K; P 3 fXgK

P j� �(fXgK)
; X 6= fY g�1K

R5.
P j� �(X); P 3 (X; K); P 3 fXg�1

K

P j� �(fXg�1
K
)

; X 6= fY gK

R6.
P j� �(X); P 3 (X; +K); P 3 fXg+K

P j� �(fXg+K)
; X 6= fY g�K

R7.
P j� �(X); P 3 (X; �K); P 3 fXg�K

P j� �(fXg�K)
; X 6= fY g+K

R8.
P j� �(X); P 3 +K; P 3 fXg�K

P j� �(fXg�K)
; X 6= fY g+K

R9.
P j� �(X); P 3 �K; P 3 fXg+K

P j� �(fXg+K)
; X 6= fY g�K

R10.
P j� �(X); P 3 X; P 3 H(X)

P j� �(H(X))

R11.
P 3 H(X); P j� �(H(X)); P 3 X

P j� �(X)

R12.
P j� �(S); P 3 <S>

P j� �(<S>)
, S 62 fK;+K;�Kg

A.5 Freshness Rules

F1.
P j� ](X); P 3 X ; C

P j� ](X ; C)



176 APPENDIX A. GNY INFERENCE RULES

F2.
P j� ](X ; C); P 3 X

P j� ](X)

F30.
P j� ](X); P 3 (X; Y )

P j� ](X; Y )

F300.
P j� ](X); P 3 F (X)

P j� ](F (X))

F4.
P j� ](X); P 3 X; P 3 H(X)

P j� ](H(X))

F5.
P j� ](X); P 3 K; P 3 fXgK

P j� ](fXgK)
; X 6= fY g�1K

F6.
P j� ](X); P 3 (X; K); P 3 fXg�1

K

P j� ](fXg�1
K
)

; X 6= fY gK

F7.
P j� ](X); P 3 (X; +K); P 3 fXg+K

P j� ](fXg+K)
; X 6= fY g�K

F8.
P j� ](X); P 3 (X; �K); P 3 fXg�K

P j� ](fXg�K)
; X 6= fY g+K

F9.
P j� ](X); P 3 +K; P 3 fXg�K

P j� ](fXg�K)
; X 6= fY g+K

F10.
P j� ](X); P 3 �K; P 3 fXg+K

P j� ](fXg+K)
; X 6= fY g�K

F11.
P j� ](+K); P 3 �K

P j� ](�K)

F12.
P j� ](�K); P 3 +K

P j� ](+K)

F13.
P j� �(X); P j� ](K); P 3 K; P 3 fXgK

P j� ](fXgK)
; X 6= fY g�1K

F14.
P j� �(X); P j� ](K); P 3 (X; K); P 3 fXg�1

K

P j� ](fXg�1
K
)

; X 6= fY gK

F15.
P j� �(X); P j� ](+K); P 3 (X; +K); P 3 fXg+K

P j� ](fXg+K)
; X 6= fY g�K

F16.
P j� �(X); P j� ](�K); P 3 (X; �K); P 3 fXg�K

P j� ](fXg�K)
; X 6= fY g+K

F17.
P j� �(X); P j� ](�K); P 3 �K; P 3 fXg+K

P j� ](fXg+K)
; X 6= fY g�K

F18.
P j� �(X); P j� ](+K); P 3 +K; P 3 fXg�K

P j� ](fXg�K)
; X 6= fY g+K



A.6 Conveyance Rules 177

F19.
P j� ](H(X)); P 3 H(X); P 3 X

P j� ](X)

F20.
P j� ](S); P 3 <S>

P j� ](<S>)
, S 62 fK;+K;�Kg

A.6 Conveyance Rules

C1.
P � �fXgK ; C; P 3 K; P j� P

K

 ! Q; P j� �(X); P j� ](X; K)

P j� Q j� X; P j� Q j� fXgK ; C; P j� Q 3 (X; K)

C2.
P � �fXg�1

K
; C; P 3 (X; K); P j� P

K

 ! Q; P j� �(X); P j� ](X; K)

P j� Q j� X; P j� Q j� fXg�1
K
; C; P j� Q 3 (X; K)

C3.
P � �H(X; <S>); C; P 3 (X; S); P j� P

S

 ! Q; P j� ](X; S)

P j� Q j� (X; S); P j� Q j� H(X; <S>); C; P j� Q 3 (X; S)

C4. P � �fX; <S>g+K ; C; P 3 �K; P j�
+K
7! P; P j� P

S
 ! Q; P j� �(X; S); P j� ](X; S; +K)

P j� Q j� (X; S); P j� Q j� fX; <S>g+K ; C; P j� Q 3 (X; S; +K)

C5. P � �fX; <S>g+K ; C; P 3 (X; +K; S); P j�
+K
7! Q; P j� P

S
 ! Q; P j� �(X; S); P j� ](X; S; +K)

P j� Q j� (X; S); P j� Q j� fX; <S>g+K ; C; P j� Q 3 (X; S; +K)

C6.
P � �fXg�K ; C; P 3 +K; P j�

+K
7! Q; P j� �(X)

P j� Q j� X; P j� Q j� fXg�K ; C

C7.
P � �fXg�K; P 3 +K; P j�

+K
7! Q; P j� �(X); P j� ](X; �K)

P j� Q 3 (X; �K)

C8.
P j� Q j� X ; C

P j� Q j� X

C9.
P j� Q j� (X; Y )

P j� Q j� X

C10.
P � �fXgK ; C; P 3 K; P j� P

K

 ! Q; P j� �(X); P j� P a (fXgK)

P j� Q j� X; P j� Q j� fXgK ; C

C11.
P � �fXg�1

K
; C; P 3 (X; K); P j� P

K

 ! Q; P j� �(X); P j� P a (fXg�1
K
)

P j� Q j� X; P j� Q j� fXg�1
K
; C

C12.
P � �H(X; <S>); C; P 3 (X; S); P j� P

S

 ! Q; P j� P a (H(X; <S>))

P j� Q j� (X; S); P j� Q j� H(X; <S>); C

C13. P � �fX; <S>g+K ; C; P 3 �K; P j�
+K
7! P; P j� P

S
 ! Q; P j� �(X; S); P j� P a (fX; <S>g+K)

P j� Q j� (X; S); P j� Q j� fX; <S>g+K ; C

C14. P � �fX; <S>g+K ; C; P 3 (X; S; +K); P j�
+K
7! Q; P j� P

S
 ! Q; P j� �(X; S); P j� P a (fX; <S>g+K)

P j� Q j� (X; S); P j� Q j� fX; <S>g+K ; C



178 APPENDIX A. GNY INFERENCE RULES

C15.
P � �fX; <S>gK ; C; P 3 K; P j� P

S

 ! Q; P j� �(X; S); P j� ](X; S; K)

P j� Q j� (X; S); P j� Q j� fX; <S>gK ; C; P j� Q 3 (X; S; K)

C16.
P � �fX; <S>gK ; C; P 3 K; P j� P

S

 ! Q; P j� �(X; S); P j� a (fX; <S>gK)

P j� Q j� (X; S); P j� Q j� fX; <S>gK ; C

C17.
P j� Q j� X ; (C; C 0

)

P j� Q j� X ; C

C18.
P j� Q j� X; P j� ](X)

P j� Q 3 X

C19.
P j� Q 3 (X; Y )

P j� Q 3 X

C20.
P j� Q

S

 ! R

P j� R
S

 ! Q

C21.
P j� Q a (X ; C)

P j� Q a (X)

C22.
P j� Q

S;C

 ! R

P j� Q
S

 !R

A.7 Jurisdiction Rules

J1.
P j� Q j=) C; P j� Q j� C

P j� C

J2.
P j� Q j=) Q j� �; P j� Q j� (X ; C); P j� ](X)

P j� Q j� C

J3.
P j� Q j=) Q j� �; P j� Q j� Q j� C

P j� Q j� C



Appendix B

Proofs Generated by GYNGER

The proofs of the protocol goals in this appendix were all automatically generated by the GYPSIE Prolog-
based GNY analyzer. To save space we have omitted mentioning the initial belief and possession sets
associated with each protocol. However, statements that are part of the initial belief or possession sets
are indicated by the text “Assumption” in curly brackets within the various proofs. Statements that are
part of the protocol specification are tagged with the text “Step”.

B.1 Voting Protocol

Idealized Protocol Message Flows:

(1) Q �! Pi : Nq

(2) Pi �! Q : Pi; Ni; vi; �H(Nq; < Si >; vi)

(3) Q �! Pi : result; �H(Ni; < Si >; result)

Proof for Q believes that Pi once conveyed vi:

1. Q was told (Pi, Ni, vi, *H(Nq, <Si>, vi)). {Step}
2. Q possesses Si. {Assumption}
3. Q believes that Si is a suitable secret for use between Q and Pi. {Assumption}
4. Q possesses Nq. {Assumption}
5. Q believes that Nq is fresh. {Assumption}
6. Q was told (Ni, vi, *H(Nq, <Si>, vi)). {1, T4}
7. Q possesses (Ni, vi, *H(Nq, <Si>, vi)). {6, P1}
8. Q possesses (vi, *H(Nq, <Si>, vi)). {7, P4}
9. Q was told (vi, *H(Nq, <Si>, vi)). {6, T4}
10. Q possesses vi. {8, P4}
11. Q was told *H(Nq, <Si>, vi). {9, T4}
12. Q believes that Pi once conveyed ((Nq, vi), Si). {11, 10, 4, 2, 3, 5, C3}
13. Q believes that Pi once conveyed (Nq, vi). {12, C9}
14. Q believes that Pi once conveyed vi. {13, C9}

Proof for Pi believes that Q once conveyed result:

1. Pi was told (result, *H(Ni, <Si>, result)). {Step}

179



180 APPENDIX B. PROOFS GENERATED BY GYNGER

2. Pi possesses Si. {Assumption}
3. Pi believes that Si is a suitable secret for use between Q and Pi. {Assumption}
4. Pi possesses Ni. {Assumption}
5. Pi believes that Ni is fresh. {Assumption}
6. Pi was told result. {1, T4}
7. Pi was told *H(Ni, <Si>, result). {1, T4}
8. Pi possesses result. {6, P1}
9. Pi believes that Si is a suitable secret for use between Pi and Q. {3, C20}
10. Pi believes that Q once conveyed ((Ni, result), Si). {7, 8, 4, 2, 9, 5, C3}
11. Pi believes that Q once conveyed (Ni, result). {10, C9}
12. Pi believes that Q once conveyed result. {11, C9}

Proof for Q believes that H(Nq, <Si>, vi) is fresh:

1. Q was told (Pi, Ni, vi, *H(Nq, <Si>, vi)). {Step}
2. Q possesses Si. {Assumption}
3. Q believes that Si is a suitable secret for use between Q and Pi. {Assumption}
4. Q possesses Nq. {Assumption}
5. Q believes that Nq is fresh. {Assumption}
6. Q was told (Ni, vi, *H(Nq, <Si>, vi)). {1, T4}
7. Q possesses (Ni, vi, *H(Nq, <Si>, vi)). {6, P1}
8. Q possesses (vi, *H(Nq, <Si>, vi)). {7, P4}
9. Q possesses <Si>. {2, 3, P10}
10. Q was told (vi, *H(Nq, <Si>, vi)). {6, T4}
11. Q possesses vi. {8, P4}
12. Q was told *H(Nq, <Si>, vi). {10, T4}
13. Q was told H(Nq, <Si>, vi). {12, T2}
14. Q possesses H(Nq, <Si>, vi). {13, P1}
15. Q believes that H(Nq, <Si>, vi) is fresh. {5, 11, 9, 4, 14, F4}

Proof for Pi believes that H(Ni, <Si>, result) is fresh:

1. Pi was told (result, *H(Ni, <Si>, result)). {Step}
2. Pi possesses Si. {Assumption}
3. Pi believes that Si is a suitable secret for use between Q and Pi. {Assumption}
4. Pi possesses Ni. {Assumption}
5. Pi believes that Ni is fresh. {Assumption}
6. Pi was told result. {1, T4}
7. Pi was told *H(Ni, <Si>, result). {1, T4}
8. Pi possesses result. {6, P1}
9. Pi believes that Si is a suitable secret for use between Pi and Q. {3, C20}
10. Pi was told H(Ni, <Si>, result). {7, T2}
11. Pi possesses H(Ni, <Si>, result). {10, P1}
12. Pi possesses <Si>. {2, 9, P10}
13. Pi believes that H(Ni, <Si>, result) is fresh. {5, 8, 12, 4, 11, F4}

B.2 Information Exchange Protocol

Idealized Protocol Message Flows:

(1) A �! B : �fTa; B;X; SgKab
; A

S

 ! B

(2) B �! A : �H(X;< S >); A j� X



B.2 Information Exchange Protocol 181

Proof for B possesses X:

1. B was told *E(Kab : Ta, B, X, S) -> (S is a suitable secret for use between A
and B). {Step}

2. B possesses Kab. {Assumption}
3. B was told *E(Kab : Ta, B, X, S). {1, T3}
4. B was told E(Kab : Ta, B, X, S). {3, T2}
5. B was told (Ta, B, X, S). {4, 2, T6}
6. B possesses (Ta, B, X, S). {5, P1}
7. B possesses (B, X, S). {6, P4}
8. B possesses (X, S). {7, P4}
9. B possesses X. {8, P4}

Proof for B believes that A once conveyed X:

1. B was told *E(Kab : Ta, B, X, S) -> (S is a suitable secret for use between A
and B). {Step}

2. B possesses Kab. {Assumption}
3. B believes that B is recognizable. {Assumption}
4. B believes that Ta is fresh. {Assumption}
5. B believes that Kab is a suitable secret for use between A and B. {Assumption}
6. B was told *E(Kab : Ta, B, X, S). {1, T3}
7. B believes that Kab is a suitable secret for use between B and A. {5, C20}
8. B was told E(Kab : Ta, B, X, S). {6, T2}
9. B was told (Ta, B, X, S). {8, 2, T6}
10. B possesses (Ta, B, X, S). {9, P1}
11. B believes that (Ta, B, X, S) is recognizable. {3, 10, R3’}
12. B believes that (Ta, B, X, S) is fresh. {4, 10, F3’}
13. B believes that A once conveyed (Ta, B, X, S). {6, 2, 7, 11, 12, C1}
14. B believes that A once conveyed (B, X, S). {13, C9}
15. B believes that A once conveyed (X, S). {14, C9}
16. B believes that A once conveyed X. {15, C9}

Proof for A believes that B believes that A once conveyed X:

1. A was told *H(X, <S>) -> (A once conveyed X). {Step}
2. A possesses (Ta, B, X, S, Kab). {Assumption}
3. A believes that S is fresh. {Assumption}
4. A believes that S is a suitable secret for use between A and B. {Assumption}
5. A believes that B is trustworthy. {Assumption}
6. A was told *H(X, <S>). {1, T3}
7. A possesses (B, X, S, Kab). {2, P4}
8. A was told H(X, <S>). {6, T2}
9. A possesses H(X, <S>). {8, P1}
10. A possesses (X, S, Kab). {7, P4}
11. A possesses X. {10, P4}
12. A possesses (S, Kab). {10, P4}
13. A possesses S. {12, P4}
14. A possesses <S>. {13, 4, P10}
15. A believes that <S> is fresh. {3, 14, F20}
16. A believes that B once conveyed H(X, <S>) -> (A once conveyed X). {1, 11, 13,

4, 3, C3}
17. A believes that H(X, <S>) is fresh. {15, 14, 11, 9, F4}
18. A believes that B believes that A once conveyed X. {5, 16, 17, J2}



182 APPENDIX B. PROOFS GENERATED BY GYNGER

Proof for A believes that B possesses X:

1. A was told *H(X, <S>) -> (A once conveyed X). {Step}
2. A possesses (Ta, B, X, S, Kab). {Assumption}
3. A believes that S is fresh. {Assumption}
4. A believes that S is a suitable secret for use between A and B. {Assumption}
5. A was told *H(X, <S>). {1, T3}
6. A possesses (B, X, S, Kab). {2, P4}
7. A possesses (X, S, Kab). {6, P4}
8. A possesses X. {7, P4}
9. A possesses (S, Kab). {7, P4}
10. A possesses S. {9, P4}
11. A believes that B possesses (X, S). {5, 8, 10, 4, 3, C3}
12. A believes that B possesses X. {11, C19}

B.3 Authentication Protocol

Idealized Protocol Message Flows:

(1) A �! B : A;Na

(2) B �! A : fB; �fNag�Kb
; A

K

 ! B;K;Nbg+Ka
; �fNagK

(3) A �! B : �fNbgK ; A
K

 ! B

Proof for A possesses K:

1. A was told (E(+Ka : B, *E(-Kb : Na) -> (K is a suitable secret for use between A
and B), K, Nb), *E(K : Na)). {Step}

2. A possesses (A, Na, -Ka, +Kb). {Assumption}
3. A was told E(+Ka : B, *E(-Kb : Na) -> (K is a suitable secret for use between A

and B), K, Nb). {1, T4}
4. A possesses (Na, -Ka, +Kb). {2, P4}
5. A possesses (-Ka, +Kb). {4, P4}
6. A possesses -Ka. {5, P4}
7. A was told (B, *E(-Kb : Na) -> (K is a suitable secret for use between A and B),

K, Nb). {3, 6, T7}
8. A possesses (B, *E(-Kb : Na) -> (K is a suitable secret for use between A

and B), K, Nb). {7, P1}
9. A possesses (*E(-Kb : Na) -> (K is a suitable secret for use between A and B),

K, Nb). {8, P4}
10. A possesses (K, Nb). {9, P4}
11. A possesses K. {10, P4}

Proof for A believes that B possesses K:

1. A was told (E(+Ka : B, *E(-Kb : Na) -> (K is a suitable secret for use between A
and B), K, Nb), *E(K : Na)). {Step}

2. A possesses (A, Na, -Ka, +Kb). {Assumption}
3. A believes that Na is recognizable. {Assumption}
4. A believes that Na is fresh. {Assumption}
5. A believes that +Kb is a suitable public key for B. {Assumption}
6. A believes that B is trustworthy. {Assumption}
7. A believes that B has jurisdiction over the statement "K is a suitable secret



B.3 Authentication Protocol 183

for use between A and B". {Assumption}
8. A was told E(+Ka : B, *E(-Kb : Na) -> (K is a suitable secret for use between A

and B), K, Nb). {1, T4}
9. A was told *E(K : Na). {1, T4}
10. A possesses (Na, -Ka, +Kb). {2, P4}
11. A possesses (-Ka, +Kb). {10, P4}
12. A possesses -Ka. {11, P4}
13. A possesses +Kb. {11, P4}
14. A was told (B, *E(-Kb : Na) -> (K is a suitable secret for use between A and B),

K, Nb). {8, 12, T7}
15. A possesses (B, *E(-Kb : Na) -> (K is a suitable secret for use between A

and B), K, Nb). {14, P1}
16. A possesses (*E(-Kb : Na) -> (K is a suitable secret for use between A and B),

K, Nb). {15, P4}
17. A was told (*E(-Kb : Na) -> (K is a suitable secret for use between A and B),

K, Nb). {14, T4}
18. A possesses (K, Nb). {16, P4}
19. A was told *E(-Kb : Na) -> (K is a suitable secret for use between A and B).

{17, T4}
20. A possesses K. {18, P4}
21. A believes that B once conveyed E(-Kb : Na) -> (K is a suitable secret for use

between A and B). {19, 13, 5, 3, C6}
22. A was told *E(-Kb : Na). {19, T3}
23. A was told E(-Kb : Na). {22, T2}
24. A possesses E(-Kb : Na). {23, P1}
25. A believes that E(-Kb : Na) is fresh. {4, 13, 24, F9}
26. A believes that B believes that K is a suitable secret for use between A and B.

{6, 21, 25, J2}
27. A believes that K is a suitable secret for use between A and B. {7, 26, J1}
28. A believes that B possesses (Na, K). {9, 20, 27, 3, 4, C1}
29. A believes that B possesses K. {28, C19}

Proof for B believes that A possesses K:

1. B was told *E(K : Nb) -> (K is a suitable secret for use between A and B).
{Step}

2. B possesses (B, Nb, +Ka, -Kb, K). {Assumption}
3. B believes that Nb is recognizable. {Assumption}
4. B believes that Nb is fresh. {Assumption}
5. B believes that K is a suitable secret for use between A and B. {Assumption}
6. B was told *E(K : Nb). {1, T3}
7. B possesses (Nb, +Ka, -Kb, K). {2, P4}
8. B believes that K is a suitable secret for use between B and A. {5, C20}
9. B possesses (+Ka, -Kb, K). {7, P4}
10. B possesses (-Kb, K). {9, P4}
11. B possesses K. {10, P4}
12. B believes that A possesses (Nb, K). {6, 11, 8, 3, 4, C1}
13. B believes that A possesses K. {12, C19}

Proof for A believes that K is a suitable secret for use between A and B:

1. A was told (E(+Ka : B, *E(-Kb : Na) -> (K is a suitable secret for use between A
and B), K, Nb), *E(K : Na)). {Step}

2. A possesses (A, Na, -Ka, +Kb). {Assumption}
3. A believes that Na is recognizable. {Assumption}



184 APPENDIX B. PROOFS GENERATED BY GYNGER

4. A believes that Na is fresh. {Assumption}
5. A believes that +Kb is a suitable public key for B. {Assumption}
6. A believes that B is trustworthy. {Assumption}
7. A believes that B has jurisdiction over the statement "K is a suitable secret

for use between A and B". {Assumption}
8. A was told E(+Ka : B, *E(-Kb : Na) -> (K is a suitable secret for use between A

and B), K, Nb). {1, T4}
9. A possesses (Na, -Ka, +Kb). {2, P4}
10. A possesses (-Ka, +Kb). {9, P4}
11. A possesses -Ka. {10, P4}
12. A possesses +Kb. {10, P4}
13. A was told (B, *E(-Kb : Na) -> (K is a suitable secret for use between A and B),

K, Nb). {8, 11, T7}
14. A was told (*E(-Kb : Na) -> (K is a suitable secret for use between A and B),

K, Nb). {13, T4}
15. A was told *E(-Kb : Na) -> (K is a suitable secret for use between A and B).

{14, T4}
16. A believes that B once conveyed E(-Kb : Na) -> (K is a suitable secret for use

between A and B). {15, 12, 5, 3, C6}
17. A was told *E(-Kb : Na). {15, T3}
18. A was told E(-Kb : Na). {17, T2}
19. A possesses E(-Kb : Na). {18, P1}
20. A believes that E(-Kb : Na) is fresh. {4, 12, 19, F9}
21. A believes that B believes that K is a suitable secret for use between A and B.

{6, 16, 20, J2}
22. A believes that K is a suitable secret for use between A and B. {7, 21, J1}

Proof for A believes that B believes that K is a suitable secret for use between A and B:

1. A was told (E(+Ka : B, *E(-Kb : Na) -> (K is a suitable secret for use between A
and B), K, Nb), *E(K : Na)). {Step}

2. A possesses (A, Na, -Ka, +Kb). {Assumption}
3. A believes that Na is recognizable. {Assumption}
4. A believes that Na is fresh. {Assumption}
5. A believes that +Kb is a suitable public key for B. {Assumption}
6. A believes that B is trustworthy. {Assumption}
7. A was told E(+Ka : B, *E(-Kb : Na) -> (K is a suitable secret for use between A

and B), K, Nb). {1, T4}
8. A possesses (Na, -Ka, +Kb). {2, P4}
9. A possesses (-Ka, +Kb). {8, P4}
10. A possesses -Ka. {9, P4}
11. A possesses +Kb. {9, P4}
12. A was told (B, *E(-Kb : Na) -> (K is a suitable secret for use between A and B),

K, Nb). {7, 10, T7}
13. A was told (*E(-Kb : Na) -> (K is a suitable secret for use between A and B),

K, Nb). {12, T4}
14. A was told *E(-Kb : Na) -> (K is a suitable secret for use between A and B).

{13, T4}
15. A believes that B once conveyed E(-Kb : Na) -> (K is a suitable secret for use

between A and B). {14, 11, 5, 3, C6}
16. A was told *E(-Kb : Na). {14, T3}
17. A was told E(-Kb : Na). {16, T2}
18. A possesses E(-Kb : Na). {17, P1}
19. A believes that E(-Kb : Na) is fresh. {4, 11, 18, F9}
20. A believes that B believes that K is a suitable secret for use between A and B.

{6, 15, 19, J2}



B.4 Needham-Schroeder Protocol 185

Proof for B believes that A believes that K is a suitable secret for use between A and B:

1. B was told *E(K : Nb) -> (K is a suitable secret for use between A and B).
{Step}

2. B possesses (B, Nb, +Ka, -Kb, K). {Assumption}
3. B believes that Nb is recognizable. {Assumption}
4. B believes that Nb is fresh. {Assumption}
5. B believes that K is a suitable secret for use between A and B. {Assumption}
6. B believes that A is trustworthy. {Assumption}
7. B was told *E(K : Nb). {1, T3}
8. B possesses (Nb, +Ka, -Kb, K). {2, P4}
9. B believes that K is a suitable secret for use between B and A. {5, C20}
10. B was told E(K : Nb). {7, T2}
11. B possesses E(K : Nb). {10, P1}
12. B possesses (+Ka, -Kb, K). {8, P4}
13. B possesses (-Kb, K). {12, P4}
14. B possesses K. {13, P4}
15. B believes that E(K : Nb) is fresh. {4, 14, 11, F5}
16. B believes that A once conveyed E(K : Nb) -> (K is a suitable secret for use

between A and B). {1, 14, 9, 3, 4, C1}
17. B believes that A believes that K is a suitable secret for use between A

and B. {6, 16, 15, J2}

B.4 Needham-Schroeder Protocol

Idealized Protocol Message Flows:

(1) P �! Q : P

(2) Q �! P : �fP;Nq1
gKqs

(3) P �! S : P;Q;Np; �fP;Nq1
gKqs

(4) S �! P : �fNp; Q;K; �fK;Nq1
; PgKqs

; P
K

 ! QgKps
; P

K

 ! Q

(5) P �! Q : Np1
; �fK;Nq1

; PgKqs
; P

K

 ! Q

(6) Q �! P : �fNq; Np1
gK ; P

K

 ! Q

(7) P �! Q : �fF (Nq)gK ; P
K

 ! Q

Proof for P possesses K:

1. P was told *E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret
for use between P and Q)) -> (K is a suitable secret for use between P and Q).
{Step}

2. P possesses (P, Q, Np, Np1, Kps). {Assumption}
3. P was told *E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret

for use between P and Q)). {1, T3}
4. P possesses (Q, Np, Np1, Kps). {2, P4}
5. P was told E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret

for use between P and Q)). {3, T2}
6. P possesses (Np, Np1, Kps). {4, P4}
7. P possesses (Np1, Kps). {6, P4}
8. P possesses Kps. {7, P4}
9. P was told (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use

between P and Q)). {5, 8, T6}



186 APPENDIX B. PROOFS GENERATED BY GYNGER

10. P possesses (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use
between P and Q)). {9, P1}

11. P possesses (Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use
between P and Q)). {10, P4}

12. P possesses (K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use
between P and Q)). {11, P4}

13. P possesses K. {12, P4}

Proof for Q possesses K:

1. Q was told (*E(Kqs : K, Nq1, P) -> (K is a suitable secret for use between P
and Q), Np1). {Step}

2. Q possesses (Nq, Nq1, Kqs). {Assumption}
3. Q was told *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use between

P and Q). {1, T4}
4. Q possesses (Nq1, Kqs). {2, P4}
5. Q was told *E(Kqs : K, Nq1, P). {3, T3}
6. Q possesses Kqs. {4, P4}
7. Q was told E(Kqs : K, Nq1, P). {5, T2}
8. Q was told (K, Nq1, P). {7, 6, T6}
9. Q possesses (K, Nq1, P). {8, P1}
10. Q possesses K. {9, P4}

Proof for P believes that K is a suitable secret for use between P and Q:

1. P was told *E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret
for use between P and Q)) -> (K is a suitable secret for use between P and Q).
{Step}

2. P possesses (P, Q, Np, Np1, Kps). {Assumption}
3. P believes that Np is fresh. {Assumption}
4. P believes that Np is recognizable. {Assumption}
5. P believes that Kps is a suitable secret for use between P and S. {Assumption}
6. P believes that S has jurisdiction over the statement "K is a suitable secret

for use between P and Q". {Assumption}
7. P believes that S is trustworthy. {Assumption}
8. P was told *E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret

for use between P and Q)). {1, T3}
9. P possesses (Q, Np, Np1, Kps). {2, P4}
10. P was told E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret

for use between P and Q)). {8, T2}
11. P possesses E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret

for use between P and Q)). {10, P1}
12. P possesses (Np, Np1, Kps). {9, P4}
13. P possesses (Np1, Kps). {12, P4}
14. P possesses Kps. {13, P4}
15. P was told (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use

between P and Q)). {10, 14, T6}
16. P possesses (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use

between P and Q)). {15, P1}
17. P believes that (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for

use between P and Q)) is recognizable. {4, 16, R3’}
18. P believes that (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for

use between P and Q)) is fresh. {3, 16, F3’}
19. P believes that E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable

secret for use between P and Q)) is fresh. {18, 14, 11, F5}



B.4 Needham-Schroeder Protocol 187

20. P believes that S once conveyed E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is
a suitable secret for use between P and Q)) -> (K is a suitable secret for use
between P and Q). {1, 14, 5, 17, 18, C1}

21. P believes that S believes that K is a suitable secret for use between P and Q.
{7, 20, 19, J2}

22. P believes that K is a suitable secret for use between P and Q. {6, 21, J1}

Proof for Q believes that K is a suitable secret for use between P and Q:

1. Q was told (*E(Kqs : K, Nq1, P) -> (K is a suitable secret for use between P
and Q), Np1). {Step}

2. Q possesses (Nq, Nq1, Kqs). {Assumption}
3. Q believes that Nq1 is fresh. {Assumption}
4. Q believes that Nq1 is recognizable. {Assumption}
5. Q believes that Kqs is a suitable secret for use between Q and S. {Assumption}
6. Q believes that S has jurisdiction over the statement "K is a suitable secret

for use between P and Q". {Assumption}
7. Q believes that S is trustworthy. {Assumption}
8. Q was told *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use between P

and Q). {1, T4}
9. Q possesses (Nq1, Kqs). {2, P4}
10. Q was told *E(Kqs : K, Nq1, P). {8, T3}
11. Q possesses Kqs. {9, P4}
12. Q was told E(Kqs : K, Nq1, P). {10, T2}
13. Q was told (K, Nq1, P). {12, 11, T6}
14. Q possesses (K, Nq1, P). {13, P1}
15. Q possesses E(Kqs : K, Nq1, P). {12, P1}
16. Q believes that (K, Nq1, P) is recognizable. {4, 14, R3’}
17. Q believes that (K, Nq1, P) is fresh. {3, 14, F3’}
18. Q believes that E(Kqs : K, Nq1, P) is fresh. {17, 11, 15, F5}
19. Q believes that S once conveyed E(Kqs : K, Nq1, P) -> (K is a suitable secret

for use between P and Q). {8, 11, 5, 16, 17, C1}
20. Q believes that S believes that K is a suitable secret for use between P and Q.

{7, 19, 18, J2}
21. Q believes that K is a suitable secret for use between P and Q. {6, 20, J1}

Proof for P believes that S once conveyed K:

1. P was told *E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for
use between P and Q)) -> (K is a suitable secret for use between P and Q).
{Step}

2. P possesses (P, Q, Np, Np1, Kps). {Assumption}
3. P believes that Np is fresh. {Assumption}
4. P believes that Np is recognizable. {Assumption}
5. P believes that Kps is a suitable secret for use between P and S. {Assumption}
6. P was told *E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for

use between P and Q)). {1, T3}
7. P possesses (Q, Np, Np1, Kps). {2, P4}
8. P was told E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for

use between P and Q)). {6, T2}
9. P possesses (Np, Np1, Kps). {7, P4}
10. P possesses (Np1, Kps). {9, P4}
11. P possesses Kps. {10, P4}
12. P was told (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use

between P and Q)). {8, 11, T6}



188 APPENDIX B. PROOFS GENERATED BY GYNGER

13. P possesses (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use
between P and Q)). {12, P1}

14. P believes that (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for
use between P and Q)) is recognizable. {4, 13, R3’}

15. P believes that (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for
use between P and Q)) is fresh. {3, 13, F3’}

16. P believes that S once conveyed (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a
suitable secret for use between P and Q)). {6, 11, 5, 14, 15, C1}

17. P believes that S once conveyed (Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable
secret for use between P and Q)). {16, C9}

18. P believes that S once conveyed (K, *E(Kqs : K, Nq1, P) -> (K is a suitable
secret for use between P and Q)). {17, C9}

19. P believes that S once conveyed K. {18, C9}

Proof for Q believes that S once conveyed K:

1. Q was told (*E(Kqs : K, Nq1, P) -> (K is a suitable secret for use between
P and Q), Np1). {Step}

2. Q possesses (Nq, Nq1, Kqs). {Assumption}
3. Q believes that Nq1 is fresh. {Assumption}
4. Q believes that Nq1 is recognizable. {Assumption}
5. Q believes that Kqs is a suitable secret for use between Q and S. {Assumption}
6. Q was told *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use between

P and Q). {1, T4}
7. Q possesses (Nq1, Kqs). {2, P4}
8. Q was told *E(Kqs : K, Nq1, P). {6, T3}
9. Q possesses Kqs. {7, P4}
10. Q was told E(Kqs : K, Nq1, P). {8, T2}
11. Q was told (K, Nq1, P). {10, 9, T6}
12. Q possesses (K, Nq1, P). {11, P1}
13. Q believes that (K, Nq1, P) is recognizable. {4, 12, R3’}
14. Q believes that (K, Nq1, P) is fresh. {3, 12, F3’}
15. Q believes that S once conveyed (K, Nq1, P). {8, 9, 5, 13, 14, C1}
16. Q believes that S once conveyed K. {15, C9}

Proof for P believes that Q believes that K is a suitable secret for use between P and Q:

1. P was told *E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret
for use between P and Q)) -> (K is a suitable secret for use between P and Q).
{Step}

2. P was told *E(K : Nq, Np1) -> (K is a suitable secret for use between P and Q).
{Step}

3. P possesses (P, Q, Np, Np1, Kps). {Assumption}
4. P believes that Np1 is fresh. {Assumption}
5. P believes that Np1 is recognizable. {Assumption}
6. P believes that Np is fresh. {Assumption}
7. P believes that Np is recognizable. {Assumption}
8. P believes that Kps is a suitable secret for use between P and S. {Assumption}
9. P believes that S has jurisdiction over the statement "K is a suitable secret

for use between P and Q". {Assumption}
10. P believes that S is trustworthy. {Assumption}
11. P believes that Q is trustworthy. {Assumption}
12. P was told *E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret

for use between P and Q)). {1, T3}
13. P was told *E(K : Nq, Np1). {2, T3}



B.4 Needham-Schroeder Protocol 189

14. P possesses (Q, Np, Np1, Kps). {3, P4}
15. P was told E(K : Nq, Np1). {13, T2}
16. P was told E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret

for use between P and Q)). {12, T2}
17. P possesses E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret

for use between P and Q)). {16, P1}
18. P possesses E(K : Nq, Np1). {15, P1}
19. P possesses (Np, Np1, Kps). {14, P4}
20. P possesses (Np1, Kps). {19, P4}
21. P possesses Kps. {20, P4}
22. P was told (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use

between P and Q)). {16, 21, T6}
23. P possesses (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use

between P and Q)). {22, P1}
24. P possesses (Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use

between P and Q)). {23, P4}
25. P believes that (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for

use between P and Q)) is recognizable. {7, 23, R3’}
26. P believes that (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for

use between P and Q)) is fresh. {6, 23, F3’}
27. P believes that E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret

for use between P and Q)) is fresh. {26, 21, 17, F5}
28. P believes that S once conveyed E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a

suitable secret for use between P and Q)) -> (K is a suitable secret for use
between P and Q). {1, 21, 8, 25, 26, C1}

29. P believes that S believes that K is a suitable secret for use between P and Q.
{10, 28, 27, J2}

30. P possesses (K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use
between P and Q)). {24, P4}

31. P believes that K is a suitable secret for use between P and Q. {9, 29, J1}
32. P possesses K. {30, P4}
33. P was told (Nq, Np1). {15, 32, T6}
34. P possesses (Nq, Np1). {33, P1}
35. P believes that (Nq, Np1) is recognizable. {5, 34, R3’}
36. P believes that (Nq, Np1) is fresh. {4, 34, F3’}
37. P believes that E(K : Nq, Np1) is fresh. {36, 32, 18, F5}
38. P believes that Q once conveyed E(K : Nq, Np1) -> (K is a suitable secret for

use between P and Q). {2, 32, 31, 35, 36, C1}
39. P believes that Q believes that K is a suitable secret for use between P and Q.

{11, 38, 37, J2}

Proof for Q believes that P believes that K is a suitable secret for use between P and Q:

1. Q was told (*E(Kqs : K, Nq1, P) -> (K is a suitable secret for use between P
and Q), Np1). {Step}

2. Q was told *E(K : F(Nq)) -> (K is a suitable secret for use between P and Q).
{Step}

3. Q possesses (Nq, Nq1, Kqs). {Assumption}
4. Q believes that Nq1 is fresh. {Assumption}
5. Q believes that Nq1 is recognizable. {Assumption}
6. Q believes that Nq is fresh. {Assumption}
7. Q believes that Nq is recognizable. {Assumption}
8. Q believes that Kqs is a suitable secret for use between Q and S. {Assumption}
9. Q believes that S has jurisdiction over the statement "K is a suitable secret

for use between P and Q". {Assumption}
10. Q believes that S is trustworthy. {Assumption}



190 APPENDIX B. PROOFS GENERATED BY GYNGER

11. Q believes that P is trustworthy. {Assumption}
12. Q was told *E(K : F(Nq)). {2, T3}
13. Q was told *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use between P

and Q). {1, T4}
14. Q possesses (Nq1, Kqs). {3, P4}
15. Q was told E(K : F(Nq)). {12, T2}
16. Q was told *E(Kqs : K, Nq1, P). {13, T3}
17. Q possesses E(K : F(Nq)). {15, P1}
18. Q possesses Kqs. {14, P4}
19. Q was told E(Kqs : K, Nq1, P). {16, T2}
20. Q was told (K, Nq1, P). {19, 18, T6}
21. Q possesses (K, Nq1, P). {20, P1}
22. Q possesses E(Kqs : K, Nq1, P). {19, P1}
23. Q possesses K. {21, P4}
24. Q believes that (K, Nq1, P) is recognizable. {5, 21, R3’}
25. Q believes that (K, Nq1, P) is fresh. {4, 21, F3’}
26. Q believes that E(Kqs : K, Nq1, P) is fresh. {25, 18, 22, F5}
27. Q believes that S once conveyed E(Kqs : K, Nq1, P) -> (K is a suitable secret

for use between P and Q). {13, 18, 8, 24, 25, C1}
28. Q believes that S believes that K is a suitable secret for use between P and Q.

{10, 27, 26, J2}
29. Q was told F(Nq). {15, 23, T6}
30. Q possesses F(Nq). {29, P1}
31. Q believes that F(Nq) is recognizable. {7, 30, R3’’}
32. Q believes that F(Nq) is fresh. {6, 30, F3’’}
33. Q believes that E(K : F(Nq)) is fresh. {32, 23, 17, F5}
34. Q believes that K is a suitable secret for use between P and Q. {9, 28, J1}
35. Q believes that K is a suitable secret for use between Q and P. {34, C20}
36. Q believes that P once conveyed E(K : F(Nq)) -> (K is a suitable secret for use

between P and Q). {2, 23, 35, 31, 32, C1}
37. Q believes that P believes that K is a suitable secret for use between P and Q.

{11, 36, 33, J2}

Proof for P believes that Q possesses K:

1. P was told *E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret
for use between P and Q)) -> (K is a suitable secret for use between P and Q).
{Step}

2. P was told *E(K : Nq, Np1) -> (K is a suitable secret for use between P and Q).
{Step}

3. P possesses (P, Q, Np, Np1, Kps). {Assumption}
4. P believes that Np1 is fresh. {Assumption}
5. P believes that Np1 is recognizable. {Assumption}
6. P believes that Np is fresh. {Assumption}
7. P believes that Np is recognizable. {Assumption}
8. P believes that Kps is a suitable secret for use between P and S. {Assumption}
9. P believes that S has jurisdiction over the statement "K is a suitable secret

for use between P and Q". {Assumption}
10. P believes that S is trustworthy. {Assumption}
11. P was told *E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for

use between P and Q)). {1, T3}
12. P was told *E(K : Nq, Np1). {2, T3}
13. P possesses (Q, Np, Np1, Kps). {3, P4}
14. P was told E(K : Nq, Np1). {12, T2}
15. P was told E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for

use between P and Q)). {11, T2}



B.4 Needham-Schroeder Protocol 191

16. P possesses E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for
use between P and Q)). {15, P1}

17. P possesses (Np, Np1, Kps). {13, P4}
18. P possesses (Np1, Kps). {17, P4}
19. P possesses Kps. {18, P4}
20. P was told (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use

between P and Q)). {15, 19, T6}
21. P possesses (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use

between P and Q)). {20, P1}
22. P possesses (Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use

between P and Q)). {21, P4}
23. P believes that (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret

for use between P and Q)) is recognizable. {7, 21, R3’}
24. P believes that (Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for

use between P and Q)) is fresh. {6, 21, F3’}
25. P believes that E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret

for use between P and Q)) is fresh. {24, 19, 16, F5}
26. P believes that S once conveyed E(Kps : Np, Q, K, *E(Kqs : K, Nq1, P) -> (K is

a suitable secret for use between P and Q)) -> (K is a suitable secret for use
between P and Q). {1, 19, 8, 23, 24, C1}

27. P believes that S believes that K is a suitable secret for use between P and Q.
{10, 26, 25, J2}

28. P possesses (K, *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use
between P and Q)). {22, P4}

29. P believes that K is a suitable secret for use between P and Q. {9, 27, J1}
30. P possesses K. {28, P4}
31. P was told (Nq, Np1). {14, 30, T6}
32. P possesses (Nq, Np1). {31, P1}
33. P believes that (Nq, Np1) is recognizable. {5, 32, R3’}
34. P believes that (Nq, Np1) is fresh. {4, 32, F3’}
35. P believes that Q possesses ((Nq, Np1), K). {12, 30, 29, 33, 34, C1}
36. P believes that Q possesses K. {35, C19}

Proof for Q believes that P possesses K:

1. Q was told (*E(Kqs : K, Nq1, P) -> (K is a suitable secret for use between P
and Q), Np1). {Step}

2. Q was told *E(K : F(Nq)) -> (K is a suitable secret for use between P and Q).
{Step}

3. Q possesses (Nq, Nq1, Kqs). {Assumption}
4. Q believes that Nq1 is fresh. {Assumption}
5. Q believes that Nq1 is recognizable. {Assumption}
6. Q believes that Nq is fresh. {Assumption}
7. Q believes that Nq is recognizable. {Assumption}
8. Q believes that Kqs is a suitable secret for use between Q and S. {Assumption}
9. Q believes that S has jurisdiction over the statement "K is a suitable secret

for use between P and Q". {Assumption}
10. Q believes that S is trustworthy. {Assumption}
11. Q was told *E(K : F(Nq)). {2, T3}
12. Q was told *E(Kqs : K, Nq1, P) -> (K is a suitable secret for use between P

and Q). {1, T4}
13. Q possesses (Nq1, Kqs). {3, P4}
14. Q was told E(K : F(Nq)). {11, T2}
15. Q was told *E(Kqs : K, Nq1, P). {12, T3}
16. Q possesses Kqs. {13, P4}
17. Q was told E(Kqs : K, Nq1, P). {15, T2}



192 APPENDIX B. PROOFS GENERATED BY GYNGER

18. Q was told (K, Nq1, P). {17, 16, T6}
19. Q possesses (K, Nq1, P). {18, P1}
20. Q possesses E(Kqs : K, Nq1, P). {17, P1}
21. Q possesses K. {19, P4}
22. Q believes that (K, Nq1, P) is recognizable. {5, 19, R3’}
23. Q believes that (K, Nq1, P) is fresh. {4, 19, F3’}
24. Q believes that E(Kqs : K, Nq1, P) is fresh. {23, 16, 20, F5}
25. Q believes that S once conveyed E(Kqs : K, Nq1, P) -> (K is a suitable secret

for use between P and Q). {12, 16, 8, 22, 23, C1}
26. Q believes that S believes that K is a suitable secret for use between P and Q.

{10, 25, 24, J2}
27. Q was told F(Nq). {14, 21, T6}
28. Q possesses F(Nq). {27, P1}
29. Q believes that F(Nq) is recognizable. {7, 28, R3’’}
30. Q believes that F(Nq) is fresh. {6, 28, F3’’}
31. Q believes that K is a suitable secret for use between P and Q. {9, 26, J1}
32. Q believes that K is a suitable secret for use between Q and P. {31, C20}
33. Q believes that P possesses (F(Nq), K). {11, 21, 32, 29, 30, C1}
34. Q believes that P possesses K. {33, C19}



Appendix C

GYPSIE Specification Experiment

The questionnaire in this appendix was used to obtain an indication of how protocol engineers interact
with the GYPSIE design environment. Twenty individuals were used in this experiment and it was
conducted over the period 21 to 25 May 2001.

Section 1

Specify the following protocols in SPEAR II and then save the resultant protocol definition. Try to be as
accurate as possible while constructing the specification, but also note that the time taken to create each
model will be timed and used to compute your overall result.

Voting Protocol

(1) Q �! Pi: Nq

(2) Pi �! Q: Pi; Ni; vi; H (Nq; < Si >; vi)

(3) Q �! Pi: result; H (Ni; < Si >; result)

Authentication Protocol

(1) A �! B: A; Na

(2) B �! A: fB; fNag�Kb
; Kab; Nbg+Ka

; fNagKab

(3) A �! B: fNbgKab

Needham-Schroeder Protocol

(1) P �! Q: P

(2) Q �! P: fP; Nq1gKqs

(3) P �! S: P; Q; Np; fP; Nq1gKqs

(4) S �! P: fNp; Q; Kpq; fKpq; Nq1; PgKqs
gKps

(5) P �! Q: Np1; fKpq; Nq1; PgKqs

(6) Q �! P: fNq; Np1gKpq

(7) P �! Q: fF (Nq)gKpq

193



194 APPENDIX C. GYPSIE SPECIFICATION EXPERIMENT

Figure C.1: A SPEAR II screenshot.

Section 2

Examine the protocol model specified in the screenshot displayed in Figure C.1 and then answer the
questions that follow.

1. What is the name of this protocol specification?

2. How many subprotocols does the specification contain?

3. How many messages does the specification contain? Don’t count the messages transmitted in
subprotocols.

4. List all of the principals who send or receive messages in the specification. Exclude the principals
defined in any subprotocols from this answer.

5. List the principals defined in Mike’s Subprotocol.



195

6. (a) Which principals do John’s Subprotocol and its parent protocol have in common?

(b) How did you ascertain this fact?

7. How many messages are defined in Mike’s Subprotocol?

Section 3

Open the Kerberos protocol specification file and then carrying out the following operations:

1. Use the Component Tracker to highlight the ticket fTs; L;Kab; AgKbs
.

2. Swop the positions of the first and second message.

3. Make S the sender of the fourth message.

4. Make S the receiver of the third message.

5. Rename principal S to AS.



196 APPENDIX C. GYPSIE SPECIFICATION EXPERIMENT



Appendix D

Visual GNY Comprehension Experiment

The questionnaire in this appendix was used to examine whether Visual GNY aids in the effective con-
struction of syntactically and semantically correct GNY expressions. Twenty individuals were used in
this experiment and it was conducted over the period 14 to 17 November 2000.

Section 1

Translate the following English statements into both VGNY and GNY. Write the GNY statements on this
answer sheet, and then compile the VGNY statements the using SPEAR II.

1. A believes that Na is fresh.

2. A believes that Nb is recognizable.

3. A believes that C has jurisdiction over the statement “Kac is a suitable secret for use between A

and C”.

4. B believes that C is trustworthy.

5. A believes that B once conveyed (Na, Login Name).

6. A believes that B possesses (Data, Password).

7. C believes that +Kb is a suitable public key for B.

197



198 APPENDIX D. VISUAL GNY COMPREHENSION EXPERIMENT

8. B believes that A is told (Nb, Server Name).

9. A believes that B believes that Kab is a suitable secret for use between A and B.

10. A believes that B is not the first principal to originate Na.

11. A possesses Data.

12. B possesses (Nb, Password).

13. A possesses E(Ka : Ta;Data).

Section 2

Translate the following GNY statements into English. Write the solutions on this answer sheet.

1. A j� B � (Na;Data)

2. B j� C j=) A
Kab
 ! B

3. A j� B j=) B j� �

4. B j� A j� E(K : Data;Na)

5. A j� B a (Na)

6. A 3 K

7. C j�
+Ka
7�! A

8. B j� �(Nb)



199

9. C j� D j� A
Kab
 ! B

10. A j� ](Na)

11. C j� A 3 (Data; Password)

12. A j� B
Kbc
 ! C

Section 3

Translate the following VGNY statement trees into English. Start with the left pane, and then work
downwards through each tree.

1.

2.

3.

4.

5.



200 APPENDIX D. VISUAL GNY COMPREHENSION EXPERIMENT

6.

7.

8.

9.

10.

11.

12.



Appendix E

Further GNY Analyses with SPEAR II

The GNY analysis results in this appendix were all obtained from analyses that were conducted using
the Visual GNY and GYNGER components of the SPEAR II framework. The analyses in Sections E.1
through to E.6 are based on the BAN analyses conducted in [1], while the last two analyses are based on
protocols described in [35]. Due to a lack of space, we have omitted the proof for each of the successful
goals. However, to aid in verifying these results, the source file for each of these analyses has been
included with the SPEAR II application, available from http://www.cs.uct.ac.za/Research/DNA/SPEAR2.

E.1 Wide-Mouthed Frog

Idealized Protocol Steps

A �! S : A; �fTa; B; KabgKas
; A

Kab
 ! B

S �! B : �fTs; A; KabgKbs
; A j� A

Kab
 ! B

Initial Possessions

A 3 (Kas;A; Ta;B;Kab) B 3 Kbs S 3 (Kbs; Ts;Kas)

Initial Beliefs

A j� A
Kab
 ! B

B j� ](Ts)

B j� �(A)

B j� S j=) S j� �

B j� B
Kbs
 ! S

B j� S j=) A j� A
Kab
 ! B

B j� A j=) A
Kab
 ! B

S j� ](Ta)

S j� �(B)

S j� A j=) A j� �

S j� A
Kas
 ! S

Goals Achieved

A 3 Kab

B 3 Kab

S j� A j� A
Kab
 ! B

A j� A
Kab
 ! B

B j� S j� A j� A
Kab
 ! B

B j� A j� A
Kab
 ! B

B j� A
Kab
 ! B

201



202 APPENDIX E. FURTHER GNY ANALYSES WITH SPEAR II

E.2 Kerberos

Idealized Protocol Steps

A �! S : A; B

S �! A : �fTs; L; Kab; B; �fTs; L; Kab; AgKbs
; A

Kab
 ! BgKas

; A
Kab
 ! B

A �! B : �fTs; L; Kab; AgKbs
; A

Kab
 ! B; �fA; TagKab

; A
Kab
 ! B

B �! A : �finc(Ta)gKab
; A

Kab
 ! B

Initial Possessions

S 3 (Kas;Kbs; Ts;L;Kab) A 3 (Kas; Ta;A;B) B 3 Kbs

Initial Beliefs

A j� A
Kas
 ! S

A j� B j=) B j� �

A j� S j=) S j� �

A j� S j=) A
Kab
 ! B

A j� ](Ta)
A j� ](Ts)

A j� �(Ts)

A j� �(Ta)

B j� B
Kbs
 ! S

B j� A j=) A j� �

B j� S j=) S j� �

B j� S j=) A
Kab
 ! B

B j� ](Ta)

B j� ](Ts)

B j� �(Ta)

B j� �(Ts)

Goals Achieved

A 3 Kab

B 3 Kab

A j� A
Kab
 ! B

A j� B 3 Kab

A j� B j� A
Kab
 ! B

B j� A
Kab
 ! B

B j� A 3 Kab

B j� A j� A
Kab
 ! B

E.3 Needham-Schroeder Public-Key

Idealized Protocol Steps

A �! S : A; B

S �! A : �f+Kb; B; Ts1g�Ks
;

+Kb
7�! B

A �! B : f�fSa; Tag�Ka
; A

Sa
 ! B; Ag+Kb

B �! S : B; A

S �! B : �f+Ka; A; Ts2g�Ks
;

+Ka
7�! A

B �! A : �f< Sa >; Sbg+Ka
; (A

Sb
 ! B; A

Sa
 ! B)

A �! B : �f< Sb >g+Kb
; A

Sb
 ! B



E.4 Yahalom 203

Initial Possessions

B 3 (+Ks;�Kb) A 3 (+Ks;�Ka;B;A)

Initial Beliefs

B j� ](Sb)

B j� ](Ta)

B j� ](Ts2)

B j� �(Sb)

B j� �(A)

B j� �(Ta)
B j� A j=) A j� �

B j� S j=) S j� �

B j�
+Ks
7�! S

B j�
+Kb
7�! B

B j� S j=)
+Ka
7�! A

B j� A j=) A
Sa
 ! B

B j� A
Sb
 ! B

A j� ](Sa)

A j� ](Ts1)

A j� �(Sa)

A j� �(B)

A j�
+Ks
7�! S

A j�
+Ka
7�! A

A j� B j=) B j� �

A j� S j=) S j� �

A j� S j=)
+Kb
7�! B

A j� B j=) A
Sb
 ! B

A j� A
Sa
 ! B

Goals Achieved

B 3 Sa
B 3 +Ka

A 3 Sb
A 3 +Kb

B j�
+Ka
7�! A

B j� A j� A
Sa
 ! B

B j� A j� A
Sb
 ! B

B j� A
Sa
 ! B

A j�
+Kb
7�! B

A j� B j� A
Sb
 ! B

A j� B j� A
Sa
 ! B

A j� A
Sb
 ! B

E.4 Yahalom

Idealized Protocol Steps

A �! B : A; Na

B �! S : B; �fA; Na; NbgKbs

S �! A : �fB; Kab; Na; NbgKas
; A

Kab
 ! B; �fA; KabgKbs

; A
Kab
 ! B

A �! B : �fA; Kab; NbgKbs
; A

Kab
 ! B; �fNbgKab

; A
Kab
 ! B

Initial Possessions

S 3 (Kbs;Kas;Kab) A 3 (Kas;A; Na) B 3 (Kbs;B; Nb)

Initial Beliefs

S j� A
Kab
 ! B

S j� A
Kas
 ! S

S j� B
Kbs
 ! S

A j� �(Na)

A j� ](Na)

A j� A
Kas
 ! S

A j� S j=) S j� �

A j� S j=) A
Kab
 ! B

B j� �(Nb)

B j� ](Nb)

B j� B
Kbs
 ! S

B j� A j=) A j� �

B j� S j=) S j� �

B j� S j=) A
Kab
 ! B



204 APPENDIX E. FURTHER GNY ANALYSES WITH SPEAR II

Goals Achieved

A 3 Kab

B 3 Kab

A j� A
Kab
 ! B

B j� A
Kab
 ! B

B j� A j� A
Kab
 ! B

B j� A 3 Kab

E.5 Otway-Rees

Idealized Protocol Steps

A �! B : Nc; �fNa; NcgKas

B �! S : Nc; �fNa; NcgKas
; �fNb; NcgKbs

S �! B : RunID; �fNa; KabgKas
; (A

Kab

 ! B; B j� Nc); �fNb; KabgKbs
; (A

Kab

 ! B; A j� Nc)

B �! A : RunID; �fNa; KabgKas
; (A

Kab

 ! B; B j� Nc)

where Nc = RunID; A; B

Initial Possessions

S 3 (Kas;Kbs;Kab) B 3 (Kbs; Nb) A 3 (Kas; Na; Nc)

Initial Beliefs

B j� ](Nb)

B j� �(Nb)

B j� S j=) A
Kab
 ! B

B j� S j=) A j� Nc

B j� B
Kbs
 ! S

B j� S j=) S j� �

A j� ](Nc)

A j� ](Na)

A j� �(Na)

A j� S j=) A
Kab
 ! B

A j� S j=) B j� Nc

A j� A
Kas
 ! S

A j� S j=) S j� �

Achieved Goals

S 3 Na

S 3 Nb

B 3 Kab

A 3 Kab

B j� A
Kab
 ! B

B j� S j� A j� Nc

B j� A j� Nc

A j� A
Kab
 ! B

A j� S j� B j� Nc

A j� B j� Nc

A j� B 3 Nc

E.6 Andrew Secure RPC Handshake

Idealized Protocol Steps

A �! B : A; Na

B �! A : �fNa; K
0
ab; NbgKab

; A
K0
ab
 ! B

A �! B : �fNbgK0
ab
; A

K0
ab
 ! B

B �! A : N 0b



E.7 Gong Rounds Paper Case 2 205

Initial Possessions

B 3 (Kab;K
0
ab; N

0
b) A 3 (Kab; Na)

Initial Beliefs

B j� A
Kab
 ! B

B j� A
K0
ab
 ! B

B j� ](Nb)

B j� ](N 0b)

B j� �(Nb)

B j� �(N 0b)

B j� A j=) A j� �

A j� A
Kab
 ! B

A j� ](Na)

A j� �(Na)

A j� B j=) A
K0
ab
 ! B

A j� B j=) B j� �

Achieved Goals

A 3 K 0ab
B 3 K 0ab

A j� A
K0
ab
 ! B

A j� B j� A
K0
ab
 ! B

A j� B 3 K 0ab

B j� A
K0
ab
 ! B

B j� A j� A
K0
ab
 ! B

B j� A 3 K 0ab

E.7 Gong Rounds Paper Case 2

Idealized Protocol Steps

A �! S : A; B

S �! A : �fS; A; A; Kab; B; TsgKas
; A

Kab
 ! B; �fS; B; A; Kab; B; TsgKbs

; A
Kab
 ! B

A �! B : �fS; B; A; Kab; B; TsgKbs
; A

Kab
 ! B; �fA; B; TagKab

; A
Kab
 ! B

B �! A : �fB; A; TbgKab
; A

Kab
 ! B

Initial Possessions:

S 3 (Kbs;Kas; Ts;S;Kab) B 3 (Kbs; Tb) A 3 (Kas; Ta;B;A)

Initial Beliefs:

S j� A
Kab
 ! B

S j� A
Kas
 ! S

S j� B
Kbs
 ! S

B j� �(B)

B j� ](Ta)

B j� ](Ts)

B j� B
Kbs
 ! S

B j� A j=) A j� �

B j� S j=) S j� �

B j� S j=) A
Kab
 ! B

A j� �(A)
A j� ](Tb)

A j� ](Ts)

A j� A
Kas
 ! S

A j� B j=) B j� �

A j� S j=) S j� �

A j� S j=) A
Kab
 ! B



206 APPENDIX E. FURTHER GNY ANALYSES WITH SPEAR II

Achieved Goals

A 3 Kab

B 3 Kab

A j� A
Kab
 ! B

A j� B 3 Kab

A j� B j� A
Kab
 ! B

B j� A
Kab
 ! B

B j� A 3 Kab

B j� A j� A
Kab
 ! B

E.8 Gong Rounds Paper Case 4

Idealized Protocol Steps

A �! S : A; B; �fB; Kab; TagKas
; A

Kab
 ! B; �fA; TagKab

; A
Kab
 ! B

S �! B : A; B; �fA; Kab; TsgKbs
; A

Kab
 ! B; �fA; TagKab

; A
Kab
 ! B

B �! A : �fB; TbgKab
; A

Kab
 ! B

Initial Possessions

S 3 (Kas;Kbs; Ts) A 3 (Kab;Kas; Ta;B;A) B 3 (Tb;Kbs)

Initial Beliefs

S j� �(B)

S j� ](Ta)

S j� A
Kas
 ! S

S j� B
Kbs
 ! S

S j� A j=) A j� �

S j� A j=) A
Kab
 ! B

A j� �(B)

A j� ](Tb)

A j� A
Kab
 ! B

A j� A
Kas
 ! S

A j� B j=) B j� �

B j� �(A)

B j� ](Ts)

B j� ](Ta)

B j� B
Kbs
 ! S

B j� A j=) A j� �

B j� S j=) S j� �

B j� S j=) A
Kab
 ! B

Achieved Goals

A 3 Kab

B 3 Kab

A j� A
Kab
 ! B

A j� B 3 Kab

A j� B j� A
Kab
 ! B

B j� A
Kab
 ! B

B j� A 3 Kab

B j� A j� A
Kab
 ! B



Bibliography

[1] M. Abadi, M. Burrows, and R. Needham. A Logic of Authentication. In Proceedings of the Royal
Society, Series A, 426, 1871, pages 233 – 271, December 1989.

[2] M. Abadi and R. Needham. Prudent Engineering Practice for Cryptographic Protocols. IEEE
Transactions on Software Engineering, 22(1):6 – 15, January 1996.

[3] M. Abadi and M. Tuttle. A Semantics for a Logic of Authentication. In Proceedings of the Tenth
ACM Symposium on Principles of Distributed Computing, pages 201 – 216. ACM Press, August
1991.

[4] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools. Addison-
Wesley, 1986.

[5] J.P. Bekmann, P. De Goede, and A.C.M. Hutchison. SPEAR: Security Protocol Engineering and
Analysis Resources. In DIMACS Workshop on Design and Formal Verification of Security Proto-
cols. Rutgers University, September 1997.

[6] J.P. Bekmann, P. De Goede, and A.C.M. Hutchison. Concurrency and Synchronisation Issues in Se-
curity Implementations. In Proceedings of the 14th International Information Security Conference
(IFIP/SEC’98), pages 333 – 343, Vienna, Austria and Budapest, Hungary, 1998.

[7] S. Bellman, G. Lohse, and E. Johnson. Predictors of Online Buying Behaviour. Communications
of the ACM, 42(12):32 – 38, December 1999.

[8] M.S. Berry, A.C.M. Hutchison, and E. Saul. Predicting the Performance of Transactional Electronic
Commerce Protocols. In Proceedings of the Seventh Annual Working Conference on Information
Security Management and Small Systems Security, pages 161 – 175, Amsterdam, Netherlands,
September 1999. Kluwer Academic Publishers.

[9] D. Bolignano. An Approach to the Formal Verification of Cryptographic Protocols. In Proceedings
of the Third ACM Conference on Computer and Communications Security, pages 106 – 118. ACM
Press, 1996.

[10] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS. Computer
Networks and ISDN Systems, 14(1):25 – 59, 1987.

[11] M. Booyens and P.S. Kritzinger. SNAPL/1: A Language to Describe and Evaluate Queuing Net-
work Models. Performance Evaluation, 4(3):171 – 181, August 1984.

[12] C. Boyd. Extensional Goals in Authentication Protocols. In DIMACS Workshop on Design and
Formal Verification of Security Protocols. Rutgers University, September 1997.

207



208 BIBLIOGRAPHY

[13] S.H. Brackin. A HOL Extension of GNY for Automatically Analyzing Cryptographic Protocols. In
Proceedings of the Ninth IEEE Computer Security Foundations Workshop, pages 62 – 77, County
Kerry, Ireland, June 1996.

[14] S.H. Brackin. Deciding Cryptographic Protocol Adequacy with HOL: The Implementation. In The
1996 International Conference on Theorem Proving in Higher Order Logics, pages 61–76, Turku,
Finland, August 1996.

[15] S.H. Brackin. An Interface Specification Language for Automatically Analyzing Cryptographic
Protocols. In Proceedings of the Internet Society Symposium on Network and Distributed System
Security, February 1997.

[16] S.H. Brackin. Evaluating and Improving Protocol Analysis by Automatic Proof. In Proceedings of
the Eleventh IEEE Computer Security Foundations Workshop. IEEE Computer Society Press, 1998.

[17] S.H. Brackin and R.W. Lichota. CASE for High Assurance: Utilizing Commercial Technology
for Automated Cryptographic Protocol Analysis. In Proceedings of the Sixth Annual Dual-Use
Technologies and Applications Conference, June 1996.

[18] S. Budkowski and P. Dembinski. Introduction to Estelle: A Specification Language for Distributed
Systems. Computer Networks and ISDN Systems, 14(1):3 – 23, 1987.

[19] M. Butow, P.S. Kritzinger, M. Mestern, and C. Schapiro. Performance Modelling with the Formal
Specification Language SDL. In Proceedings of the FORTE/PSTV ’96: XVth International Sympo-
sium on Protocol Specification, Testing and Verification, pages 213 – 225, Kaiserslautern, Germany,
1996.

[20] E.A. Campbell and R. Safavi-Naini. On Automating the BAN Logic of Authentication. In Pro-
ceedings of the Fifteenth Australian Computer Science Conference, 1992.

[21] CCITT. CCITT X.509, The Directory — An Authentication Framework, 1988.

[22] J. Clark. Attacking Authentication Protocols. High Integrity Systems, 1(5):465 – 474, August 1996.

[23] J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0, November 1997.

[24] S.C. Clark, S.B. Freedman, and J.K. Millen. The Interrogator: Protocol Security Analysis. IEEE
Transactions on Software Engineering, SE-13(2), 1987.

[25] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, New York, 1981.

[26] Data Network Architectures Laboratory, University of Cape Town. MicroSnap – Multiclass Queu-
ing Network Analyser (User Manual), third edition, August 1990.

[27] B. de Decker and F. Piessens. CryptoLog: A Theorem Prover for Cryptographic Protocols. In
DIMACS Workshop on Design and Formal Verification of Security Protocols. Rutgers University,
September 1997.

[28] G. Denker and J. Millen. CAPSL and CIL Language Design. Technical Report SRI-CSL-99-02,
SRI International, February 1999.

[29] D. Dolev and A. Yao. On the Security of Public Key Protocols. IEEE Transactions on Information
Theory, 29(2):198 – 208, 1983.



BIBLIOGRAPHY 209

[30] N. Ford. Prolog Programming. John Wiley and Sons, 1989.

[31] P. Georgiadis, S. Gritzalis, and D. Spinellis. Security Protocols Over Open Networks and Dis-
tributed Systems: Formal Methods for Their Analysis, Design and Verification. Computer Commu-
nications, 22(8):695 – 707, May 1999.

[32] V.D. Gligor, L. Gong, R. Kailar, and S. Stubblebine. Logics for Cryptographic Protocols – Virtues
and Limitations. In Proceedings of the Fourth IEEE Computer Security Foundations Workshop,
pages 219 – 226, Franconia, New Hampshire, October 1991. IEEE Computer Society Press.

[33] L. Gong. Cryptographic Protocols for Distributed Systems. PhD thesis, University of Cambridge,
April 1990.

[34] L. Gong. Lower Bounds on Messages and Rounds for Network Authentication Protocols. In
Proceedings of the 1st ACM Conference on Computer and Communications Security, pages 26 –
37, Fairfax, Virginia, November 1993.

[35] L. Gong. Efficient Network Authentication Protocols: Lower Bounds and Optimal Implementa-
tions. Distributed Computing, 9(3):131 – 145, 1995.

[36] L. Gong, R. Needham, and R. Yahalom. Reasoning about Belief in Cryptographic Protocols. In
Proceedings of the 1990 IEEE Symposium on Research in Security and Privacy, pages 234 – 248,
Oakland, California, 1990. IEEE Computer Society Press.

[37] L. Gong and P.F. Syverson. Fail-Stop Protocols: An Approach to Designing Secure Protocols. In
The Fifth International Working Conference on Dependable Computing for Critical Applications,
pages 44 – 55. Springer-Verlag, September 1995.

[38] M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving Environment for Higher
Order Logic. Cambridge University Press, Cambridge, UK, 1993.

[39] G.L. Hammonds, R. Burns, Y. Koh, R.W. Lichota, and S.H. Brackin. Applying CASE Tools to
Security Engineering. CrossTalk: The Journal of Defense Engineering, 9(12):14, December 1996.

[40] N. Heintze and J.D. Tygar. A Model for Secure Protocols and Their Compositions. In 1994 IEEE
Computer Society Symposium on Research in Security and Privacy, pages 2 – 13. IEEE Computer
Society Press, May 1994.

[41] Interactive Development Environments. Creating OMT Models, February 1994.

[42] Interactive Development Environments. Fundamentals of StP, Release 1, February 1994.

[43] International Telecommunication Union, Geneva. ITU-TS Recommendation Z.100: Specification
and Description Language (SDL), 1993.

[44] International Telecommunication Union, Geneva. ITU-TS Recommendation Z.120: Message Se-
quence Chart (MSC), 1993.

[45] J. Gosling, H. McGilton. The Java Language Environment. Sun Microsystems, May 1996.

[46] R. Kemmerer. Analyzing Encryption Protocols using Formal Verification Techniques. IEEE Jour-
nal on Selected Areas in Communications, 7(4):448 – 457, 1989.



210 BIBLIOGRAPHY

[47] D. Kindred and J.M. Wing. Fast, Automatic Checking of Security Protocols. In Proceedings of the
Second USENIX Workshop on Electronic Commerce, Oakland, California, November 1996.

[48] D.E. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley Publishing Company,
1968. Fundamental Algorithms.

[49] J. Kohl and C. Neuman. RFC 1510: The Kerberos Network Authentication Service (V5), September
1993.

[50] R. Lichota, G. Hammonds, and S.H. Brackin. Verifying the Correctness of Cryptographic Protocols
using Convince. In Proceedings of the Twelfth IEEE Computer Security Applications Conference,
pages 117 – 128. IEEE Computer Society Press, 1996.

[51] R.W. Lichota, G.L. Hammonds, and S.H. Brackin. Verifying Cryptographic Protocols for Electronic
Commerce. In Proceedings of the Second USENIX Workshop on Electronic Commerce, Oakland,
California, November 1996.

[52] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. In Pro-
ceedings of TACAS, pages 147 – 166. Springer Verlag, 1996.

[53] A. Mathuria, R. Safavi-Naini, and P. Nickolas. Some Remarks on the Logic of Gong, Needham and
Yahalom. In Proceedings of the International Computer Symposium 1994, volume 1, pages 303 –
308, Hsinchu, Taiwan, December 1994.

[54] A. Mathuria, R. Safavi-Naini, and P. Nickolas. On the Automation of GNY Logic. In Proceedings
of the 18th Australian Computer Science Conference, volume 17, pages 370 – 379, Glenelg, South
Australia, February 1995.

[55] C. Meadows. Analyzing the Needham-Schroeder Public Key Protocol: A Comparison of Two
Approaches. In Proceedings of the European Symposium on Research in Computer Security 1996,
volume 1146 of Lecture Notes in Computer Science, pages 351 – 364. Springer Verlag, 1996.

[56] C.A. Meadows. Formal Verification of Cryptographic Protocols: A Survey. In Advances in Cryp-
tology - Asiacrypt ’94, pages 133 – 150. Springer-Verlag, 1995.

[57] C.A. Meadows. The NRL Protocol Analyzer: An Overview. Journal of Logic Programming,
26(2):113 – 131, February 1996.

[58] M. Meeker and S. Pearson. The Internet Retailing Report. Morgan Stanley, Dean Witter, Discover
& Co., New York, May 1997. [http://www.morganstanley.com/techresearch/inet/morganx.html].

[59] J. Millen, C. Neuman, J. Schiller, and J. Saltzer. Kerberos Authentication and Authorization System.
Project Athena Technical Plan, M.I.T., Massachusetts, 1987. Section E.2.1.

[60] J. Miller. Clean Up: C++ Garbage Collection. BYTE, 21(1):157 – 158, January 1996.

[61] D. Monniaux. Decision Procedures for the Analysis of Cryptographic Protocols. In Proceedings
of the Twelfth IEEE Computer Security Foundations Workshop, Mordano, Italy, June 1999. IEEE
Computer Society Press.

[62] Mudge and B. Schneier. Cryptanalysis of Microsoft’s Point-to-Point Tunneling Protocol (PPTP).
In Proceedings of the 5th ACM Conference on Computer and Communications Security, pages
132–141, 1998.



BIBLIOGRAPHY 211

[63] R.M. Needham and M.D. Schroeder. Using Encryption for Authentication in Large Networks on
Computers. Communications of the ACM, 21(12):993 – 999, December 1978.

[64] D. Otway and O. Rees. Efficient and Timely Mutual Authentication. ACM Operating Systems
Review, 21(1):8 – 10, 1987.

[65] L. Paulson. Mechanized Proofs for a Recursive Authentication Protocol. In Proceedings of IEEE
Security Foundations Workshop X, pages 84 – 94. IEEE Computer Society Press, 1997.

[66] L. Paulson. Proving Properties of Security Protocols by Induction. In Proceedings of IEEE Security
Foundations Workshop X, pages 70 – 83. IEEE Computer Society Press, 1997.

[67] J.B. Postel. RFC 821: Simple Mail Transfer Protocol, August 1982.

[68] J. Preece, Y. Rodgers, H. Sharp, D. Benyon, S. Holland, and T. Carey. Human-Computer Interac-
tion. Addison-Wesley, 1994.

[69] D. Rémy and J. Vouillon. Objective ML: An effective object-oriented extension to ML. In Theory
And Practice of Objects Systems, 4(1):27 – 50, 1998.

[70] N. Rowe. Artificial Intelligence Through Prolog. Prentice-Hall, 1988.

[71] E. Saul and A.C.M. Hutchison. SPEAR II: The Security Protocol Engineering and Analysis Re-
source. In Second Annual South African Telecommunications, Networks and Applications Confer-
ence, pages 171 – 177, Durban, South Africa, September 1999.

[72] E. Saul and A.C.M. Hutchison. A Generic Graphical Specification Environment for Security Pro-
tocol Modelling. In Proceedings of the Sixth Annual Working Conference on Information Security,
pages 311–320, Beijing, China, August 2000. Kluwer Academic Publishers.

[73] E. Saul and A.C.M. Hutchison. A Graphical Environment for the Facilitation of Logic-Based Se-
curity Protocol Analysis. South African Computer Journal, (26):196 – 200, November 2000.

[74] E. Saul and A.C.M. Hutchison. An Environment to Facilitate the Teaching of GNY-Based Security
Protocol Analysis Techniques. In Proceedings of the Second World Conference in Information
Security Education, pages 285–305, Perth, Western Australia, July 2001. Edith Cowen University.

[75] B. Schneier. Why Cryptography is Harder than it Looks. Information Security Bulletin, 2(2):31 –
36, March 1997.

[76] E. Snekkenes. Formal Specification and Analysis of Cryptographic Protocols. PhD thesis, Univer-
sity of Oslo, Norway, 1995.

[77] D. Steedman. Abstract Syntax Notation One (ASN.1) : The Tutorial and Reference. Technology
Appraisals, Twickenham, UK, 1993.

[78] J. Steiner, C. Neuman, and J. Schiller. An Authentication Service for Open Network Systems. In
Proceedings of the USENIX Winter Conference, pages 191 – 202, Oakland, California, February
1988.

[79] P.F. Syverson and P.C. van Oorschot. On Unifying Some Cryptographic Protocol Logics. In Pro-
ceedings of the 1994 IEEE Symposium on Research in Security and Privacy, pages 14 – 29, Oak-
land, California, May 1994. IEEE Computer Society Press.



212 BIBLIOGRAPHY

[80] J. Tardo and K. Alagappan. SPX: Global Authentication Using Public-Key Certificates. In Pro-
ceedings of the Symposium on Security and Privacy, pages 232 – 244, Oakland, California, 1991.
IEEE Computer Society Press.

[81] P.C. van Oorschot. Extending Cryptographic Logics of Belief to Key Agreement Protocols (Ex-
tended Abstract). In Proceedings of the First ACM Conference on Computer and Communications
Security, pages 232 – 243. ACM Press, August 1991.

[82] H. Wang, M.K.O. Lee, and C. Wang. Consumer Privacy Concerns About Internet Marketing.
Communications of the ACM, 41(3):63 – 70, March 1998.

[83] Jan Wielemaker. SWI-Prolog 3.4 Reference Manual, September 2000.
[http://www.swi.psy.uva.nl/projects/SWI-Prolog].



Index

Andrew Secure RPC Handshake Protocol, 164
Annotation, 78, 93
ASN.1, 47, 71, 165
Assertions, 25, 93
AT, 6, 73
Attack-construction methods, 2
Authentication, 2
Authentication Protocols, 83–84

Automated GNY analysis, 121
Manual GNY analysis, 91–92

BAN, 2–4, 6, 16, 19, 73, 129, 168
Being-Told

English statement, 155
GNY statement, 76
Inference rules, 79
LATEX statement, 155
Prolog implementation of rules, 103–106
Prolog statement, 101, 114, 155

Belief
English statement, 156–157
GNY statement, 77
LATEX statement, 156–157
Prolog statement, 101, 114, 156–157

Belief set, 74, 135
BGNY, 9, 12, 95
Borland C++ Builder, 60, 151

C++, 169
CAPSL, 9, 22–28, 71
CAPSL Intermediate Language, 22, 27
CCITT X.509, 2, 73
CIL, see CAPSL Intermediate Language
Class hierarchy

GYPSIE, see GYPSIE, Classes
Visual GNY, see Visual GNY, Classes

Clipboard, 45
Closure, 100
Code generation, 18, 21, 27, 169

Complexity, 95, 125, 127
Component Tracker, 31, 32, 37, 42, 71
Component View, 44–50, 133, 137, 164

Pop-up menus, 44–46
Tooltips, 44, 50, 59

Computer Aided Software Engineering, 10
Concatenation

Associative, 24, 71
Nonassociative, 24, 71

Confidence interval, 57, 149
Confidentiality, 2
Conveyance

English statement, 155
GNY statement, 76
Inference rules, 82
LATEX statement, 155
Prolog implementation of rules, 109–112
Prolog statement, 101, 114, 155

Convince, 9–12, 26–28, 72, 170
Copy, 45
Cut, 45

Direct manipulation, 29
Distributed environment, 74
Duplicate components, 40, 45, 64, 67–68
Dynamic Model, 10, 12

Eligibility
Forward-chaining difficulties, 123, 133
GNY statement, 76
Inference rules, 80

Empty statement, 76
Estelle, 9
Event Trace, 10, 12
Event Trace diagrams, 16
Experiments, 6

GYNGER, 119–122
GYPSIE, 55–60, 165
Visual GNY, 148–150, 168

213



214 INDEX

Extensions, 93, 135, 141
GNY representation, 75
GYPSIE representation, 116
Prolog representation, 100

Finitary, 99
Finite State Machine, 13, 27, 99
Flaws, 12, 73
Formulae

GNY representation, 75
GYPSIE representation, 115–116
Prolog representation, 100–101

Forward-chaining, 95, 102–103, 123, 133
Freshness

English statement, 155
GNY statement, 76
Inference rules, 81
LATEX statement, 155
Prolog implementation of rules, 106–108
Prolog statement, 101, 113–114, 155
Suggestions, 144, 159

Functions
Component View Properties, 48
GNY representation, 75
GYPSIE representation, 50, 115–116
Icon, 46
Prolog representation, 100

Garbage collection, 61, 67–68, 164
Global state, 77
GNY, 2, 73–94

Automating, 95–124
Operational semantics, 77–78
Universal assumption, 74
Usability issues, 126–128

Graphical specification, 9, 10, 13, 16, 28, 126,
161

GNY Statements, 128–134
Requirements, 30–31

Grouping node, 49
GYNGER, 5, 95–124, 166

Aiding GNY analysis, 95, 122, 127
Difficulties with eligibility rules, 123, 133
Experiments, 119–122
Finiteness of derivations, 96–100
GNY proofs, 112–118
Input errors, 125

Interaction with Visual GNY, 134, 157–158
Running the analyzer, 118–119
Using in an analysis, 147

GYPSIE, 5, 29–72, 164–165
API, 5, 60, 69–71, 142, 151, 170
Classes, 61–64
Component View, see Component View
Experiments, 55–60
High-Level View, see High-Level View
Interaction with Visual GNY, 134, 136, 142
Navigator View, see Navigator View
Saving and loading, 153
Using in an analysis, 147

Hashes
Component View Properties, 48
GNY representation, 75
GYPSIE representation, 50, 115–116
Icon, 46
Prolog representation, 100

High-Level View, 32–43, 164
Canvas components, 33–35
Component Tracker, see Component Tracker
Formalism selection, 32–33
Pop-up menus, 35–38
Tooltips, 35, 37, 70
Undo and redo, 41

Higher Order Logic, 9, 95

Identifying secrets, 88, 123
Component View Properties, 47
GNY representation, 75
GYPSIE representation, 50, 115
Icon, 46
Prolog representation, 100

Implicit prefix, 133, 137, 143
Incorrect postulate application, 127
Inference rules, 79–83, 96

Modifications, 85–89
Prolog implementation, 103–112

Inference-construction methods, 2
Infinite descending chains, 99
Information Exchange Protocols, 85

Automated GNY analysis, 120–121
Manual GNY analysis, 89–90

Information leakage, 73
Information overload, 127, 143



INDEX 215

Instant messaging, 1
Integrity, 2
Interface Specification Language, 11, 12, 27
Interrogator, 9, 13–16, 26–28, 71, 169
ISL, see Interface Specification Language

Java, 3, 16, 169
Jurisdiction

English statement, 157
GNY statement, 77
Inference rules, 82
LATEX statement, 157
Prolog implementation of rules, 112
Prolog statement, 101, 114, 157

König’s Infinity Lemma, 99
Kerberos, 10
Kerberos Protocol, 73, 164

LEX, 9
LISP, 13, 15
Local state, 77

Message, 10, 13, 20, 24, 30, 74, 95, 100, 101,
108, 118, 122, 135, 142, 143

Code name, 49, 50, 52
Communications settings, 43
Representation, 33–35

Message Sequence Charts, 3, 9, 32–33
MicroSnap, 169
Monotonic, 74
Multi-cast protocols, 169
Multi-dimensional protocol engineering, 2–4, 123,

163, 170
Multiclass queuing networks, 4, 169

Navigator View, 50–52, 164
Pop-up menus, 50–52
Tooltips, 50

Needham-Schroeder Protocol, 13, 55, 73
Automated GNY analysis, 121–122

Needham-Schroeder Public-Key Protocol, 2, 48,
164

Never-Originated-Here
English statement, 155
GNY statement, 77
LATEX statement, 155
Prolog statement, 101, 114, 155

Non-repudiation, 2
Nonce, 23, 25, 27, 144, 159

Component View Properties, 46–47
GYPSIE representation, 50
Icon, 46

NRL Protocol Analyzer, 169

Object Modelling Technique, 10, 26
Otway-Rees Protocol, 73, 164

Paste, 45
Pop-up menus

Component View, 44–46
High-Level View, 35–38
Navigator View, 50–52
Visual GNY, 136–140

Population mean, 149
Possession

English statement, 155
GNY statement, 76
Inference rules, 79–80
LATEX statement, 155
Prolog implementation of rules, 103–106
Prolog statement, 101, 114, 155

Possession set, 74, 135
Suggestions, 144, 159

PPTP, 2
Principal, 2, 10, 13, 20, 22, 30, 74, 95, 100, 123,

128, 130, 132, 134, 139, 144, 151
Communications settings, 43
Representation, 33–35

Private key
Component View Properties, 47–48
GYPSIE representation, 50
Icon, 46
Prolog representation, 100

Private key encryption
Component View Properties, 48–49
GNY representation, 75
GYPSIE representation, 50, 115–116
Icon, 46
Prolog representation, 100

Prolog, 6, 13, 95, 100, 122
Proof Generator, see GYNGER, GNY proofs
Proof-construction methods, 2
Protocol, 2, 74
Protocol description language, 74–78



216 INDEX

Protocol parsing, 78, 126, 167
Public key

Component View Properties, 47–48
GYPSIE representation, 50
Icon, 46
Prolog representation, 100

Public key encryption
Component View Properties, 48–49
GNY representation, 75
GYPSIE representation, 50, 115–116
Icon, 46
Prolog representation, 100

Public key ownership
English statement, 156
GNY statement, 76
LATEX statement, 156
Prolog statement, 101, 115, 156
Suggestions, 144

Rationality, 82–83
Recognizability

English statement, 155
GNY statement, 76
Inference rules, 80–81
LATEX statement, 155
Prolog implementation of rules, 106–108
Prolog statement, 101, 113–114, 155
Suggestions, 144, 159

Reducing complexity, 143–144
Redundancy, 73, 147
Replay attack, 78, 93
Rounds, 5, 31, 52–55, 165

Optimal, 54
Synchronous, 18, 53

Sample mean, 56, 149
SDL, 3, 9, 32–33, 169
Semantic errors, 126, 140, 150
Session, 74, 77
Shared secret suitability

English statement, 156
GNY statement, 76
LATEX statement, 156
Prolog statement, 101, 115, 156

Sibling-child tree, 151
SMTP, 18
SnapL, 169

Software Through Pictures, 9–11, 72
SPEAR I, 9, 16–22, 26–28

BAN Builder, 18, 19, 129–130
Framework, 3–4

SPEAR II, 5, 29, 31, 157, 163, 170
Framework, 4–5, 30, 34, 35, 40, 47, 52, 60,

70–72, 95, 124, 134, 145, 146, 160,
161

Initialization file, 160
Preferences, 35, 41, 42, 62, 63
Pull-down menus, 32, 145

SSL, 2
Stars

GNY representation, 76
GYPSIE representation, 115–116
Inserting, 78
Prolog representation, 100

Statements
English representation, 113–115, 154–157
GNY representation, 76–77
LATEX representation, 154–157
Prolog representation, 100–102, 154–157
Structured tree representation, 131–133

StP, see Software Through Pictures
Structured trees, 131–133, 160

Captions, 133
Classes, 151
Completeness, 134
Exporting, 140–143, 145, 154–157
Icons, 133
Node types, 133
Saving and loading, 153–154
Sibling-Child representation, 152
Using pop-up menus to construct, 136–140

Subprotocols, 25–27, 147–148
Automatic, 30, 39, 41
Conditional, 30, 39, 41
Flattening hierarchy, 40–41, 148
Friendly name, 39, 64

SVO, 2, 6, 73, 168
SWI-Prolog, 119, 157, 160
Symmetric decryption

GNY representation, 75
GYPSIE representation, 50, 115–116
Icon, 46
Prolog representation, 100

Symmetric encryption



INDEX 217

Component View Properties, 48–49
GNY representation, 75
GYPSIE representation, 50, 115–116
Icon, 46
Prolog representation, 100

Symmetric Key
Component View Properties, 47

Symmetric key
Component View Properties, 47
GYPSIE representation, 50
Icon, 46
Prolog representation, 100

Syntactic errors, 127, 140, 150, 160

Tabbed Pane Environment, 130–131
Tatebayeshi-Matsuzaki-Newman, 10
Textual specification, 9, 13, 19, 20, 27–28, 125,

161
Timestamp, 23, 25, 27, 144, 159

Component View Properties, 46–47
GYPSIE representation, 50
Icon, 46

Tooltips
Component View, see Component View, Tooltips
High-Level View, see High-Level View, Tooltips
Navigator View, see Navigator View, Tooltips
Visual GNY, see Visual GNY, Tooltips

Transcription errors, 127
Trustworthiness

English statement, 155–156
GNY statement, 77
LATEX statement, 155–156
Prolog statement, 101, 115, 155–156

Type, 11, 14, 18, 22–24, 27

Use Case, 10, 12

Visual GNY, 5, 125–162, 166–168
Analysis results, 134–135, 145
Classes, 151–152
Experiments, 148–150, 161
Implementation details, 151–158
Integration within SPEAR II, 145
Interaction with GYNGER, 157–158
Interaction with GYPSIE, 134, 136, 142,

159–160
Objectives, 128
Overview, 134–145

Pop-up menus, 136–140
Tabbed panes, 135, 144, 145, 160
Tooltips, 143, 149, 150, 161
User comments, 149–150
Using in an analysis, 146–148
Viewing GNY statements, 145, 161

VO, 73
Voting Protocol

Automated GNY analysis, 120

Well-founded, 99
Wide-Mouth Frog Protocol, 164

YACC, 9
Yahalom Protocol, 164

Zetalisp, 14


