
Trusted System Concepts

1

Trusted System Concepts
Marshall D. Abrams, Ph.D.
Michael V. Joyce

The MITRE Corporation
7525 Colshire Drive
McLean, VA 22102
703-883-6938
abrams@mitre.org

This is the first of three related papers exploring how contemporary computer architecture
affects security. Key issues in this changing environment, such as distributed systems and
the need to support multiple access control policies, necessitates a generalization of the
Trusted Computing Base paradigm. This paper develops a conceptual framework with which
to address the implications of the growing reliance on Policy-Enforcing Applications in
distributed environments.

1 INTRODUCTION

A significant evolution in computer software architecture has taken place over the last quarter
century. The centralized time-sharing systems of the 1970s and early 1980s are rapidly being
superseded by the distributed architectures of the 1990s. As an integral part of the
architecture evolution, the composition of the system access control policy has changed.
Instead of a single policy, the system access control policy is more likely to be a composite
of several constituent policies implemented in applications that create objects and enforce
their own unique access control policies.

This paper first provides a survey that explains how the security community developed the
accepted concepts and criteria that addressed the time-shared architectures. Second, the
paper focuses on the changes currently ongoing, providing insight into the driving forces and
probable directions. This paper presents contemporary thinking; it summarizes and
generalizes vertical and horizontal extensions to the Trusted Computing Base (TCB) concept.
While attempting to be logical and rigorous, formalism is avoided.

This paper was first published in Computers & Security, Vol. 14 No.1 pp. 45-56, © Elsevier Advanced
Technology 1995, Oxford, UK; http://www.elsevier.nl/locate/compsec. This is the first of three related
papers.

Trusted System Concepts

2

1.1 ORGANIZATION OF THE PAPER

The evolution of current systems reliant on applications, not just the operating system, for
trusted services leads into a discussion of trusted computing systems concepts. Section 2
establishes a framework for understanding of the goals and purpose of trusted information
technology. Section 3 discusses how security attributes play a key role in security policy
enforcement. Section 4 presents access as a specific type of interaction between a subject
and an object that results in the flow of information from one to the other and an access
control policy to mediate that flow. Section 5 presents separation as an access control
mechanism having the goal of separation is rigorous isolation to gain such properties as
integrity, confidentiality, or TCB self-protection. Section 6 introduces a concept, called
bedrock , to deal with the layered dependencies of hardware and software. Risk management
addresses the trustworthiness of the bedrock layers. Section 7 addresses the problems in
multidomain security, arising from domains enforcing different security policy possibly
under the control of different security authorities. Section 8 concludes the paper with a
discussion of assurance in terms of effectiveness and correctness and the difficulties in
establishing correctness.

1.2 EVOLUTION OF COMPUTER TECHNOLOGY

This section discusses our view of the evolution of how systems are built. The key factor is
that current systems are reliant on applications, not just the operating system, for essential
services. In trusted systems, these essential services include security.

Early computers were composed of a single central processing unit with a very limited
addressing capability and a primitive operating system that provided file management and
peripheral equipment services. With the introduction of time sharing, local users could
interact with the computer using terminals directly connected to the mainframe; as the
communications systems evolved, remote users could similarly access the mainframe
computing resource. Contemporary systems are more likely to be composed of a collection
of cooperating components located on workstations interconnected across a high-speed local
area network or wide area network, such as the Internet. Early and contemporary system
models are shown in Figure 1.

Trusted System Concepts

3

Whopper

Early System Model Contemporary System Model

Network

Figure 1. Early and Contemporary System Models

Early applications were built from programs that were narrow in focus and limited in
function, often written by an internal development organization in assembly language. In an
operational context, these applications more often resembled stovepipes having little
integration with other applications. Current application systems are likely to be composed of
several commercial off-the-shelf programs with a high degree of integration among the
individual programs. The result is an application system that provides the end user with
access to all of the corporate information assets and an array of processing capabilities for
manipulating that information.

Figure 2 contrasts the software architecture of an early application and a contemporary
application to illustrate the evolution in the composition of applications. Early application
programs interacted with the operating system. The architectures of contemporary
applications are much more complex. Contemporary applications draw upon services and
resources from a number of other applications, not just the operating system. Applications
such as the communications system to exchange files, middleware products to access data in
a transparent manner, and an e-mail system to provide message services among users are
essential building blocks for contemporary application systems.

Trusted System Concepts

4

Hardware

Operating System

Database
Management

System

Electronic Mail
System

Middleware

Communications
System

Application Program

Application
Program

Operating System

Hardware

Figure 2. Building Blocks of an Application System

2 TRUSTED SYSTEMS CONCEPTS

The first section presented a framework for the current thinking about the organization of
contemporary application systems. We now focus our attention on trusted computing
systems concepts. This section begins the discussion by establishing an understand of the
goals and purpose of trusted information technology.

The understanding of trusted technology and trusted computing concepts, tracking the
evolution of products and needs in the commercial sector, has evolved since the introduction
of the technology and concepts in the early 1970s. The Anderson Report (Anderson, 1972)
formalized several important concepts that continue to be fundamental in information
security, even after 20 years. The Reference Monitor concept was introduced as an ideal to
achieve controlled sharing. “The function of the Reference Monitor is to validate all
references (e.g., references to programs, data, peripherals) made by programs in execution
against those authorized for the subject (e.g., the user). The Reference Monitor not only is
responsible for assuring that the references are authorized to access shared resource objects
but also to assure that the reference is the right kind (i.e., read, or read and write, etc.).”

A combination of hardware, software, and firmware that implements the Reference Monitor
concept is called the Reference Validation Mechanism, for which the Anderson Report adds
the following guiding principles:

1. The Reference Validation Mechanism must be tamperproof.

2. The Reference Validation Mechanism must always be invoked.

Trusted System Concepts

5

3. The Reference Validation Mechanism must be small enough to be subjected to
analysis and tests to ensure that it is correct.

Understanding of architecture for trustworthy computing continued to expand from this
beginning. When early prototypes were built, the Reference Validation Mechanism proved
insufficient. The set of hardware and software that had to be trust was extended. This new
set was called the TCB. A TCB includes not only the Reference Validation Mechanism but
also encompasses all other functionality that directly or indirectly affects the correct
operation of the Reference Validation Mechanism. Administrative and auditing
mechanisms are examples of the types of supporting functionality that do not make access
control decisions but are placed within the TCB boundary. The reader is cautioned that
other authors are not always as careful as they might be in using these terms. Another term,
not used in this paper, is security kernel. Equivalent terminology, Security Enforcing and
Security Relevant, has been introduced in the Information Technology Security Evaluation
Criteria (ITSEC) (Commission, 1991). Security Enforcing refers to the hardware,
firmware, software, and data which directly contributes to satisfying the security objectives.
We understand security enforcing to be equivalent to Reference Validation Mechanism.
Security Relevant refers the hardware, firmware, software, and data which is not security
enforcing, but must function correctly or be correct in order that the security enforcing
functions can enforce security. We anticipate further evolution of terminology; the reader
should be careful to understand how any specific author uses terminology.

The third principle of the Reference Validation Mechanism needs a little refinement:

3a. The Reference Validation Mechanism must be comprehensible enough to be
subjected to analysis and tests to ensure that it is correct.

Size, structure, and programming language are among the principal contributors to
comprehensibility of a system. Contemporary applications are complex, often more
complex than early operating systems. This complexity creates a tension between
implementing a system that meets its functional goals and creating an implementation that
is comprehensible. Software engineering techniques and high-level languages are elements
that contribute to achieving comprehensibility. High-level languages, for example, provide
constructs that increase the capability to express ideas and provide significant advantages in
readability and writability. These qualities contribute to establishing the correct operation
of the application. Besides contributing to meeting the security goals, high-level languages
also enhance the reliability and maintainability of the application.

Building on the framework established by the Anderson Report, Bell and LaPadula (1975)
developed a lattice-based formal model that was analogous to the manual protection of
national security documents. The Bell-LaPadula model continues as the dominant security
policy model even today. Biba (1977) developed an integrity policy model that is a dual of

Trusted System Concepts

6

the Bell-LaPadula model in that it inverts the dominance relation. While Biba and Bell-
LaPadula are isomorphic, they are sometimes treated as separate policy models. See
(Sandhu, 1993b) for a complete up-to-date treatment.

With its arrival in the early 1980s, the U.S. Department of Defense Trusted Computer System
Evaluation Criteria (TCSEC), also known as the Orange Book (DOD, 1985), codified many
of the prevailing computer security concepts. The Orange Book provided a solution space
for two sets of access control policies and mechanisms: Discretionary Access Control and
Mandatory Access Control. The Orange Book defines discretionary access control as “a
means of restricting access to objects based on the identity of the subjects and/or groups to
which they belong. See (Downs, 1985) for a classic discussion of issues. The controls are
discretionary in the sense that a subject with a certain access permission is capable of passing
that permission (perhaps) indirectly on to any other subject.” Mandatory policy implies that
the authorization is outside the control of a typical user (Saltzer, 1975). In the Orange Book,
mandatory is the complement of discretionary.

The Orange Book definition of mandatory security policy and mechanisms is that mandatory
security works by associating labels, one form of a security attribute, with objects to reflect
their sensitivity. Similar labels are associated with subjects to reflect their authorizations.
Under the mandatory policy, every subject runs in an execution domain implied by the label
(Shirey, 1981). The Reference Validation Mechanism compares the labels associated with
subjects and objects, and grants a subject access to an object only if the result of the
comparison indicates that the access is proper according to the security policy. The security
policy in the Orange Book is expressed in a dominance comparison that satisfies three well-
known mathematical conditions: (1) reflexivity, (2) antisymmetry, and (3) transitivity.
Dominance reflects a set of rules for comparing access classes. Some flows are allowed and
others forbidden. This concept of information flow policy was formally defined by Denning
(1976).

The Orange Book addressed those policies for which a consensus about computer
implementation existed at the time; other policies were not addressed. For example, although
Director of Central Intelligence Directive (DCID)1/7 (DCI, 1981) preceded the Orange Book,
the policies it specifies are not (well) addressed by the Orange Book. The Originator
Controlled policy in DCID 1/7 has motivated development of non-discretionary access
controls1 by Graubart (1989), McCollum (1990), Abrams (1991), and Sandhu (1992). These
works are summarized in (Abrams, 1993b).

1 The earliest work in this area known to the authors was conducted by K. Rogers (then) of

UNISYS in 1986. Unfortunately, no public reference is available.

Trusted System Concepts

7

Some circles appear to have rejected the terminology of the Orange Book, Reference
Validation Mechanism, or TCB because of its origins. This is a case of throwing out the
baby with the bath water. Analysis of many, but not all, of the security concerns of civil
government and commercial organizations uncovers much more similarity than some people
suppose. The assertion that the Orange Book completely covered the field did not help
acceptance outside the community in which it was published.

Looking back at innovations in access control policies, the two policies defined in the Orange
Book can be viewed as end points in a continuum of access control policies as defined by
who has control over the policy. The non-discretionary policy identifies the situation in
which authority is vested in some users (i.e., the system administrators), but there are
controls on delegation and propagation of authority. The other end of the continuum, the
discretionary access control policy, represents the case in which authority is extended to all
users. This relationship can also be viewed as a tree (Abrams, 1993b) in which discretionary
is the case in which the branches extend to every user, and non-discretionary is the case in
which there are branches that do not extend to every user. Saltzer (1975) illustrates this point
quite clearly with hierarchy of controllers and non-discretionary Access Control List (ACL)
use.

Innovative approaches continue to appear, especially for dealing with policies other than the
two confidentiality policies contained in the Orange Book. Moffett and Sloman (1988)
address the source of policy in non-defense organizations. Moffett (1993) views policy as
composed of two components: an imperatival policy that controls initiating or inhibiting
actions from the authority policy that permits or prohibits the actions. In the framework, the
functions that implement the policy components are separated into a Situation Monitor and
Reference Monitor, respectively. In addition to the Biba integrity model, Clark and Wilson
(1987) introduced a Commercial Integrity Model. See Abrams (1993c) for some insights on
this model. Millen (1994) proposes a Denial-of-Service Protection Base implementing
waiting-time policies and user agreements. We believe that the separation kernel design
described in section 5 accommodates all such innovations.

The Trusted Network Interpretation (NCSC, 1987b) addresses a single network security
policy that may require data secrecy, data confidentiality, or both. The Trusted Database
Interpretation (NCSC, 1991a) provides interpretations that extend the Orange Book “to any
software system which supports sharing and needs to enforce access controls.” The Trusted
Database Interpretation uses Database Management Systems as representative of such
systems; in this paper, we use the more general term policy-enforcing applications. It is a
source of disappointment to the database security community that no official documents
addressing the particular needs of database security have been published. The interested
reader should see (Sandhu, 1993a) for identification of the database security issues.

Trusted System Concepts

8

3 SECURITY ATTRIBUTES

Security attributes play a key role in security policy enforcement. Security attributes are the
characteristics or properties that are used by the rules that enforce security policy. A sample
of the characteristics or properties used as security attributes include the user’s name, group,
role, employer, citizenship, clearance, classification, and location. The choice of security
attributes depends upon the specific control policy in force.

There are many ways to organize these security attributes. Such design choices have
profound impact on efficiency and ease of use. Using the Discretionary Access Control
policy requirement cited in the Orange Book as an example, the security attributes supporting
this policy can be associated with either subjects or objects (NCSC, 1987a).

Additional treatments of security attributes are emerging. ECMA Standard 138 (1989)
addresses interchange of security attributes among security domains. The draft International
Organization for Standardization (ISO) Access Control Framework (ISO, 1993) contains
some excellent concepts; this work is evolving as the document makes its way toward
international standardization. While this ISO standards work is, by charter, solely concerned
with access control, its ideas generalize nicely to a broader concern with Information
Technology security. Its treatment of access control attributes generalizes painlessly to
security attributes.

The ISO framework introduces a very useful distinction that security attributes may be
associated with a person, process, object, or context. Independently, the security attributes
may be about (i.e., refer to) persons, processes, objects, or contexts. For example, an access
control list is a security attribute data structure about personal identifications associated with
objects. This is a very useful general concept.

The ISO framework includes the concept of associating security attributes with contextual
information. In particular, the ability of an individual to take on a role or to assume a group
membership may depend upon contextual information such as the location of the initiator, the
time of access, or the particular communications path chosen. Rules and mechanisms such as
Access Control Lists can refer to this contextual information during the decision-making
process. Although perhaps implicit in prior formulations, making this association explicit is
a valuable contribution.

The Logical Coprocessing Kernel (LOCK) and Clark-Wilson (Clark and Wilson, 1987)
distinguish between the security attributes associated with users and processes. Associating
security attributes with programs supports configuration management and provides protection
against malicious modification of programs by Trojan horses and viruses. Other security

Trusted System Concepts

9

attributes associated with programs can restrict the operations permitted by specified
programs on specified objects when they are executed.

4 ACCESS CONTROL

In a computer system, access is a specific type of interaction between a subject and an object
that results in the flow of information from one to the other. Exactly what the subject does
when it accesses the object is further defined by introducing access modes such as read, read-
write, write, and execute. Access control deals with the limits on the interactions between
subjects and objects. These limits, expressed as an access control policy, are enforced by an
access control mechanism that is designed to detect and prevent unauthorized access and to
permit authorized access.

A wide range of access control mechanisms has been introduced to achieve access control
goals in a computer system. An access control mechanism is the combination of hardware
and software that adjudicates an access request and makes the decision either to permit or
deny the access request. Saltzer identified the importance of descriptor based hardware
protection systems as an access control mechanism. Special registers, called descriptor
register, are interposed into the path to memory. In its most elementary form, the descriptor
register is a simple base-bound mechanism that establishes which parts of memory are
accessible to a process. As the concept evolved, more sophisticated versions of the descriptor
mechanism added read, write, and execute access controls to the basic base-range control.
This scheme was used on the Burroughs B5700/6700 and Multics systems and is available on
some contemporary systems. A variation of this scheme, called tag memory, associates
additional bits with every memory location. The additional bits control the type of access
allowed.

Type enforcement is another access control mechanism that can be effectively implemented
in software or hardware. Type enforcement is based on two sets of attributes. One set of
attributes is associated with the current domain of execution of a subject. The other set of
attributes is associated with an object. These attributes define the type of object. The access
control mechanism restricts operations on an object based on the domain of execution of the
subject attempting the access and the type of the object.

Work at Carnegie-Mellon University by Jones (1973) showed that type enforcement can be
used for various aspects of (non-lattice based) memoryless subsystem problems (i.e., variants
of the confinement problem). Jones and Wulf (1975) show that type enforcement can
support non-discretionary access controls that can be represented as a lattice. Cohen and
Jefferson (1975) illustrate that type enforcement can support a variety of non-discretionary
policies that cannot be represented as a lattice. Boebert and Kain (1985) presented type

Trusted System Concepts

10

enforcement as an alternative to Biba integrity. Type enforcement is not transitive, but it
does allow information to flow from entity A to entity B through process C if the types of A,
B, and C authorize that flow. LOCK (Boebert, 1988) employs type enforcement to provide
pipelines. Pipelines can be used to implement functions that would be called trusted in a
Bell-LaPadula architecture.

Clark and Wilson (1987) Transformation Procedures comprise a software-based access
control mechanism. Clark and Wilson introduced Transformation Procedures to automate the
concept of the well-formed transaction. The access privileges of a Transformation Procedure
are determined external to the secure system and encoded in an access control triple of the
form: (UserID, TPi, (CDIa, CDIb, CDIc, ...)), which relates a user, a Transformation
Procedure, and the data objects that a Transformation Procedure may reference on behalf of
that user. It appears that type enforcement and Transformation Procedures are quite similar;
both constrain access of a process to a storage object based on security attributes. Further
investigation into this similarity is indicated; it may well be that type enforcement and
transformation procedure enforcement are the same concept by different names. The
Transformation Procedure extends the TCB far beyond a Reference Validation Mechanism.
Every process that affects integrity must be part of the TCB. There has been surprisingly
little work done on integrity in recently years. To the authors’ knowledge, no
implementations of Clark-Wilson integrity have appeared. The very definition of integrity
remains elusive. (NCSC, 1991b) provides an extensive overview of the diversity of the field,
while (Abrams, 1993c) presents the views of a research study group.

5 SEPARATION

In the early 1980s, Rushby (1984) examined the use of a separation kernel as an access
control mechanism. The goal of separation is rigorous isolation to gain such properties as
integrity, confidentiality, or TCB self-protection. Separation on a single hardware platform
emulates multiple hardware platforms. Separation has often been described as creating
virtual computers, each virtual computer being a clone of the real hardware (Graff,
1992;Karger, 1990; Kelem, 1991). In actuality the virtual computers must share the real
hardware; the task of the separation mechanism is to prevent any action on one virtual
machine from affecting any other virtual machine. In other words, the separation mechanism
prevents any information flow among virtual machines.

Hardware has become less expensive; virtual computers have been replaced with real
computers as illustrated in Figure 1. Distributed systems don’t emulate separate platforms;
they are indeed composed of multiple computers. Separation can be provided as a
architectural consequence in distributed systems or by a deliberate mechanism on a single
CPU.

Trusted System Concepts

11

In considering TCBs for embedded systems, Rushby proposed that a trusted embedded
computer system should be structured in three layers. The lowest layer was a domain
separation mechanism, the middle layer contained a set of resource managers, and the highest
layer was the set of applications. The domain separation mechanism manages individual
protection domains and the communications links between protection domains. Both the
domain separation mechanism and the resource managers contained instances of the
Reference Validation Mechanism for adjudicating interdomain communications and access to
resources, respectively.

Abrams and Joyce (1993) presented a new theoretical basis for composition of separately
evaluated security modules. Principal components of this new framework included
identification of Object Management, Access Control Decision, Access Control Enforcement,
and Domain Separation as fundamental mechanisms on which the security of an automated
information system depends. Expanding the notion of access control, Gate Keepers
enforcing an interdomain communications policy were introduced to moderate information
flow between protection domains. Complexity, policy and application selection, and
distribution were identified as part of the problem space in which the systems architect
works. Sterne (1994) proposes an alternative approach that builds on the TCSEC principles
yet redraws the security perimeter of a trusted system so that it encompasses not only the
TCB but also what they call the Controlled Applications Set, which we would call Policy
Enforcing Applications. Their approach is based on layers, implementing TCB Subsets
(Shockley, 1987; NCSC, 1991a).

6 BEDROCK CONCEPT

It is reasonable and logical that the mechanism(s) which implement an access control policy
must be protected from (unauthorized) change. Our thinking is made easier and our
confidence increases if there is a set of trusted resources, which we call bedrock, serves as the
foundation of our security policies. This firm foundation is the basis of our trust. The
interface to the bedrock specifies the set of resources used to build a trusted information
technology system.

The bedrock concept is relative. The device designer, circuit designer, and operating system
architect have different viewpoints. Each specialist assumes that the interface provided to
him or her is trustworthy. This trust is a consequence of specialization. A person working at
one technological level of abstraction is usually not prepared to investigate and determine the
trustworthiness of the resources with which he/she works. For example, software experts
rarely know about hardware design. However, they tend to trust the hardware. This trust
may or may not be warranted. The hardware may be failure prone due to errors in design or
fabrication; it may also have been built with malicious intent to sustain the same kinds of

Trusted System Concepts

12

attacks as are commonly implemented in software, such as viruses and Trojan horses. See
(Hampel, 1988) for further discussion.

Similarly, software experts who build TCBs or communications protocol interpreters are
users of supporting software, such as compilers and editors. They assume that this
supporting software is trustworthy. While this is usually the case, Thompson (1984)
eloquently advises that one should be careful about extending trust. Recent work has
described critical issues related to software trust and has proposed a set of criteria classes for
measuring and comparing trust (Amoroso, 1991).

Addressing the trustworthiness of bedrock is a matter of risk management. Absolutely
complete risk avoidance would address every possible level of risk. Risks might exist in the
design of the chips, the side effects of instruction set design (especially unimplemented
instructions in complex instruction set architectures), or the security flaws in all supporting
software. It has been common when confidentiality was the only security policy to assume
that mass produced bedrock was a sufficiently low risk that it could be ignored.
Consideration of integrity and availability as security policies may justify reconsideration.

For the purposes of this paper, we assume an implementation in hardware or non-alterable
firmware as the bedrock foundation. For each subsequent design, we assume that the
Bedrock fundamental algorithms and mechanisms are trustworthy, including design,
fabrication, and distribution. Our assumption specifically includes protection against
modification. With this assumption, the bedrock and any TCB(s) built on the bedrock can be
used as the building block for subsequent TCBs with transitivity of trustworthiness.

7 MULTIPLE ACCESS CONTROL POLICIES

With the passage of time, there has been an increased recognition that multiple security
policies exist and should be automated. National defense classified and sensitive unclassified
information, for example, are governed by different policies for non-disclosure. Even within
the national defense classified communities, the executive branch departments determine
their own policies. In the United States (U.S.), the Department of Energy and Department of
Defense, for instance, have their own Access Control Policies. In the private sector, each
enterprise is free to identify its own security policy. The consequence of this diversity is that
there is no single pervasive access control policy, much less one implemented by a vendor of
an information technology system.

A recent survey (Vazquez, 1994) presented the problems in multidomain security, which
were defined as two systems, lying in two different security domains, trying to communicate

Trusted System Concepts

13

securely. The two main reasons for problems are (1) the domains enforce different security
policy and (2) the domains are under the control of different security authorities.

Options to address these needs are limited on current systems. The access control policy is
an integral part of the operating system. Source code for an operating system is rarely
available. Even if it is available, the technical skills to implement a change to the Access
Control Policy may not be available. Moreover, any change to the operating system’s TCB
increases the cost of the certification and accreditation process.

Because of the conflict between organizational needs and the difficulty of introducing new
Access Control Policies into the operating system, Access Control Policies are often
implemented not in the operating system but in applications—in policy-enforcing
applications. A company’s specific security policy governing access to payroll information
will be implemented in the company’s payroll application, for example.

A contemporary statement of requirements for multiple security policy support, where
security policy is much broader than just access control, may be found in the Department of
Defense Goal Security Architecture (DOD, 1993). The DGSA specifies security principles
and target security capabilities that guide system security architects in creating specific
security architectures. Among the DGSA security principles are those that organize
information in a manner this is consistent with mission objectives and that allow unique
security policies to be applied to distinct collections of information. Thus, information
systems that support multiple missions, must support multiple security policies
simultaneously. Abrams (1993b) summarizes other prior work in the area of multiple access
control policies, as does Hosmer’s (1992a) survey of the evolution of thought concerning
multiple policies. Part of the work on multiple policies included recognition of the need for a
policy about policies, a metapolicy.2 Work in this area is summarized in (Hosmer, 1992b).

8 ASSURANCE

Assurance is defined in the ITSEC as “the confidence that may be held in the security
provided by a Target of Evaluation.” Informally, assurance supports the belief that the system
can be relied upon to reduce residual risk to the predetermined level. The ITSEC also
observe that effectiveness and correctness both contribute to assurance. Effectiveness is
determined by analysis of the specifications of the functional requirements; the environment
in which the system will be used, the risks, threats, and vulnerabilities; and all the

2 The earliest use of the term metapolicy known to the authors was by H. Hosmer (then) of

The MITRE Corporation (Hosmer, 1990).

Trusted System Concepts

14

countermeasures, including physical, administrative, procedural, personnel, and technical.
The system is considered effective if the result of this paper analysis is an acceptable residual
risk. Correctness is determined by comparing the implementation of the countermeasures
with their specification. The system is considered correct if the implementation is
sufficiently close to the specification. This definition of correctness is compatible with the
concept of risk management and is closer to the concept of trustworthy than to error-free.
Contrasting effectiveness and correctness analysis we note that effectiveness is purely an
analytic study of risks, threats, and countermeasures while correctness is concerned with the
physical implementation of countermeasures in hardware, firmware, and software. In
effectiveness analysis we decide that a certain combination of mechanisms is acceptable for
use in a specified environment; in correctness analysis we determine if the implementation is
sufficiently close to the specification.

In developing a TCB possibly involving a separation mechanism, you want assurance that it
will enforce the stated security policies exactly by permitting the only the specified accesses
and operations. Neither more nor less is acceptable. The TCB must do exactly what is
identified in its specification and not do anything that is not so specified. Correctness always
has to be with respect to a specification.

Abrams and Zelkowitz (1994) show that all known methods employed to establish
correctness have shortcomings that make it impossible to establish correctness beyond
reasonable doubt. That is, establishing correctness is a matter of belief, not proof. Selecting
a method or combination of methods to establish correctness has been likened to a beauty
contest. The major methods addressed by Abrams and Zelkowitz are mathematical models,
simulation, testing, process models and procedures. Minor methods include structured
programming, the spiral model, Computer Aided Software Engineering (CASE) tools, formal
methods applied informally, object-oriented (OO) programming, reusing existing code, and
process maturity. There is a growing consensus that no one technique can provide adequate
assurance; see, for example, (Butler, 1993) or (Parnas, 1990). Despite years of experience,
there is insufficient statistical or analytic evidence to support the selection of method(s).

The proceedings (NIST, 1994) of an Invitational Workshop on Information Technology (IT)
Assurance and Trustworthiness identify crucial issues on assurance in IT systems to provide
input into the development of policy guidance on determining the type and level of assurance
appropriate in a given environment. Existing IT security policy guidance is based on
computer and communications architectures of the early 1980s. Technological changes since
that time mandate a review and revision of policy guidance on assurance and trustworthiness,
especially since the changes encompass such technologies as distributed systems, local area
networks, the worldwide Internet, policy-enforcing applications, and public key
cryptography.

Trusted System Concepts

15

SUMMARY

In this paper we have reviewed trusted computer system concepts focusing on security
attributes and access control extensions to the Reference Validation Mechanism. Bedrock
and separation were introduced as architectural concepts, along with multiple access control
policies, that characterize contemporary systems. The second paper in this series continues
with a review of object management and extensions to the Trusted Computing Base concept.

ACKNOWLEDGMENTS

The authors wish to acknowledge the ideas and encouragement received from the anonymous
reviewers and colleagues who read prior drafts of this paper: Ed Amoroso, Blaine Burnham,
David Gomberg, Jody Heaney, Ralf Houser, Dale Johnson, Len LaPadula, Carol Oakes, and
Jim Williams. This work was supported by the National Security Agency under contract
DAAB07-93-C-N651 and by the MITRE Corporation.

LIST OF REFERENCES

Abrams, M. D., J. Heaney, O. King, L. J. LaPadula, M. Lazear, and I. M. Olson, October
1991, “Generalized Framework for Access Control: Towards Prototyping the Organization
Controlled Policy,” Proceedings of the 14th National Computer Security Conference.

Abrams, M. D., and M. V. Joyce, January 1993, On TCB Subsets and Trusted Object
Management, MTR-92W0000248, The MITRE Corporation.

Abrams, M. D., September 1993b, “Renewed Understanding of Access Control Policies,”
16th National Computer Security Conference.

Abrams, M. D., E. G. Amoroso, L. J. LaPadula, T. F. Lunt, and J. G. Williams, November
1993c, “Report of an Integrity Research Study Group,” Computers and Security, Volume 12,
No. 7.

Abrams, M. D. and M. V. Zelkowitz, October 1994, “Belief In Correctness,” Proceedings of
the 17th National Computer Security Conference

Trusted System Concepts

16

Amoroso, Ed, et al., May 1991, “Toward an Approach to Measuring Software Trust,”
Proceedings of the 1991 IEEE Symposium on Research in Security and Privacy, Oakland,
CA, IEEE Computer Society Press, pp. 198-218.

Anderson, J. P., October 1972, Computer Security Technology Planning Study, ESD-TR-73-
51, Vol. I, AD-758 206, ESD/AFSC, Hanscom AFB, Bedford, MA.

Bell, D. E., and L. J. LaPadula, June 1975, Computer Security Model: Unified Exposition and
Multics Interpretation, MTR-2997, The MITRE Corporation, Bedford, MA.

Biba, K. J., April 1977, Integrity Considerations for Secure Computer Systems, ESD-TR-76-
372, MTR-3153, The MITRE Corporation, Bedford, MA.

Boebert, W. E. and R. Y. Kain, 1985, “A Practical Alternative to Hierarchical Integrity
Policies,” Proceedings of the 8th National Computer Security Conference, Gaithersburg,
MD.

Boebert, W. E., 1988, “The LOCK Demonstration,” Proceedings of the 11th National
Computer Security Conference, Baltimore, MD.

Butler, R. W., and G. B. Finelli, 12 January 1993, “The Infeasibility of Quantifying the
Reliability of Life-Critical Real-Time Software,” IEEE Transactions on Software
Engineering, Vol. 19, No. 1, pp 3-12.

Clark, David D., and D. R. Wilson, April 1987, “A Comparison of Commercial and Military
Computer Security Policies,” Proceedings of the 1987 Symposium on Security and Privacy.

Cohen, E., and D. Jefferson, November 1975, “Protection in the Hydra Operating System,”
Proceedings of the 5th Symposium on Operating Systems, pp. 141-160.

Commission of the European Communities, 28 June 1991, Information Technology Security
Evaluation Criteria (ITSEC): Provisional Harmonized Criteria, Luxembourg: Office for
Official Publications of the European Communities, Version 1.2.

Denning, D. E., 1976, “A Lattice Model of Secure Information Flow,” Communications of
the ACM, Vol. 19, No. 5, pp. 236-243.

Department of Defense, 1985, Department of Defense Trusted Computer System Evaluation
Criteria, Department of Defense 5200.28-STD, Washington, DC.

Trusted System Concepts

17

Department of Defense, 1993, Department of Defense Goal Security Architecture, National
Technical Information Service.

Director of Central Intelligence (DCI), 4 May 1981, Control of Dissemination of Intelligence
Information, Directive No. 1/7.

Downs, D. D., J. R. Rub, K. C. Kung, and C. S. Jordan, 1985, “Issues in Discretionary
Access Control,” Proceedings of the Symposium on Security and Privacy, IEEE Computer
Society, pp. 208-218.

European Computer Manufacturers Association (ECMA), December 14, 1989, Standard
ECMA-138 — Security in Open Systems: Data Elements and Service Definitions.

Graubart, R., 1989, “On the Need for a Third Form of Access Control,” Proceedings of the
12th National Computer Security Conference, pp. 296-303.

Graff, J., 1992, “Separation Machines,” Proceedings of the 15th National Computer Security
Conference, pp. 631-640.

Hampel, V. E., and C. F. Bender, 1988, “Covert Corruption of Integrated Circuits and
Possible Strategies for Correction,” Proceedings of the First Conference on Hostile
Intelligence Threat to Software, Firmware and Algorithms Embedded in U. S. Army Weapon
Systems, Defense Technical Information Center, Alexandria, VA.

Hosmer, H., 1990, “Integrating Security Policies,” Proceedings of the Third RADC Database
Security Workshop, June 5-7, 1990, Castile, NY, The MITRE Corporation, MTP 385.

Hosmer, H., October 1992a, “The Multipolicy Paradigm,” Proceedings of the 15th National
Computer Security Conference.

Hosmer, H., October 1992b, “Metapolicies II,” Proceedings of the 15th National Computer
Security Conference.

International Organization for Standardization (ISO), September 1993, International
Electrotechnical Committee, Joint Technical Committee 1, Subcommittee 21, Information
Technology - Open Systems Interconnection - Security Frameworks in Open Systems - Part
3: Access Control, Document Number ISO/IEC JTC/SC 21 N 8224 (or most recent draft).

Jones, A. K., 1973, Protection in Programmed Systems, Ph.D. dissertation. Carnegie Mellon
University.

Trusted System Concepts

18

Jones, A. K., and W. A. Wulf, October-December 1975, “Towards the Design of Secure
Systems,” Software—Practice & Experience, pp. 321-336.

Karger, P. A., et al., 1990, “A VMM Security Kernel for the VAX Architecture,”
Proceedings of the 1990 IEEE Symposium on Research in Security and Privacy, Oakland,
CA, IEEE Computer Society Press, pp. 2-19.

Kelem, N. L., and R. J. Feiertag, 1991, “A Separation Model for Virtual Machine Monitors,”
Proceedings of the 1991 IEEE Symposium on Research in Security and Privacy, Oakland,
CA, IEEE Computer Society Press, pp. 78-86.

McCollum, C. J., J. R. Messing, and L. Notargiacomo, 1990, “Beyond the Pale of MAC and
DAC: Defining New Forms of Access Control,” Proceedings of the Symposium on Research
in Security and Privacy, IEEE Computer Society Press.

Millen, J. K., 1994, “Denial of Service: A Perspective,” Dependable Computing for Critical
Applications, Springer-Verlag (Proceedings of Conference in San Diego, CA, January 1994).

Moffett, J. and S. Sloman, February 1988, “The Source of Authority for Commercial Access
Control,” IEEE Computer.

Moffett, J. D., Jonscher, D., and McDermid, J. A., 15 July 1993, The Policy Obstacle
Course: A Framework for Policies Embedded within Distributed Computer Systems, Report
SCHEMA/York/93/1. Dept. of Computer Science, University of York, England, .

National Computer Security Center (NCSC), 30 September 1987a, A Guide to Understanding
Discretionary Access Control in Trusted Systems, NCSC-TG-003, Version 1.

______, 31 July 1987b, Trusted Network Interpretation of the Trusted Computer System
Evaluation Criteria, NCSC-TG-005, Version 1.

______, April 1991a, Trusted Database Management System Interpretation of the Trusted
Computer System Evaluation Criteria, NCSC-TG-021, Version 1.

______, September 1991b, Integrity in Automated Information Systems, C Technical Report
79-91.

National Institute of Standards and Technology, 1994, A Head Start: on Assurance,
Proceedings of an Invitational Workshop on Information Technology Assurance and
Trustworthiness, NIST Internal Report 5472, Gaithersburg, MD.

Trusted System Concepts

19

Parnas, D. L., A. John van Schouwen, and Shu Po Kwan, June 1990, “Evaluation of Safety-
Critical Software,” Communications of the ACM.

Rushby, J., September 1984, “A Trusted Computing Base for Embedded Systems,”
Proceedings of the 7th Department of Defense/NBS Computer Security Conference, pp. 294-
311.

Saltzer, J. H., and M. D. Schroeder, September 1975, “The Protection of Information in
Computer Systems,” Proceedings of the IEEE, Vol. 63, No. 9, pp. 1278-1308.

Sandhu, R. S., and G. S. Suri, 1992, “Implementation Considerations for the Typed Access
Matrix Model in a Distributed Environment,” Proceedings of the 15th National Computer
Security Conference, pp. 221- 235

Sandhu, R. S. and Jajodia, S., 1993a, “Data and Database Security and Controls,” Handbook
of Information Security Management, H. F. Tipton and Z. A. Ruthberg, editors, Auerbach
Publishers.

Sandhu, R. S., November 1993b, “Lattice-Based Access Control Models,” IEEE Computer,
pp. 9-19.

Shirey, L. J. and R. R. Schell, 1981, “Mechanism Sufficiency Validation by Assignment,”
Proceedings 1981 Symposium on Security and Privacy.

Shockley, W. R. and R. R. Schell, “TCB Subsets for Incremental Evaluation,” Proceedings
Third Aerospace Computer Security Conference.

Sterne, D. F., Glenn S. Benson, and H. Tajalli, June 1994, “Redrawing the Security Perimeter
of A Trusted System,” Proceedings 1994 Workshop on Fundamentals of Computer Security.

Thompson, K., August 1984, “Reflections on Trusting Trust,” Communications of the ACM,
Vol. 27, No. 8, pp. 761-763.

Vázquez-Gómez, J., April 1994, "Multidomain Security," Computers & Security.

