
The Linux CryptoAPI

A User’s Perspective

David Bryson

May 31, 2002

Abstract

Today we are going to talk about using strong cryptography inside
Linux. With currently available kernel patches discussed in this article
you can encrypt your entire hard drive, network connections, and swap
space. We will be discussing two of the solutions and focusing specifically
on one: The Linux CryptoAPI.

Cryptography is the science of designing and analyzing ciphers. A cipher
is an algorithm to transform plaintext into an unreadable mishmash, called
ciphertext using a predetermined code sequence. The intent is that only the
author and the intended recipient have access to the key and are thus the only
ones with access to the plaintext. The process of applying the cipher to the text
is called enciphering or encrypting, and the reverse process is decrypting.

To encrypt data using a given cipher a key is needed. The key provides the
security of the cipher and only allows the holder of the key to decrypt whatever
has been encrypted. Once you have a key it is fed into the cipher along with the
plaintext to produce the ciphertext. Decryption is done in the same way except
that the ciphertext is fed into the cipher along with the key and the plaintext
is produced.

plaintext cipher

Key

ciphertext

Encryption

ciphertext cipher

Key

plaintext

Decryption

Figure 1: Encryption and decryption

1



Adding cryptographic support to kernel space gives you access to a lot of
neat uses for information security. This article describes how cryptographic
support may be added to the Linux kernel and how to secure your data using
the functions of the CryptoAPI. Some of the uses for the CryptoAPI are:

• Encryption of all physical media, i.e. drive partitions, swap space, and
CDROM images

Imagine that you are developing the next generation killer app for the
Internet, and want to protect your work from prying eyes. Kernel level
support for encryption of a hard disk partition allows you to encrypt the
partition containing your home directories, so that the data stored on disk
is unreadable, while still being able to access the data yourself.

• Encryption of network traffic, i.e. IPsec or any other form of end-to-end
network encryption

Virtual Private Networks (VPNs) allow for network traffic to be encrypted
before it leaves your computer. With VPNs becoming more widely used
it is improtant to have kernel level support for the encryption in order to
maintain acceptable network throughput and security.

1 Survey of cryptographic implementations

Currently there are two main sources of kernel level cryptography out there.
I will briefly discuss loop-AES but focus on the CryptoAPI. The nice thing
about both of these packages is that they are plugged into the kernel without
the need for much modification to the actual sources(or rebooting!). The only
modification that must be made directly to the kernel sources is a patch for the
loopback driver which can be easily loaded/unloaded as a module. Hopefully
this patch will be merged into the mainstream kernel soon.

Both packages install a modified loopback module for the kernel. This modi-
fied loopback module intercepts read/write requests to the encrypted filesystem
and decrypts/encrypts the data as required. We discuss this in more detail in
later sections.

Loop-AES is only designed for filesystem encryption and uses the Advanced
Encryption Standard(AES) competition winner(the Rijndael algorithm) for its
cipher.

It is quite fast and includes an implementation in assembly for Intel x86
processors(other architectures can simply use the C implementation). More in-
formation on loop-AES can be found at its SourceForge page, http://loopaes.
sourceforge.net.

The CryptoAPI package provides a more general framework for kernel level
encryption. It includes a generic interface to allow any other kenrel module to
encrypt data. File system encryption is but one of the applications, and Cryp-
toAPI provides a sample implementation of this with the standard distributed

2

http://loopaes.sourceforge.net
http://loopaes.sourceforge.net


package. Along with its generic interface, CryptoAPI allows the user to se-
lect from 12 ciphers currently provided, as well as supporting the mounting,
unmouting, and use of loop-AES encrypted filesystems.

2 Installation of CryptoAPI

Lets take a walk through getting it installed and setup on your machine. First
we need to go and retrieve the latest CryptoAPI sources for your kernel. For this
you’ll need to have a copy of the sources for your kernel and know what version of
the kernel that is. The latest CryptoAPI tarball can always be accessed at http:
//www.kernel.org/pub/linux/kernel/crypto/. Once you have retrieved the
necessary versions go ahead and unpack the tarball file to /usr/src/cryptoapi:

$ cd /usr/src/cryptoapi
$ tar xvzf cryptoapi-0.1.0.tar.gz

Note: Always make sure to check out the README for any software you
download!

Before we can compile any of the ciphers we need to patch our loop driver to
support the encryption hooks. There are currently two loop patches distributed
with the CryptoAPI. There is the loopiv patch, which includes minimal support
needed for the CryptoAPI. And there is also the loop-jari patch which is dis-
tributed with loop-AES, it includes support needed for CryptoAPI plus some
additional bug fixes. I will be taking the minimalist approach and only worry
about one patch, loop-iv(Initialization Vector), which provides the support for
what we need. To do this go to the top level directory of the CryptoAPI sources
and use the makefile to do the following:

$ make patchkernel KDIR=<kernel source dir> LOOP=iv

Note: If you do not have the exact version of the kernel that the loopiv patch
is for chances are you are probably Ok. Since the loop driver hasn’t changed
much since the move from 2.2 to 2.4 you shouldn’t have a problem applying the
patch anyway. There is a script that attempts to find the closest(lower) version
patch to your kernel tree and it will patch it automagically. To patch with the
loop-jari, enter ’jari’ instead of ’iv’ for the LOOP parameter.

Now we must first recompile our loop driver so that it is aware of the Cryp-
toAPI. If you have a kernel configuration already setup then just recompile and
install your loop modules. Otherwise you will have to compile the module by
hand with some C compiler flags.

If you did everything right you should see a few lines go by saying that
patches were applied successfully. Now we are ready to compile the cipher mod-
ules and install them into your system. We can compile the modules for all the
ciphers and the cryptographic loopback plugin and install them without recom-
piling our kernel with the magic of kernel modules. To compile the modules you
simply type:

3

http://www.kernel.org/pub/linux/kernel/crypto/
http://www.kernel.org/pub/linux/kernel/crypto/


$ make modules KDIR=<kernel source dir>

Then the CryptoAPI modules will begin to build. After which we need
to install the modules in the appropriate kernel modules directory so that the
kernel can load them. There is an autoinstall script which puts the modules in
the appropriate directory, execute it with:

$ make install_modules

There is one more piece of software(non-kernel) that needs to be compiled
before we can use the loopback encryption support. The losetup program, which
is a part of the util-linux package, needs a patch to tell the kernel what cipher
and key to use for your encrypted devices. There are different solutions for this
depending on what Linux distribution you are using. If you are running Debian
Woody then the losetup patch is already included in the utillinux package on
your system. Debian Potato users can download the patch and recompile the
util-linux. There are patched rpms available for Redhat systems as well as
patches for the source tarball at http://www.kerneli.org/cryptoapi. At the
time of this writing, Redhat 7.3 does not come with losetup crypto support, but
we do provide the needed rpms(for both Redhat 7.2 and 7.3).

If your distro doesn’t yet come with the patch included submit a patched
version for the next revision. Once you have completed the losetup upgrade
The CryptoAPI is now installed on your computer and you are ready to start
setting up encrypted devices!

3 Using CryptoAPI

In this section we will talk about one application of CryptoAPI: encrypting
a whole filesystem. On most installations the hard drive is split into several
partitions. Each partition may then be mounted on an empty directory. One
arrangement might be:

Partition Mount point
/dev/hda1 /
/dev/hda2 swap space
/dev/hda5 /usr
/dev/hda6 /var
/dev/hda7 /home

Suppose you want to encrypt the partition containing your home directories,
/dev/hda7. This means that every piece of information that gets written to that
partition will be encrypted: plain text, binary files and even filesystem metadata
(things like inode information, file and directory names and so on).

In the introduction we mentioned that CryptoAPI supports filesystem en-
cryption using the loopback device; we shall now explain how that works. The
traditional way to mount a filesystem, either at boot time, or later on, is with

4

http://www.kerneli.org/cryptoapi


the mount command. For example we can mount the home directories with the
command:

$ mount -t ext2 /dev/hda7 /home

This tells the kernel that the device /dev/hda7 contains an ext2 filesystem
(the plain vanilla linux filesystem) and that all requests for files under /home
should go to that partition. The loopback device allows for a level of indirection
when mounting a filesystem. Instead of mounting the filesystem directly on
/home one can mount the filesystem on the loopback device, and then mount
the loopback device on /home. This has the effect of sending all kernel commands
to the filesystem through the loopback device.

Device file

Physical Media

Loopback device

Figure 2: The loopback device

It is at this stage that the commands may be intercepted and altered as
needed to perform encryption (for a write command) and decryption (for a read
command). This is where the cryptoloop driver comes in. After everything had
been mounted, every command to the filesystem is intercepted by the loopback
device, sent to the cryptoloop device where it is processed, and then passed on
to the filesystem. Now we can encrypt all the data on the drive!

You can also think of the way that it plugs in from the diagram of encryp-
tion/decryption from earlier. The loopback device takes the place of the cipher,
the cryptoloop feeds it the key, and the plaintext and ciphertext represent the
filesystem data going through the device.

file-system data loopdevice

cryptoloop(key)

encrypted data

Encryption

encrypted data loopdevice

cryptoloop(key)

file-system data

Decryption

Figure 3: The cryptoloop filter

There are two different ways to encrypt files on your system. One, is using an
actual device like an attached peice of storage(i.e. hard drive or CDROM image
). The other is to create a very large file, create a filesystem inside that file and

5



then mount the filesystem via the loopback device. We will be discussing the
second method.

The first step is to create a large file to use for our filesystem; the larger the
file, the more data we can store inside it, just like a regular hard disk partition.
However, as for hard disk partitions, once we have created the file and made a
filesystem inside, we cannot change the size without loosing all the data.

In order to create a file we must fill it with data so that it takes up space on
the hard disk. To use this we use random bytes generated from the /dev/urandom
device. It is perfectly possibly (and faster) to fill the file with zeros from
/dev/zero. However this makes it easy for an attacker to see where the filesys-
tem data is:

Figure 4: A file with zero’s and random data

The striped graphics represent the zero’s and the random squares represent
the random looking data encrypted on your drive. As you can see this would
give an attacker a considerable advantage over a storage device that looked
completely random like this:

Figure 5: A file with all random data

Now that we have explained how it works, let’s get everything setup. First
we need to load the necessary kernel modules for the CryptoAPI into the kernel.
This consists of four main modules:

1. cryptoapi, which provides the generic framework for different ciphers

2. cryptoloop, the interface for the ciphers and the loop driver

3. loop, the patched loop driver that the cryptoloop interfaces with

4. cipher-x, where x is the name of the cipher you wish to use

To load the first three modules we use the modprobe command:

$ modprobe cryptoloop

This should load the cryptoapi, loop, and cryptoloop modules into the kernel.
You can check this using the lsmod command, and your output should look
something like the following:

6



Module Size Used by Not tainted
cryptoloop 1884 0 (unused)
loop 7664 0 [cryptoloop]
cryptoapi 3204 0 [cryptoloop]

Now we need to create the random data file using the dd command before
we create a filesystem on the file. The kernel device /dev/urandom generates
pseudo random data, using random data provided by the /dev/random device.
Unlike /dev/random it provides a constant stream of bytes, but the less entropy
that is provided by /dev/random the less random /dev/urandom will be. It
works best if it has a stream of random events like mouse movement. So when
executing the following command try to move your mouse or type a lot on the
keyboard. Both of these contribute to the entropy pool.

$ dd if=/dev/urandom of=/home/mutex/cryptofile bs=1M count=50

This will create a 50 megabyte file named “cryptofile” in my home directory.
Unfortunately this is not a fast procedure and will take good amount of time
depending on the speed of your system. Next we need to load a cipher module
for the encryption(in these examples I will be using the twofish cipher). All the
module names for the ciphers are prepended with “cipher” so to load twofish
we exectue modprobe again:

$ modprobe cipher-twofish

Now we can mount the file like a regular device and for this we use the
losetup command:

$ losetup -e twofish /dev/loop0 /home/mutex/cryptofile

The -e flag specifies the cipher used, in this case twofish; /dev/loop0 is
the loop device that we are using and /home/mutex/crypto file is the filename.
This will prompt you for a keysize to use and a password, which I entered ’128’
and then my password. In general, the larger the keysize(for a given cipher)
the harder it is to decrypt your data using a brute force attack. However due
to different enciphering algorithms a 128-bit key on one cipher may be even
stronger than a 1024-bit key in another cipher.

Your password is used to generate the key, but it need not have the same
number of bits as the key. It would be very tedious to type in a 128 character
password in order to generate a 1024-bit key. Instead the password is used to
generate a key via a hashing function.

Available keysizes (bits): 128 192 256
Keysize: 128
Password :

The password can be any length. Next we need to create a filesystem through
our loopback device on the cryptofile with the mkfs command:

7



$ mkfs -t ext2 /dev/loop0

Naturally you can create any filesystem you desire, I just happened to choose
ext2. Finally we can mount our encrypted filesystem just like a regular device
using the mount command!

$ mount -t ext2 /dev/loop0 /mnt/crypto

You should be able to copy files and directories just like a normal mounted
drive. Now you have a completely encrypted filesystem to play with! A common
question on the Linux-crypto mailing list is, “How do I do an encrypted root
partition?” While it is possible to do this with the cryptoloop device it is not
recommended. The performance impact would be extremely bad and it requires
a bit of working around initialization procedures when the system boots. It
makes much more sense to only encrypt small peices of information which are
sensitive: like a home directory for example.

Make sure that when you unmount your encrypted drive you unlink the loop
device as well so that if somebody were to come along and try to mount it they
would need the password.

$ umount /mnt/crypto
$ losetup -d /dev/loop0

It is easy to automate some of these steps with shell scripts so that you don’t
have to exectue two commands for mounting/unmounting.

4 CryptoAPI, past present and future

At the time of this writing the CryptoAPI is about to release its first tarball
distribution as a branch from the original international kernel patch(kernelint).
The original kernelint patch was designed to do just filesystem encryption and
was written for the 2.2 series kernels. But after a while it evolved into a general
purpose API for use in any kind of kernel space encryption. This movement
caused the project to lie in hybernation for about 6 months before a new code-
base was released. But with a new team of developers progress is starting to
pick up again.

Some things to look forward to in the future from the CryptoAPI:

• Readibility code changes: Some of the ciphers are taken from various
places and not implemented by the CryptoAPI team. Thus they are in-
consistant in the style of implementation and hard for a programmer to
read. Rewrites to streamline the look of the code are in progress.

• Assembly implementations for ciphers on various architechtures: Adding
assembly implementations of the ciphers will increase execution speed and
provide a smaller memory foot print. This is especially useful in high-load
situations where every process cycle counts.

8



• Cryptographic Hardware support: Several vendors manufacture crypto-
graphic algorithms implemented in hardware. This usually results in per-
formance that is 1000 times that of the fastest software implementations.

The new CryptoAPI codebase is still fairly young and needs some work. The
project is always looking for fresh programmers with experience in cryptography
or kernel programming. And those that can’t program can always help by testing
new patches and filing bug reports.

Hopefully this article taught you a bit about encryption and how the Cryp-
toAPI can be used to secure your information. Look for releases and updates
from the CryptoAPI project at our website http://www.kerneli.org/.

9

http://www.kerneli.org/

	Survey of cryptographic implementations
	Installation of CryptoAPI
	Using CryptoAPI
	CryptoAPI, past present and future

