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Introduction 
The old problem of DNS cache poisoning has again reared its ugly head. While some 
would argue that the domain name system protocol is inherently vulnerable to this style 
of attack due to the weakness of 16-bit transaction IDs, we cannot ignore the immediate 
threat while waiting for something better to come along. There are new attacks, which 
make DNS cache poisoning trivial to execute against a large number of nameservers 
running today. The purpose of this article is to shed light on these new attacks and 
recommend ways to defend against them. 

A Brief History of Cache Poisoning 
In 1993, Christoph Schuba released a paper entitled “Addressing Weaknesses in the 
Domain Name System Protocol”. In it, he outlined several vulnerabilities, including the 
technique of DNS cache poisoning. In the earliest incarnation, it was possible to provide 
extra information in a DNS reply packet that would be cached by the daemon. This 
allowed an attacker to inject false information into the DNS cache for a network, 
allowing them to perform man-in-the-middle attacks or other mayhem. 
In 1997, CERT released advisory CA-1997-22, describing a vulnerability in BIND, the 
Berkeley Internet Name Domain software which is used by nearly all of the nameservers 
on the Internet. This time a very basic principle was finally realized: BIND did not 
randomize its transaction IDs – they were purely sequential. Aside from layer 3 and 4 
protocol checking (source and destination IP addresses and ports must match), the 
transaction ID is the sole form of authentication for a DNS reply. Because an attacker 
could easily predict the next transaction ID after making their own request, a cache 
poisoning attack could be carried out using a spoofed query followed by a spoofed 
answer. To solve this, all new versions of BIND were updated to use randomized 
transaction IDs. 
In 2002, Vagner Sacramento released an advisory showing another problem with BIND's 
implementation of the DNS protocol. He found that BIND would send multiple 
simultaneous recursive queries for the same IP address. Because of this a mathematical 
phenomenon comes into play known as the “Birthday Paradox”. This causes the 
probability of a successful attack to rise to near 100% with only a few hundred packets 
instead of the tens of thousands previously believed to be needed. 

While researching Sacramento's findings, the CERT team also realized there might be 
another attack possible, based on the work of Michal Zalewski in the area of TCP 
sequence numbers and phase space analysis of the psuedo-random number generators 
used by different operating systems to generate them. Zalewski found that using a certain 
type of analysis it was often trivial to guess the next sequence number in certain 
implementations. The CERT team felt that this might also apply to the random number 



generators in BIND. This article will attempt to show that their assumption was correct. 

A DNS Protocol Refresher 
A simplified flowchart of the DNS protocol is shown below in illustration 1. Basically a 
user who wants to find the IP address of a webserver would first query her local DNS 
server. This server is designed to make queries on her behalf to as many nameservers as 
needed in order to find the answer. This is known as recursion. 

The domain name system is laid out as a tree for efficiency. At the top are the root level 
nameservers. They contain information about what nameservers hold the specific 
information about the hosts in each top-level domain. This information is known as the 
authority record for a domain. In it are pointers to the servers that are considered 
authoritative for a domain. 

The flow of the entire transaction is as follows: The client resolver queries the local 
recursive (caching) nameserver and asks for the IP address of www.google.com. The 
recursive nameserver asks the root server for information about the name. It might get an 
answer back such as the following: 

 
Name: google.com
Served by:
- ns2.google.com

216.239.34.10
google.com

- ns1.google.com
216.239.32.10
google.com

This is a list of the authoritative nameservers for google.com that the root nameserver 
knows about. At this point, the recursive nameserver will then ask the first authoritative 
nameserver for the information requested by the user. If it gets an answer, it will pass that 
along to the client. If no answer is received, it will try each nameserver in the list until it 
receives an answer.  



Illustration 1: The DNS protocol in action 
 

In order to verify authenticity of the reply, the DNS system uses transaction IDs 
(sometimes called query IDs). A 16-bit number is generated by the nameserver or 
resolver client who is issuing a query. Any reply from the nameserver must contain this 
transaction ID. As long as the TCP or UDP port number, IP address and transaction ID 
from the remote host are correct, the reply is considered to be legitimate. 

Attack #1 – The Birthday Attack 
To perform this attack, one needs to send a sufficient number of queries to a vulnerable 
nameserver, while sending an equal number of phony replies at the same time. Because 
the flaw in the BIND software generates multiple queries for the same domain name at 
the same time, one encounters statistically improved odds of hitting the exact transaction 
ID. This is the classic “Birthday Attack”, which is derived from the “Birthday Paradox”, 
described below: 

A birthday attack is a name used to refer to a class of brute-force attacks. It 
gets its name from the surprising result that the probability that two or more 
people in a group of 23 share the same birthday is greater than 1/2; such a 
result is called a birthday paradox.  

If some function, when supplied with a random input, returns one of k 
equally-likely values, then by repeatedly evaluating the function for different 
inputs, we expect to obtain the same output after about 1.2k1/2. For the 



above birthday paradox, replace k with 365. (unknown author,  
http://www.x5.net/faqs/crypto/q95.html) 

We can apply the same methodology to psuedo-random number sequences, such as the 
one that generates transaction IDs in BIND.  

With conventional spoofing, we would send n spoofed replies for one query. Our 
probability of success is n / 65535. With the BIND birthday attack, we send n number of 
spoofed replies for n queries. For this, we can predict the probability of success using the 
formula below where t is the total number of possible values in the master set, and n is 
the number of values in the spoofing subset. 

 
 

The power of this method of spoofing versus conventional DNS spoofing is shown in 
illustration 2. The birthday attack nears 100% success around 700 packets. At this point 
the conventional spoofing attack would only have a success probability of 700 divided by 
65535 (1.07%) The steepness of the curve is such that one needs only 300 packets to 
achieve a 50% success ratio. This is well within the realm of a trivial attack to anyone 
with a broadband Internet connection.  

This shows that even a perfect random-number generator is vulnerable to attack when it 
generates multiple numbers for the same transaction. This is something that should be 
taken into account by any software designer who is working with random numbers. It has 
long been used in brute-force attacks on one-way hash systems, as described by Bruce 
Schneier in his book Applied Cryptography. 

Illustration 2: Birthday Attack vs. Conventional Spoofing 



 

The BIND birthday attack would follow the sequence shown in illustration 3. The 
attacker merely needs to send a few hundred queries to the ISP nameserver asking for the 
IP address of the domain name to be hijacked. At the same time, he will send the same 
number of replies formulated to look as if they were sent from the authoritative 
nameserver. In each packet he will assign a random transaction ID. In order to be 
successful, one of his spoofed packets transaction IDs, source and destination IP 
addresses and ports must match a legitimate recursive query packet from the victim 
nameserver.  

Finding the correct IP addresses is easy; we know our target, and we know the addresses 
of the legitimate nameservers for the domain to be hijacked. Finding the port is slightly 
harder. We know that the destination port of the recursive query is UDP port 53, but the 
source port is a moving target. Fortunately for our attacker, BIND will more often than 
not reuse the same source port for queries on behalf of the same client. So, if the attacker 
is working from an authoritative nameserver, he can first issue a request for a DNS 
lookup of a hostname on his server. When the recursive query packet arrives, he can look 
at the source port. Chances are this will be the same source port used when the victim 
sends the queries for the domain to be hijacked. Look at the tcpdump output of four 
subsequent queries for different domain names: 
10:54:12.423228 192.168.1.2.33748 > 66.218.71.63.53:  21345 [1au] A? www.yahoo.com. (42) (DF) 

10:54:21.313293 192.168.1.2.33748 > 216.239.38.10.53:  53735 [1au] A? www.google.com. (43) (DF) 

10:54:27.182852 192.168.1.2.33748 > 149.174.213.7.53:  19315 [1au] A? www.netscape.com. (45) (DF) 

10:54:43.252461 192.168.1.2.33748 > 66.35.250.11.53:  43129 [1au] A? www.linux.com. (42) (DF) 

All four queries used source port 33748 while querying four different nameservers. If 
BIND used randomized source ports, it could improve its chances of warding off 
spoofing attacks. 

Illustration 3: The BIND Birthday Attack in action 
 



At this point, all the attacker needs to do is win the race between the first successful 
collision of his spoofed transactions and the legitimate answer from the true authoritative 
nameserver. This race is already slanted in favor of the attacker; however, he could utilize 
other methods to gain an even bigger edge, such as flooding the authoritative nameserver 
with bogus packets in order to slow down its response time. 

After a collision between a legitimate recursive query and a falsified reply packet, the 
targeted nameserver at the ISP will cache the spoofed record for the time indicated in the 
TTL section of the reply. At this point the attacker is finished, but the effect lives on for 
the time the ISP holds the phony record in its nameserver cache. The victim user at the 
ISP is exposed to the attack any time it makes a query for the domain name in question. 

Attack #2: Phase Space Analysis Spoofing 
The CERT vulnerability note at http://www.kb.cert.org/vuls/id/457875 made the 
following observation: 

Additionally, Michal Zalewski's paper "Strange Attractors and TCP/IP 
Sequence Number Analysis" [ZALEWSKI] describes a method for analyzing 
the predictability of transaction IDs which we believe could be extended to 
analyze Transaction ID / UDP port pairs as well. 

From my observations, it appears they are correct. I downloaded Michal Zalewski's tools 
for phase space analysis and ran them on a set of 100,000 16-bit numbers generated by 
BIND 8, BIND 9, and djbdns. 

Zalewski's description of phase space analysis of PRNG functions follows: 

Phase space is an n-dimensional space that fully describes the state of an n-
variable system. An attractor is a shape that is specific to the given PRNG 
function, and reveals the complex nature of dependencies between subsequent 
results generated by the implementation. (Zalewski, 
http://razor.bindview.com/publish/papers/tcpseq.htm) 

Essentially this means we can tell a lot about how random a PRNG really is by looking at 
its results in 3-D space. We can also make predictions about the next number in the 
sequence based on the math involved here. 

The tools provided by Zalewski that are used in this article are vseq, a linux svgalib 
program that visualizes the dataset in 3-D space, and calprob, which tries to predict the 
probability of guessing the correct next sequence number of a PRNG when given 3 
preceding sequence numbers. These tools are contained in this archive: 
http://razor.bindview.com/publish/papers/tcpseq/vseq.tgz. 

BIND 8 PRNG Analysis 
Below is the output of the vseq program, showing the dispersion of pseudo-random 
transaction IDs in 3-D space: 



Illustration 
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Transactio

n IDs 

 

An ideal random number generator would appear as an evenly dispersed cloud. When 
there are geometric patterns, or “attractors” in the output, this indicates imperfections in 
the randomness of the data. BIND 8.4.3 clearly shows the randomness following distinct 
lines with space in between; indicating that there are some numbers that are more likely 
to be chosen in a sequence than others. If we limit our spoofing set to those numbers, we 
greatly increase our odds of a collision between a query and a spoofed reply. 

Zalewski includes a tool to analyze the probability of successfully guessing the next 
number from a sequence using attractor analysis. That program accepts 4 arguments; a 
datafile with 100000 randomly generated numbers, a radius R1, a spoofing set size, and 
number of tries. Here is the output of that program run against the BIND transaction ID 
sequence: 
./calprob ../bind.nsid.gz 10 1 1
1: Trying 13085 32386 21499 (-> 36312) - r=10

+ guess3d gave 51 answers, rsort suggests R2 of 0...
-> SUCCESSFUL (difference 0).

Data file: ../bind.nsid.gz
Failed attempts: 0/1 (0%)
Average R2: 0
Average N: 51
Average error: 0
Average correct N: 3
Probability: 100.0000%

With this algorithm Zalewski's tool predicts a probability of success of 100% with a 
spoofing set size of 1. In other words, you can mathematically predict the next transaction 
number with only 3 previous transaction IDs 100% of the time. This is completely 



independent of the flaw in BIND that allows the Birthday Attack. This pretty much 
ensures that even if the Birthday Attack is patched against, BIND 8.x will still be 
vulnerable to cache poisoning as long as it continues to use the same pseudo-random 
number generator. 

BIND 9 PRNG Analysis 
BIND 9.x uses a completely new random number generation sequence which uses the 
/dev/random device available in most modern Unix-type operating systems. When 
properly seeded with adequate entropy, this device gives us a stream of very random data. 
Of course, operating systems may implement the random device differently, so that 
should be taken into account. In this case, the output relied on the random device 
implementation of the Linux 2.4.19 kernel.  

 Looking at the vseq program output for BIND 9, we see an interesting snowflake-like 
pattern. The calprob output gives better results than BIND 8, however: 
./calprob ../bind9.nsid.gz 200 5000 10
...
Data file: ../bind9.nsid.gz
Failed attempts: 0/10 (0%)
Average R2: 75
Average N: 522
Average error: 12
Average correct N: 24
Probability: 20.0000%

Illustration 5: BIND 9.2.2rc1 Transaction ID Analysis 
 

According to this, BIND 9's random number sequence is predictable 20% of the time 



with a spoofing set size of 5000. This is far better than BIND 8, but still leaves 
opportunity for a dedicated attacker. It would take a fair amount of bandwidth in order to 
be able to send 5,000 spoofed packets to a target nameserver and beat the authoritative 
nameserver. However, if the authoritative nameserver was vulnerable to any of the BIND 
denial-of-service attacks, one could merely kill the authoritative server with a malicious 
packet and have a one-man race to win. If the denial-of-service attack was combined with 
the phase-space analysis attack on BIND 8, it would be impossible to detect a spoof with 
any intrusion detection system, as it would there would be only one query and one answer 
received. 

djbdns PRNG analysis 
Looking at djbdns, we see fewer attractors, just a geometric cloud of points (see 
illustration 6). The calprob output shows the randomness is still not perfect (in fact, it is 
slightly worse than BIND 9; 30% probability of a successful guess with a spoofing set 
size of 5000):  
./calprob ../djbdns.nsid.gz 200 5000 10
...
Data file: ../djbdns.nsid.gz
Failed attempts: 0/10 (0%)
Average R2: 33
Average N: 623
Average error: 22
Average correct N: 31
Probability: 30.0000%

Illustration 6: Analysis of djbdns dns_random routine 
 

This is however offset by the fact that djbdns also generates random numbers for the 



source port of each query, as evidenced by the tcpdump traffic below: 
22:42:41.790753 192.168.1.2.16075 > 64.58.77.85.53:  36904 A? www.yahoo.com. (31) (DF) 

22:42:53.876719 192.168.1.2.53928 > 216.239.38.10.53:  1776 A? www.google.com. (32) (DF) 

22:43:07.996666 192.168.1.2.59368 > 207.200.73.80.53:  16261 A? www.netscape.com. (34) (DF) 

22:43:18.290976 192.168.1.2.9183 > 66.35.250.10.53:  5110 A? www.linux.com. (31) (DF) 

In this instance, a unique random source port was used for each query. This forces the 
attacker to guess transaction ID and source port simultaneously. It is immensely difficult 
to succeed at such an attack, but as D. J. Bernstein warns on his site: 

Note, however, that there are only about a billion possible ID-port pairs, so a 
prolonged blind attack will succeed eventually. (Bernstein, 
http://cr.yp.to/djbdns/dns_random.html) 

Sub-Attacks 
Once an attacker has managed to poison a DNS cache, there are a number of ways she 
can subvert protocols that rely on DNS. Some of the potential methods are listed below. 

Redirecting Web Traffic 
An attack of this nature might range from a simple annoyance to a financial nightmare for 
a great number of people. The goal here is to set up a website that looks enough like the 
original so as to not raise any suspicion. Then the domain is hijacked via cache poisoning 
for as many ISPs/companies as possible, causing their traffic to hit the phony site instead. 
Some of the sub-attacks here are: 

�Redirect a popular search engine to a pop-up ad site 

�Redirect a bank website to gain access to account passwords 
�Redirect news site to inject false stories and manipulate stocks  

Man-in-the-Middle 
In this scenario, an attacker tries to intercept secure communication between two parties. 
For example, Xavier wants to make an online purchase at Yuri's website. The attacker 
poisons the cache at Xavier's ISP, pointing traffic to Yuri's site to Zamfir's system. 
Zamfir accepts the incoming SSL connection, decrypts it, reads all the traffic, and makes 
the same request via SSL to Yuri's site. Replies from Yuri are read by Zamfir then sent 
back to Xavier over the same encrypted session. Zamfir now has Xavier's credit card 
number and all other details needed to make illicit use of it. 

Recommended Defenses Against DNS Cache Poisoning 

Users of BIND 
When attempting to protect yourself against a DNS spoofing attack, you have to consider 
the different aspects of the attack and where you fit in. For instance, do you want to 
prevent against your users being returned bogus data? Or are you trying to prevent your 



domain name from being hijacked? In any DNS spoofing attack there are two victims – 
the hijacked domain owner, who is losing traffic to his site, and the end user who gets 
redirected to a phony IP address. 

Domain Owner 
For a domain owner, there is little you can do to protect against someone spoofing your 
domain name to a vulnerable nameserver. If you are running a webserver, consider using 
SSL to authenticate yourself to browsers. Eventually DNSSec will allow all domain 
servers to have cryptographically signed records, but it is not widely implemented at this 
time. Even detecting such an attack would be difficult, since the hijack would be largely 
independent of your servers. Be on the lookout for short denial-of-service attacks; they 
may indicate someone trying to slow your server down temporarily or crash it in order to 
complete a spoofing attempt.  

ISP Nameserver Admin 
You can upgrade BIND to the latest version in the 9.x series, which is not vulnerable to 
this attack. Alternatively you may try using djbdns, an alternative to BIND written by D. 
J. Bernstein, author of the MTA program qmail. The djbdns software comes with a 
security guarantee, basically offering a monetary reward to anyone who publicly 
discloses legitimate buffer-overflow vulnerabilities in djbdns. Although the guarantee 
doesn't cover cache-poisoning attacks, I will show later in this article that djbdns offers 
much greater protection against such attacks when deployed properly. 

Disable recursive queries from the outside world, using split-split DNS if possible (see 
illustration 7). Split-split DNS means you have 2 nameservers; one to serve your public 
domain information to the outside world, and one to do recursive queries for your users. 
The public server should not allow recursive queries, and the recursive (caching) server 
should be protected from the Internet by a firewall. 

This is sometimes confused with split DNS, where the internal server forwards requests 
to the outside server which makes recursive queries on its behalf. This arrangement offers 
no protection against cache poisoning, and should be avoided. 

If you cannot use split-split DNS, you should at least try to restrict who can do recursive 
queries from your nameserver. Using the “allow-recursion” option doesn't give you very 
much protection - remember, the attacker is already spoofing the source IP address, so it 
is just a matter of them knowing which addresses are allowed to do recursive queries. If 
possible, use the “listen-on” option to bind the nameserver daemon to an interface that is 
protected from the outside world. 



Illustration 7: Using split-split DNS to prevent cache poisoning 

End User 
Urge your ISP/company to upgrade BIND. If they are not open to this, you can always 
run your own recursive resolver and bypass the ISP's nameservers.  Practice safe 
computing; keep antivirus software updated and signatures current. Always confirm SSL 
certificates when making secure online transactions. If you suspect a site is being 
spoofed, you can make use of the ARIN whois records to determine whether an IP 
address actually belongs to the organization that owns the domain name. 

Vendor 
This vulnerability could be remedied by changing the behavior of BIND 8 and 4 to only 
send one request for any number of queries for the same name. BIND 9 already does this, 
so it is more likely the vendor will just urge people to upgrade instead. However, BIND 9 
also demonstrates the same behavior of reusing source ports. This should be corrected, as 
it would make any new attacks on the PRNG harder to execute. 

Proof-of-Concept Code: spooftest.pl 
I have written the following program to demonstrate the feasibility of the BIND Birthday 
attack. It is a passive demonstration only; it cannot be used to execute an actual attack. It 
will send n number of queries to a recursive server, while generating a “spoofing set” 
which is just an array of psuedo-random numbers. If any of the transaction IDs of the 
recursive queries coming back from the targeted nameserver match a number in the 
spoofing set, an attack would have succeeded. 
#!/usr/bin/perl

#################################################################
# spooftest.pl #



# By Joe Stewart #
# Tests to see if a BIND server is vulnerable to the Birthday #
# Attack spoofing technique described by Vagner Sacramento in #
# http://www.rnp.br/cais/alertas/2002/cais-ALR-19112002a.htm #
# #
# This script MUST be run from an authoritative nameserver's IP #
# address and must be running in place of the real nameserver #
# daemon. It sends a number of queries and sees if it can guess #
# a correct transaction ID from the target IP address. If it #
# guesses correctly, the remote host is considered vulnerable #
# to the BIND Birthday Attack. It does not send any replies, #
# so it is not capable of carrying out an actual attack #
# (sorry script kiddies) #
#################################################################

use IO::Socket;
use strict;

$| = 1;
my $usage = "Usage: $0 [ip address] [number of packets]\n";

my $target = $ARGV[0];
my $m = $ARGV[1];

die "$usage" unless $ARGV[0] && $ARGV[1];
die "$usage" if $m !~ /^\d+$/ || $m == 0;

my $domain = "mydomain.com"; # domain name with NS RR pointing to us
my $r = 0xdead; # initial transaction ID for our queries
my @spoofingset; # list of our guesses
my $total = 65536; # total possible packets
my $maxlen = 1500;
my $collisions = 0;
my $datagram;

printf "Probability of success using $m packets: %.2f%%\n",
100 - (((1 - (1 / $total)) ** (($m * ($m - 1)) / 2)) * 100);

for (0..($m - 1)) {
$spoofingset[$_] = sprintf("%x", int(rand($total - 1)));

}

#print "Spoofing set: ", join(" ", @spoofingset), "\n";

my $server = IO::Socket::INET->new(LocalPort => 53,
Proto => "udp")

or die "Couldn't be a udp server on port 53 : $@\n";

my $client = IO::Socket::INET->new(PeerAddr => $target,
PeerPort => 53,

Proto => "udp")
or die "Couldn't be a udp client on port 53 : $@\n";

my ($second, $top) = split(/\./, $domain);
my $findlabel = chr(length($second)) . $second;

my $request = "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x03" .
"www$findlabel\x03$top\x00\x00\x01\x00\x01";

for (0..($m - 1)) {
## send query with incrementing transaction ID
$client->send(pack("H*", sprintf("%x",$r++)) . $request);

}
print "Sent $m DNS initial queries to target...\n";



$SIG{'ALRM'} = sub { die "timeout"};
my $count = 0;
eval {

alarm(30);
while ($count < $m) {

$server->recv($datagram, $maxlen);
my $tid = sprintf("%x", hex(unpack("H*", substr($datagram,0,2))));
printf "Received recursive query with transaction ID: $tid\r";
for (@spoofingset) {

if ($tid eq $_) {
print "\nMatched TID $tid in spoofing set. Success.\n";
$collisions++;

}
}
$count++;

}
alarm(0);

};

if ($@) { if ($@ !~ /timeout/) { alarm(0); die $!; } }

print "\nReceived $count recursive queries for $m initial queries\n";

if ($count == 0) {
print "Target not listening or does not answer recursive queries\n";

}
if ($count == 1) {

print "Target does not appear to be vulnerable\n";
}
if ($collisions > 0) {

print "Spoofing attack would have been successful with " ,
"these parameters.\n";

} else {
print "Spoofing attack unsuccessful in this run.\n";

}
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