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Chapter 1

Abstract

Host security represents one of the most attacked links in the Internet se-
curity chain. Large proportion of the efforts to improve host security has
gone into following the flawed assumption that adequate security can be
provided solely in the application layer. Practice and research have shown
that security mechanisms, in order to be effective, have to be implemented
in the operating system layer.

Discretionary Access Control (DAC) model, implemented for access con-
trol and privilege delegation purposes in most UNIX systems, represents the
most frequent cause of the host security breaches in the Internet environ-
ment. LinSec project is aimed at designing and implementing a Mandatory
Access Control (MAC) model, as opposed to the existing DAC model, in
the Linuz operating system.

The envisaged MAC model is based on a combination of the existing and
novel security mechanisms such as: capabilities, file system access domains
and IP labeling. The Linuz specific LinSec design and implementation is
original in all its aspects except for the capability model which is a substan-
tial extension of the basic POSIX 1003.6 model implemented in Linux.

LinSec was implemented in about 5,000 lines of Linuz kernel code over

a 16 week period. The preliminary test and benchmark results show that



the implemented MAC model is both efficient and effective. Furthermore,
LinSec is easily integratable in existing Linuz systems and does not sub-

stantially affect the target system’s usability and performance.



Chapter 2

Introduction

2.1 Motivation

Numerous Internet security incidents have shown that cryptography based
network tools, although indispensable for ensuring data integrity and confi-
dentiality as well as for authentication purposes, are not sufficient to actively
defend against various types of security threats. The other side of the coin
is host security which usually represents “the weakest link” in the chain and
is often the prime target of attackers.

Most of the current efforts aimed at improving host security rely on
the flawed assumption that adequate security can be provided solely in the
application layer with existing operating system security features laying be-
low not being altered [23]. A number of well documented examples have
shown that support from secure operating systems is paramount to fighting
threats posed by modern computing environments [23, 30, 24]. For example,
Linuz community has been trying to eliminate the buffer overflow! threat
for years by auditing source code of the programs available for the platform.
Nonetheless, it was not before the advent of, so called, Openwall [3] Linuz

kernel patch that the threat was successfully fought. The application layer

!Please refer to Subsection 3.2.2 for explanation of buffer overflow.



exclusive security provision approach, as stated in [10], results in a fortress
built upon sand.

Most of the security attacks on UNIX systems today rely, irrespective
of the actual exploit mechanism employed, on the way in which access con-
trol and privilege delegation mechanisms are implemented in the underlying
operating system. The model that UNIX systems follow for the purpose
is, so called, Discretionary Access Control (DAC) model. Therefore, the
DAC model is to blame for large proportion of security breaches in UNIX
environments. When first UNIX systems, and the DAC mechanisms, were
developed they were perfectly suited for the environment it was envisaged
they would serve in. However, the environment most of the existing UNIX
systems operate in today is far from anything people could have envisaged
more than three decades ago. Research and development in the field of
operating system security is constantly failing to meet the pace at which
it is being challenged. Unfortunately, many operating system mechanisms,
known to be seriously flawed and/or inapt for use in the new environments,
such as DAC, are still widely present in the operating system design and

implementation.

2.2 Project Aims

LinSec is an attempt to improve Linuz [13] Operating System security by
replacing the existing DAC model with a Mandatory Access Control (MAC)
model and by introducing, through the MAC model, the principle of least
privilege. Not only should the MAC approach help prevent possible security
breaches but it should also enable the confinement of any successful breaches
and thus lessen their impact on the overall system functioning.

There are currently several ongoing projects, like [34, 28, 9], trying to ad-
dress the same issue but their acceptance has not been wide for the following

reasons:



e MAC models too complex to administer.

e Substantial semantic changes to Linuz behavior, raising the applica-

tion compatibility issues.

e Difficulty of integration into the existing, running Linuz systems.

LIDS project, for example, one of the first to provide MAC for Linuz,
suffers badly from “code rot”. Numerous changes and alterations have re-
sulted in a system difficult to understand whose behavior is full of unex-
pected and undocumented side effects. Once popular, today the number of
people supporting LIDS is steadily decreasing.

SELinuz project, on the other hand, implements a very effective MAC
model and is well managed and maintained. However, it is impossible to
integrate into a running Linuz system. For many Linuz servers on the
Internet it is simply unacceptable to go offline for lengthy reinstallation and
setup periods.

Apart from its academic value, one of the most important aims of LinSec
is to be highly practical, efficient system and accepted by the Open Source
community as such. The project is envisaged as a system that will easily
integrate into the existing Linuz platforms providing the highest possible
level of transparency to the existing users and services by fully supporting
POSIX standards and traditional Linuz behavior, as long as system manda-
tory security policy is obeyed. The mandatory security policy itself needs
to be highly flexible, reflected through its configurability.

The envisaged MAC model is largely based on modification of ideas
existing in the operating systems research world for a long time but which
have either never been implemented? at all (eg. IP Labeling, etc.) or have

not been implemented in a similar setting (eg. file system access domains).

2as far as the author is informed.
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The scope of the individual final year project is only the kernel portion
of the overall LinSec project. Userspace configuration and administrative
tools are external to the project and should be developed by obeying the
interface provided by the kernel code.

Linuz was chosen primarily because of the widely available kernel source

code and because of its widespread use in the Internet environment.

2.3 Project Outcomes

LinSec development, including analysis, design and implementation phases,
took roughly 16 weeks. With all of the features specified in Chapter 4 the
implementation, in the form of a Linux kernel patch, occupies approximately
5,000 lines of kernel code (written in C) as detailed in Chapter 5. The
resulting system conforms in all aspects to the envisaged model.

At the time of writing this report, LinSec has been presented at Linux
FEST 023, Belgrade, where it has prompted considerable interest. LinSec is
already employed at the Computer Centre, Faculty of Electrical Engineer-
ing, Belgrade. A paper is to submitted for presentation at the ETRAN*
conference this June.

Userspace administrative tools were developed, according to the detailed
specification, by Mr Bosko Radivojevic and Mr Veselin Mijuskovic at the
Faculty of FElectrical Engineering, University of Belgrade due to the time
constraints. The resulting system is fully employable in existing Linux plat-
forms with minimal disruptions due to the setup time. LinSec is released to

the Open Source community under the terms and conditions of GNU GPL

3An event organized by the Open Source Network of Yugoslavia aimed at promoting

the Open Source software development model and Linuz operating system.
4Society for Electronics, Telecommunications, Computers, Automation and Nuclear

Engineering from Belgrade, Yugoslavia, annual conference in held collaboration with the

Yugoslav section of IEEE and the government of the Republic of Serbia.
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license.

2.4 Conventions
The following is a list of typographical conventions used in this report:

e Sans serif: used to indicate filenames.

e Emphasized: used for LinSec specific terms and otherwise important

terms.
e Typewriter: used for C code.

e In formulas, + sign is used to denote union.

2.5 Report Layout

The rest of the report is organized as follows:

e Chapter 3 analyses various security breaches widespread in the In-
ternet environment and traces their causes down to operating system
mechanisms that fail to respond to them. This Chapter gives rationale

behind the decision to replace DAC with MAC.

e LinSec design is presented, on a rather high level which can be applied

to various variants of UNIX, in Chapter 4.

e The actual implementation of the specified design in Linuz kernel is
explained in Chapter 5. The chapter also describes issues that arose
during the implementation due to the attempt to modify some of the

core kernel mechanisms and ways in which they were resolved.

e Performance overhead of LinSec was assessed in a series of benchmarks

as presented in Chapter 7.

12



e Because of the LinSec nature, approach taken for testing the imple-
mentation differs from standard, prescribed, ways and is put forward

in Chapter 6.

e Finally, Chapter 8 concludes the report with a short summary, envis-

aged future of the project and a retrospective view on the project.
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Chapter 3

OS Security Background

3.1 Introduction

First step in designing security mechanisms is to study potential threats the
system in question might be, or is, exposed to. Next, the “features” of the
system in question enabling particular types of threats need to be identified.
Lastly, the identified “features” need to be redesigned or removed so as to
thwart the security attacks.

This section is an analysis of the security threats affecting the Linux
operating system (OS), mechanisms by which they operate and design points
in the Linuz OS that provide scope for the attacks. General solutions to the
problems are presented as well. Although the focus of the Chapter is on the
Linuz OS, as it is the OS of the choice for the project, all details mentioned
apply to most of the commercial and server side operating systems available

on the market today.

3.2 Attacks - Facts

The past several years have seen tremendous increase in the number of host

based security attacks and breaches. This effect should be attributed to the
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expansion in the size of the Internet reflected in the number of hosts exposed

to the worldwide community.

3.2.1 Facts

Several organizations have been established during the past years to focus
on the security threats arising in the Internet environment. Some of them
are The Security Group at the Carnegie Melon Software Engineering Centre
(CERT), System Administration, Networking and Security Institute (SANS)
and U.S. DoE Computer Incident Advisory Capability (CIAC). One of the
interests of the agencies were statistics related to the security attacks that
take place daily.

To illustrate the rate of increase in the number of attacks relevant statis-

tics originating from CERT’s web site [8] is included in Table 3.2.1.

Year 1990 | 1991 | 1992 1993 1994 | 1995 | 1996
Incidents 252 406 73| 1,334 | 2,340 | 2,412 | 2,573
Year 1997 | 1998 | 1999 2000 2001 | 2002 | 2003

Incidents | 2,134 | 3,734 | 9,859 | 21,756 | 52,658 | n/a | n/a

Table 3.1: Number of Incidents per Year

To give meaning to the striking numbers in Table 3.2.1 the following list
names the top seven vulnerabilities exploited in 2001 on UNIX platforms,

according to the SANS Institute [17]:

1. Buffer Overflows in RPC Services

2. Sendmail Vulnerabilities

3. BIND Weaknesses

4. R Commands (rsh, rlogin, etc.)

5. LPD (remote printing protocol daemon)

15



6. sadmind and mountd

7. Default SNMP Strings

The proportion of the numbers from Table 3.2.1 that can be attributed
to the above vulnerabilities is roughly proportional to the percentage of
UNIX servers on the Internet. And the number of affected Linux systems
is proportional to the number of Linuz servers among other UNIX servers.
Emphasis should be placed on the fact that the number of reported incidents
is very different from the actual number of incidents that occurred but were

not reported or were not detected.

3.2.2 Types of Attacks

The attacks, including the ones mentioned in Section 3.2.1, can be catego-

rized in several groups by the nature of their functioning [9]:

o Buffer Overflows: a problem endemic to C programs that provide poor
bounds checking on input received from outside environment resulting
in subverting the intended flow of program and thus forcing execu-
tion of attacker supplied code'. Five out of the seven vulnerabilities

mentioned in Section 3.2.1 belong to this category.

e Race Conditions: intended functioning of a program can be subverted
so that it produces side effects that compromise system security. Some
of “R Commands” vulnerabilities from Section 3.2.1 fall into this cat-

egory.

Tn C, both function return address and local variables are kept on stack. By supplying

a function argument longer than the local variable it is subsequently copied to, an attacker
may overwrite contents of the stack, including the return address. If carefully chosen,
the overwritten return address can point to custom supplied piece of code eg. code for

executing system shell.

16



e Special Character Processing: rely on “fooling” character processing
programs by providing user input that causes the program to relinquish
control to the attacker. Programs affected are usually CGI scripts

running in privileged mode and accessible by everyone.

As can be seen, by far the most frequent are attacks that are based on

the buffer overflow technique.

3.2.3 Attack Anatomy

All host based attacks, including Denial of Service (DOS) and Distributed
Denial of Service (DDOS) in a slightly different sense, irrelevant of the cate-
gory (Section 3.2.2) they belong to, are aimed at gaining attacker privileges
under which the attacked program is running. The applications attacked
are usually the ones labeled as “trusted” by the system administrator. A
“trusted” program is a program that is running with privileges that enable
it to perform sensitive system operations. In most cases, “trusted” programs
run under superuser privileges. Once such a program is subverted attacker
gains all of the privileges of the program, which usually turns disastrous for

the system.

3.3 OS Background

Once the threats are identified the question remains of the right system layer

to introduce appropriate security measures to:
e Application layer, or
e Operating System layer

Since the application level is the one being directly attacked, one might
think that it is the appropriate point to thwart the attacks at. However,

to assure the complete absence of security vulnerabilities expensive manual

17



verification of every single application has to be carried out. Taking into
account the sheer size of the application space and the rate of its growth
reveals the impossibility of such an audit.

The short analysis of host based security attacks in Section 3.2 pointed
at the common aim of most of the exploits — to gain the privileges of the
“trusted” applications. The fact that overall result is the same no matter
which application is exploited, or the way in which it was exploited, points
at a problem at the layer below the application layer - the Operating System
layer [9, 23]. This conclusion is not intended to eliminate security concerns
when developing applications. Although addressing security problems solely
in the application space does not suffice, it is still a valuable aspect of the
overall system security.

The following mechanisms and aspects of the most commercial and server
side Operating Systems enable the described attack behavior [9, 23, 24, 22,
30]:

e Discretionary Access Controls (DAC)

o Authorizations

o Default OS configuration

3.3.1 Discretionary Access Controls

Discretionary Access Control (DAC) means that the owner of an object can
manage permissions for the object at his own discretion. In effect, owner of
an object can decide who to grant permissions to access and use the object
to without the decision being questioned by the OS. An example of this is
permissions associated with UNIX files which the owner of the file is allowed
to modify with no restrictions. It is DAC that is to blame for gaining-the-
privileges portion of the attack mechanisms. Once the attacker gets hold

of “flow of execution” of the attacked program it may manipulate any of

18



the objects owned by the uid running the process [30, 23, 22]. Individual
attempts have been made? at configuring the DAC in a fine-grained enough
manner to minimize the described effect but all of them yielded complex

and bulky solutions that were impossible to maintain and control.

3.3.2 Authorizations

Usually, only two major user categories are supported by DAC'"

e superuser, and

o the rest of the world

DAC model, by its definition, dictates that all requests made on behalf of

3 must be granted and that their legitimacy is never questioned.

the superuser
Superuser, as in DAC model, owns all system objects and can, at his own
discretion, grant or refuse access privileges to any of them to “the rest of
the world”. Notion of the superuser, as such, represents a single point of
vulnerability* in a system.

All other users in a system, popularly named “the rest of the world”, un-
dergo full DAC checks on every request made on their behalf. Non-superuser
users can grant or refuse access privileges to system objects, owned by them,
to other users, apart from the superuser to whom all access requests shall
always be granted.

As can be suspected, most of the attacks are aimed at programs running
under superuser privileges as subverting them means obtaining unlimited
access to the host system.

Probably the most widely exploited program, over the past several years,

in Linuz environment, has been Sendmail, Mail Transport Agent (MTA).

*These are documented on various UNIX admin web sites and in related mail forums.
3by processes owned by root.
4if superuser account on a system is compromised an attacker can claim full control of

the system.
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Sendmail, by default, runs under superuser privileges. Buffer overflow ex-
ploit scripts are available on the Internet, for various versions of Sendmail,
that cause the attacked Sendmail to relinquish control to the attacker usu-

ally by launching a root shell.

3.3.3 Default OS configuration

Listed as number 1 in SANS’s top twenty most critical Internet security

vulnerabilities affecting all systems [17] is:
Default installs of Operating Systems and applications

Most of the Operating System distributions offer user-friendly installa-
tion procedures and scripts whose main aim is to get the system up and
running as fast as possible with the administrator having to perform least
amount of work. These types of installation and setup need to cater for
various end users and thus install much more software than needed in any
particular case. From vendors’ point of view it is always better to enable
functions that are not needed than to make the user install additional func-
tions separately. In the end, users are not even aware of all the software
installed on their system and fail to maintain it and patch promptly as
security threats are discovered. Furthermore, many system services and
“trusted” programs run with coarse grained privileges that far exceed their
actual requirements. A security flaw in any of these enables an attacker to

gain superuser privileges.

3.4 Securing OS

The NSA Orange Book [30] is the most quoted source with respect to op-
erating system security requirements and evaluation criteria. It defines five
secure levels for operating systems along with their functional requirements

(increasingly more secure):

20



e (2: Authentication®, DACS.
e B1: Mandatory Access Control” (MAC), Audit®
e B2: Structured Security?, Elimination of Storage Covert Channels

e B3: Minimized Trusted Computing Base!’ (TCB), Elimination of

Timing Covert Channels

e A1: Proven Security!! (non functional requirement)

Most of the commercial and server side operating systems fall into C2
category and so does Linuz. To advance from C2 category the crucial func-
tional requirement is Mandatory Access Controls. MAC mechanisms are
aimed directly at eliminating the problems described so far and attributed
largely to DAC. MAC model relies heavily on least privilege approach to

system privilege allocation.

3.4.1 Mandatory Access Control (MAC)

In general terms, mandatory security policy represents any security policy
that is defined strictly by system security policy administrator along with
any policy attributes associated [23]. Mandatory security policy can be
divided into subpolicies, all mandatory by their nature, demonstrating the
recursive nature of the definition.

Mandatory Access Control (MAC) can be viewed as a subpolicy of
mandatory security policy as well as the mandatory security policy as a

whole if no other mandatory policies are implemented in the system. MAC

SEnables identification of the users making system requests.

5Users define control over their objects at their own discretion.

"System administrators define system access control policy, not users.

8System source code audit to identify sources and means of attacks and eliminate them
9Multi-layer security.

10Minimize the amount of security-relevant code in the system.

"Proven in practice.
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policy specifies how certain subjects can access operating system objects and
services [23]. There are two fundamental implications of the MAC approach

[23]:

e Users can no longer manipulate access control attributes of the objects

they own at their own discretion, and

e Privileges associated with a process are determined by appropriate
MAC mechanisms, based on relevant mandatory security policy set-

tings, on per task basis.

Since the inception of MAC numerous mechanisms of implementing it
have been researched, some of which are: type enforcement and domain type
enforcement [22, 24], role based access control [11], SubDomains [9], capabil-
ities [5, 18, 19, 32] etc. Several attempts were even made at providing MAC
through DAC [23] but they failed due to complexity incurred. Standards
like IEEE POSIX 1003.6 were also developed to support MAC.

3.4.2 Least Privilege principle

In every system a number of applications require special privileges in order
to perform some system task eg. system services in DAC run with supe-
ruser privileges. If the sets of privileges associated with such applications
could be made fine-grained enough, as close to minimal needed for the task
as possible, unlike in the DAC example above, a damage resulting from
a possible vulnerability exploit would be confined to only a portion of the
system accessible by the privileges thus obtained. Therefore, the manda-
tory security mechanisms of an operating system should obey the principle
of least privilege which states that any process in the system should be al-
located only the absolutely minimal set of privileges needed to successfully
perform the desired task. Any additional, not needed, privilege possessed by

a process increases the damage incurred if a vulnerability in the program is
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exploited. Therefore, any mandatory security system should provide scope

for implementation of the least privilege principle.

3.5 Conclusion

By the careful analysis of the most wide spread attacks compromising host
security in the Internet environment, presented in the Chapter, it was shown
that existing operating system access control and privilege management
mechanisms need to be redesigned to be able to survive in the increasingly
insecure environment. The analysis exposed Discretionary Access Control
model as the most security critical in current operating systems. Research
in the field of computer security, as well as standards developed in the past
several years, have recognized Mandatory Security Policies and Mandatory
Access Control, in particular, as a must replacement for existing DAC. MAC,
in combination with the Least Privilege principle, can not only provide se-
curity breach prevention but also breach and damage confinement within a

system.
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Chapter 4

LinSec Security Architecture

4.1 Introduction

4.1.1 LinSec Design Aims

The main aim of the LinSec project is to develop a MAC model for Linux
operating system based on capabilities and file system access domains and
thus provide BI security level, described in Chapter 3. The fact that the
desired system should be easily integratable in already running Linuz in-

stallations, with minimum disruptions, has influenced the design.

4.1.2 Chapter Layout

This Chapter provides description of the overall LinSec design and archi-
tecture. Implementation of the architecture in the Linuz kernel is topic of
Chapter 5. Firstly, the notion of capabilities is presented followed by all
of the aspects of the LinSec Capability model (Section 4.2). Secondly, File
System Access Domains (Section 4.3) are described in the same manner.
Thirdly, a special form of mandatory network access control, named IP La-
beling (Section 4.4), is explained. And finally, LinSec MAC security policy

based on capabilities and file system access domains is put forward binding
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the contents of the previous sections (Section 4.5).

4.2 LinSec Capability Model

4.2.1 Definition and Background

A Capability is a token possessed by an operating system subject granting
access to one or more operating system objects. Subjects are considered to
be active entities within an running operating system eg. a process. Subjects
may also be regarded as objects for some operations eg. a process (subject)
sending signal to another process (object). Objects are entities on which an
operation is performed.

Whereas Access Control List (ACL) access control model bases its deci-
sions on identity of the subject requesting access to an object (as with each
object a list of subjects and allowed access modes is associated), Capabil-
ity model bases its decisions on possession of the appropriate token by the
subject irrespective of its identity.

As of version 2.2.0 a limited support for POSIX capabilities is imple-
mented, through a very basic' form of Process Capabilities, in Linuz kernel.
LinSec extends it to support User Capabilities (Subsection 4.2.5) and Fz-
ecutable File Capabilities (Subsection 4.2.4), which were neither supported
by Linux kernel nor was there a intention, among Linuz community, to

support them.

! Just about enough to claim POSIX compliance.
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4.2.2 POSIX 1003.6 and Capabilities

POSIX 1003.62 defines, among other security related features, so called, Pro-
cess Capabilities in the following manner (quoted from the Linux Capability

FAQ [33]):

A process has three sets of bitmaps called the inheritable(I),
permitted(P), and effective(E) capabilities. Each capability is
implemented as a bit in each of these bitmaps which is either set or
unset. When a process tries to do a privileged operation, the
operating system will check the appropriate bit in the effective set
of the process (instead of checking whether the effective uid of the

process i 0 as is normally done).

The permitted set of the process indicates the capabilities the
process can use. The process can have capabilities set in the
permitted set that are not in the effective set. This indicates that
the process has temporarily disabled this capability. A process is
allowed to set a bit in its effective set only if it is available in
the permitted set. The distinction between effective and permitted

exists so that processes can "bracket" operations that need privilege.

The inheritable capabilities are the capabilities of the current
process that should be inherited by a program executed by the current
process. The permitted set of a process is masked against the
inheritable set during exec(). Nothing special happens during fork()

or clone(). Child processes and threads are given an exact copy of

2POSIX 1003.6 has been dropped recently after ten years of development and is to
be super seeded by a new document. Capability definition, however, is not expected to
change so the reference to the standard is still valuable. POSIX 1003.6 was formed from
POSIX 1003.1e and POSIX 1003.2c.
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the capabilities of the parent process.

POSIX 1003.6, as such, does not define neither the notion of Ezecutable

File Capabilities or the notion of User Capabilities.

4.2.3 Overview

LinSec retains, from the Linuz POSIX capability framework, the the notion
of capabilities being solely unsigned integer values. Groups of capabilities
can therefore be represented as bitmaps in which each bit represents a sep-
arate capability depending on its position within the bitmap. Manipulation
of capability sets defined this way can be accomplished by simple arithmetic
operations. The performance improvement over alternative solutions thus
obtained is the primary reason for adoption of the simple representation.

All processes in Linuz, except for the process 03, are running images
of executable files and are owned by a user. Therefore, LinSec supports
Ezecutable File Capabilities (Subsection 4.2.4) and User Capabilities (Sub-
section 4.2.5) which are used together to compute (Subsection 4.2.9) Process
Capabilities (Subsection 4.2.7) of a process created when the executable file
is run by the user. Process Capabilities are used for access control checks.

LinSec also uses capabilities to implement system boot phase protection
(Subsection 4.2.10), various types of process protection (Subsection 4.2.11)
and INET socket protection (Subsection 4.2.12).

To accomplish all of the design aims, several new, LinSec specific, capa-
bilities had to be introduced (Subsection 4.2.13) in addition to the existing

ones.

4.2.4 Executable File Capabilities

Although there were some discussions about Ezecutable File Capabilities on

Linuz development forums, no actual work has been ever done on them.

3Process with PID 0 represents an image of, otherwise not runnable, Linuz kernel.
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With each executable file in the system there are three sets of capabilities,
corresponding to the three capability sets defined for processes by POSIX
1003.6, associated:

o Allowed set (fA): capabilities that can be inherited from the process

that executes this executable.

o Forced set (fF): capabilities that must be contained in the permit-
ted/effective (Subsection 4.2.7) set of a process running this exe-

cutable.

o FEffective set: capabilities that will be copied from permitted to ef-
fective capability set (Subsection 4.2.7) of a process that invoked this

executable.

4.2.5 User Capabilities

Unlike the Process Capabilities, User Capabilities are an idea completely
novel to Linuz. With each user in the system there are two capability sets

associated:

e User Permitted set (uP): capability set used to reflect user privileges

in the system (via processes run under the user’s uid).

e User Bounding set (uB): maximum capability set that a process run-

ning under the user’s uid can obtain during its lifetime.

4.2.6 User Capability Groups

Capability groups represent an idea analogous to user groups in standard
UNIX implementations. KEach capability group is made of one or more
capabilities and each user may be a member of one or more capability groups.

Capability group 0 is denoted the default for all users.
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The reason for introducing capability groups (including the default ca-
pability group) is the ease of LinSec setup and maintenance as in most
systems users can be naturally grouped in several categories with respect to
required system privileges and trust. Existence of capability groups reflects
this trend and saves administrators from having to specify uP (Subsection
4.2.5) for each user individually.

Capability groups take part in the computation of Process Capabilities
(Subsections 4.2.7 and 4.2.9).

4.2.7 Process Capabilities

Linuz kernel, as of version 2.2, supports Process Capabilities, as defined
by POSIX 1003.6. With each process in a system three capability sets are

associated:

e Inheritable set (pI): set of capabilities that can be inherited by a new

process after a binary is executed by the running process.

e Permitted set (pP): maximum set of capabilities that a process may

acquire during its lifetime i.e.. that can be in pE (below).

o Effective set (pE): set of capabilities that are currently used for access

control.

LinSec Process Capabilities build on a slightly modified?, still POSIX
1003.6 compliant, version of the Process Capabilities implemented in the
Linuz kernel.

Process capabilities are computed (Subsection 4.2.9), by LinSec specific
algorithm, from File Capabilities (Subsection 4.2.5) and User Capabilities

(Subsection 4.2.5). It is process capabilities that are used for access control

4As stated in Section 5.8.
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checks in LinSec as they reflect both owning user’s and application’s priv-
ileges. When a process issues a access request for an capability protected

object its effective capability set is checked for the required capabilities.

4.2.8 Global Bounds

To be able to limit privileges of any process in the system a global bounding
capability set is introduced and denoted as gB. gB has system wide effect
and describes the maximum possible set of privileges any process can reach
during its lifetime in the system. By no means can a process posses, in
any of its capability sets (Subsection 4.2.7), a capability which is not in gB.

Exactly how gB works can be seen in the Subsection 4.2.9.

4.2.9 Capability Inheritance Algorithm

LinSec Capability Inheritance Algorithm is used to compute process capa-
bilities and it builds on the algorithm existing in the Linuz kernel, as part
of the Process Capabilities support.

Capability Inheritance Algorithm implemented in Linuz kernel has three

steps (quoted from fs/exec.c where it is implemented):

pl’ = pI
(fP & X) | (£I & pI)

(**x*) pP’
PE’

pP’ & fE [NB. fE is 0 or ~0]

I=Inheritable, P=Permitted, E=Effective // p=process, f=file

> indicates post-exec(), and X is the global ’cap_bset’.

As there is no support for executable file capabilities in existing Linux

kernel, the variables in the algorithm corresponding to them are hardcoded
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as either maximal possible (for superuser processes) or as zero (for non
superuser processes). This causes the resulting effective capability set to be
either full capability set (for the superuser owned processes) or empty one
(for non superuser owned processes).

The LinSec specific algorithm also has three steps and is an evolved

version of the above, Linuz implemented, algorithm:
1. pI* = pI
2. pP* = (fF|(fA&(pI*|uP°)))&uB&gB
3. pE* = (pP*&fE)
Where:
e pl, pE and pP are user capability sets as specified in Subsection 4.2.5.

e pI*, pP* and pE* are capability sets that replace pl, pP and pE re-

spectively for the current process after the execution of the algorithm.

o fA, fF and fE are the executable file’s capability sets as specified in
Subsection 4.2.4.

e uP° is user permitted set obtained by the formula: wP°® =
wP| Y P|...| v P, where uP is user permitted capability set as specified
in Subsection 4.2.6 and ~,, P to v, P are capability sets representing
capability groups the users is a member of as specified in Subsection

4.2.6.
e uB is user bounding capability set as specified in Subsection 4.2.5.
e ¢B is global bounding set as specified in Subsection 4.2.8.

The first step of the LinSec algorithm is left unchanged (from the Linuz
implementation) as neither User Capabilities or Ezecutable File Capabilities

are designed to affect a process’ inheritable capability set.

31



The second step has suffered most alterations. The thinking behind com-
puting the new permitted (pP*) capability set is (starting by the innermost
brackets):

e pP* needs to reflect both the capabilities inherited from the existing
process (dictated by POSIX 1003.6) and capabilities contained in per-
mitted capability set of the process owner (to reflect privileges of the

user), but

e only to the extent allowed for the newly executed binary (logical AND

with fA), to ensure least privilege principle is followed.

e However, pP* needs to contain capabilities necessary for the executed

binary to perform its task correctly (logical OR with {F).

e Finally, no capabilities representing privileges that would exceed max-
imum allowed for the process owner (uB) or for the system as a whole

(gB) must be included in pP*.

The third step ensures that the process has, in its effective capability
set, all capabilities needed by the newly executed binary to perform its task
(fE) that it is allowed to have (logical AND with pP*).

The algorithm (Subsection 4.2.7) is triggered by two system events in

LinSec capability model implementation:

e Current process executes a binary (both in Linuz and LinSec capabil-

ity model implementations), and

e Process changes ownership (uid) (in LinSec capability model imple-

mentation only).

In the former case, the algorithm is invoked to reflect capabilities of the
new program that is being started while in the latter case, it is used to

reflect capabilities of the new process owner.

32



4.2.10 Capability-Based System Boot Monitor

In many cases, after successfully penetrating target system, attackers install
some sort of a back door to be able to return to the system at some later
stage without the need to replay the intrusion. A considerable proportion of
back doors are set up each time the system is booted or rely in some other
sense on programs planted by attackers and executed during the system
boot. In order to prevent this type of scenario LinSec introduces the notion
of a monitored boot phase. A new, CAP_SYS_BOOTTIME, capability is
introduced for the purpose. Every process spawned during the boot phase
needs to have the capability in its effective capability set. If this requirement

is not fulfilled the offending process is killed®.

4.2.11 Capability-Based Process Protection

Capability-Based Process Protection is best explained through an example.
Assume two processes: process A and process B. For process A to send a
signal to some other process B, Linux requires either A to be a superuser
owned process or A and B to be owned by the same user. As some signals
can be potentially fatal for the receiving process this simple policy was
not acceptable to LinSec primarily as root user should not be allowed to
terminate system services that are running with uid of 0 (root) in Linuz.
Rather than change the whole process ownership philosophy of Linuz, which
would certainly break the compatibility between platforms and which would
violate POSIX 1003.1 set of standards, the LinSec solution is to introduce a
set of capabilities to be used in controlling how signals are sent and received.
The solution does not replace the current mechanisms, it builds up on them.

The introduced capabilities and their meanings are:

e CAP PROC_PROTECTED: process that has this capability in its ef-

STerminated by the kernel.
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fective capability set will not receive any signals unless the sending

process has CAP_PROC_GOD capability in its effective capability set.

¢ CAP_PROC_UNKILLABLE: process with this capability in its effec-
tive capability set will not receive fatal signals 2, 3, 9 and 15 unless
the sending process has CAP_PROC_GOD in its effective capability

set.

¢ CAP_PROC_GOD: process that has this capability in its ef-
fective capability set can send signals to processes with
CAP PROC PROTECTED and CAP PROC_UNKILLABLE ca-

pabilities in their effective capability set.

Furthermore, in some cases it might prove valuable to hide certain pro-
cess related information, or even a whole processes, from the eyes of users.
Examples of desired invisible processes are various system monitoring pro-
grams or intrusion detection systems. For this purpose two more capabilities

are introduced by LinSec:

e CAP_PROC_HIDDENS: processes with this capability in their effective
capability sets are not listed in /proc and are therefore invisible to

system utilities like ps, top etc.

e CAPNET_HIDDEN: data about INET network connections using
TCP, UDP or raw IP of processes having this capability in their ef-
fective capability sets are omitted from /proc. Therefore, utilities like

netstat etc. do not list the network info for the processes.

6 /proc represents standard mount point for Linuz proc file system. Proc is a virtual
file system that has a role of kernel — userspace interface. Its main role is to provide

system status information to userspace programs.
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4.2.12 INET Socket Capability-Based Protection

As Linuz has very little protection for IPC mechanisms and none in partic-
ular for INET sockets, the desire was felt to extend the capability model to
cover that aspect of the system as well.

LinSec allows a set of capabilities to be associated with an bound socket
of INET family by the owning process denoting capabilities required for
local processes to communicate to the socket. This mechanism enables fine
grained control of who connects and sends messages to a certain socket
locally on per socket basis. In conjunction with traditional firewall solutions
a complete protection for sockets can, thus, be established both regarding
requests coming from network (handled by a firewall) or the ones coming
from the local machine (handled by LinSec). Furthermore, the mechanism

enables administrators to run services for strictly defined groups of users.

4.2.13 New Capabilities Introduced

Several other capabilities had to be introduced in addition to the existing
POSIX and Linuz specific capabilities to enable correct functioning of Lin-

Sec:

e CAP_PROC_PROTECTED: refer to Subsection 4.2.11.
e CAP_PROC_UNKILLABLE: refer to Subsection 4.2.11.
e CAP_PROC_GOD: refer to Subsection 4.2.11.

e CAP_PROC_HIDDEN: refer to Subsection 4.2.11.

e CAP NET_HIDDEN: refer to Subsection 4.2.11.

e CAP_SYS_.BOOTTIME: refer to Subsection 4.2.10.

o CAP_MOD_CAP: a process that has this capability in its effective set

is allowed to modify its own permitted and effective capability sets.
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This feature is necessary for the correct operation of userspace LinSec

administrative tools’.

e CAP_ACD_OVERRIDE: a process with this capability in its effec-
tive capability set bypasses LinSec file system access domain control
mechanisms (Section 4.3). This feature is necessary for the correct

operation of userspace LinSec administrative tools.

e CAP_LINSEC_ADMIN: a process with this capability in its effective
capability set can configure LinSec mandatory security policy (Section

4.5).

4.2.14 LD_PRELOAD Attack

One particular attack that kept recurring for years in different forms is so
called “LD_PRELOAD” attack. In Linuz, “LD_PRELOAD” is an envi-
ronment variable that specifies which shared libraries are to be loaded in
programs at runtime. The “LD_PRELOAD?” attack affects LinSec as it is
possible for an attacker to gain capabilities of other programs by executing
custom code contained in the “LD _PRELOAD” variable. To circumvent
this type of attack, LinSec removes all capabilities from a process executing
a binary if “LD_ PRELOAD?” environment variable is specified at the time
of the execution.

The action might be considered drastic but in cases, such as this, when,
from the system’s point of view, there is only one, rather coarse, way of
recognizing potential problems, dropping the offending process’ privileges is

the least that can be done to prevent a potential security breach. Further-

"To perform LinSec administrative tasks, a process needs to have
CAP_LINSEC_ADMIN capability in its effective capability set. As static allocation
of the capability to any program is regarded risky (due to eg. buffer overflow attacks on
the capability model itself), the process is allowed to modify its capability sets, after the

user that invoked it has provided correct administrative password.

36



more, as there are other mechanisms, apart from the use of LD_.PRELOAD
environment variable, for preloading library code, the mechanism does not

affect functionality of the system as a whole.

4.3 LinSec Filesystem Access Domains

4.3.1 Background and Definition

A File System Access Domain represents a portion of a file system visible and
accessible by a process. It effectively creates a file system cage or a sandbox
to which the running process is confined. File System Access Domains do
not replace the traditional Linuz file system access controls, they operate

at a higher level, as illustrated in Figure 4.3.1.

Process’ Filesystem Operation Request Request Result
userspace
kernelspace
, LinSec Filesystem Access Domain Access Control A
Y Traditional Linux Filesystem Access Control A
V
Filesystem Code

Figure 4.1: How LinSec FS Access Domain model fits Linux F'S subsystem

The notion of File System Access Domains is best illustrated by an ex-
ample: Figure 4.3.1 depicts a possible File System Access Domain of an
process. By including /etc and /usr the process is restricted to the portion
of the file system represented by the subtrees below the nodes respectively
(denoted by the outer ovals). However, not the whole subtrees are accessi-
ble by the process as the file /etc/shadow and all files below the directory
/usr/local are excluded from the FS Access Domain (denoted by dashed

inner ovals in the Figure).
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Read Write AD / Read Only AD

Figure 4.2: LinSec Access Domain Example
LinSec File System Access Domain can be further subdivided into:

e Read Only Access Domain

o Read- Write Access Domain

Read Only Access Domain denotes a portion of a file system that can
be used for read access only and Read Write Access Domain denotes a
portion of a file system that can be used both for read and write access.
The latter Access Domain is Read- Write as opposed to Write Only as this
avoids overlap in cases where files can be both read and written (in which
case they would have to be duplicated in both of the Access Domains).

LinSec has no feature to prevent overlaps between the two access do-
mains resulting from the ways in which they are configured in each particular

case. Inclusion of such a feature is not regarded necessary as:

e Possible overlaps can not result in a LinSec system failure.
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e It would make the design considerably more complicated.

In cases of overlap between the access domains, the order in which pro-
cess’ access domains are checked, on file system access request (Subsection
4.3.9), becomes important.

In the context of the example illustrated by the Figure 4.3.1 the process
in question can access all files below /ete, with exception of /etc/shadow,
but only for reading. Writing to this subtree will not be permitted.

File System Access Domains are built upon the traditional UNIX idea
of changing root directory (popularly called chroot) for a process in order to
confine it to a subtree of the file system. The chroot approach proved to be
very inflexible as it is only capable of confining a process to a single whole
subtree of the main file system tree.

LinSec File System Access Domain is abbreviated AD in the rest of the

report.

4.3.2 Overview

All Linux processes, except for the process 0, are running image of an ex-
ecutable file and are owned by a user. Therefore Process ADs (Subsection
4.3.7) have to reflect both User AD privileges (Subsection 4.3.6) and Ex-
ecutable File AD privileges (Subsection 4.3.5). Furthermore, Process ADs
have to be inherited through execution chains and through the changes of
process ownership in a manner that obeys the principle of Least Privilege

(Subsection 4.3.8).

4.3.3 Access Domain Elements

LinSec ADs are described in terms of directories and files that are referred to
as AD FElements. Each AD Element consists of description of the directory

or file it represents and a flag. The flag denotes whether an AD Element
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can be inherited (Subsection 4.3.8) and whether it represents exclusion from

AD (the example, Subsection 4.3.1).

4.3.4 Access Domain Groups

AD Groups are used for grouping individual AD Elements together to aid
the ease of system configuration. The idea of AD Groups, analogous to the
idea of Capability Groups (Subsection 4.2.6), exploits the fact that typical
system configuration will require only a small number of very similar, and
often the same, ADs. The number of the AD Groups that can be created in
a system ensures that the possible granularity of mandatory security policy
is not limited severely.

AD Group with id 0 represents the default AD Group and is treated in

a special way (Subsection 4.3.5).

4.3.5 Executable File ADs

With every executable file two sets of AD Groups can be associated:

e Read Only AD Groups, and

e Read Write AD Groups.

Elements of which form Read Only and Read Write ADs of a process
respectively, as specified in Subsection 4.3.1. Executable File ADs represent
minimal portions of a file system that the running image of the executable
needs to be able to access for its correct operation.

The AD Group 0 (Subsection 4.3.4) is forced into the executable files
Read Write AD, as the default AD group.

4.3.6 User Access Domains

In analogy to the executable file ADs (Subsection 4.3.5 ), with every user in

the system two sets of AD Groups can be associated:
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e Read Only AD Groups, and

e Read Write AD Groups

Forming Read Only and Read Write ADs for the user respectively. In

addition, another AD can be associated with every user:
e User Default Read Write AD

which contains user specific AD Elements such as the user’s home dir,

mail spool dir etc.

4.3.7 Process Access Domains

Since processes are the only active entities in an operating systems, AD as-
sociated with each of them needs to reflect permissions (ADs in this context)

of:

e executable file (Subsection 4.3.5) whose image a process is running,

and
e user on whose behalf it is running.
Therefore, each process’ AD is split into:
e User AD (as specified in Subsection 4.3.6), and
e Executable File related AD.
The latter consisting of:

e Non-Inheritable Read Only AD,
e Non-Inheritable Read Write AD,

e Inheritable Read Only AD, and
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o Inheritable Read Write AD

obtained when executable file ADs (Subsection 4.3.5) are split by the
value of the non-inheritable flag of every AD Element contained. Elements
of the Non-Inheritable AD do not take part in the AD Inheritance Algorithm
(Subsection 4.3.8).

The reason for keeping User ADs and FEzecutable File ADs separately
within a process is put forward in Subsection 4.3.8.

The structure of a Process AD is illustrated in Figure 4.3.7.

Process’ ADs

T~

Exec File's ADs

/ \ User’'s ADs
Non Inheritable Inheritable / \
Default AD
AN AN
Read Only AD Read Only AD Read Only AD Read-Write AD

Read-Write AD Read-Write AD

Figure 4.3: Process’ AD structure

4.3.8 Access Domain Inheritance

There are two events in the lifetime of a process when its AD needs to be

altered:
e When a process executes another binary, or
e When ownership of a process changes.

When an executable is invoked by a process, the process’ AD needs to
be modified to account for the AD of the newly executed file. The algorithm

adopted for process AD recomputation, on the former event, is:
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1. inh_rw_acd* = inh_rw_acd + executable—inh _rw_acd
2. ninh_rw_acd* = executable—ninh_rw_acd
3. inh_ro_acd* = inh_ro_acd + executable—inh_ro_acd

4. ninh_ro_acd* = executable—ninh_ro_acd
Where:

e inh_rw_acd*, ninh_rw_acd*, inh_ro_acd*,ninh_ro_acd* are inheritable
and non-inheritable read-write and read only ADs obtained after the

execution of the algorithm respectively.

e executable—inh rw_acd, executable—ninh rw_acd,
executable—inh_ro_acd, executable—inhrw_acd are read-write
and read only ADs associated with the executable file split into
inheritable and non-inheritable portions by examining value of the

inheritance flag of the constituent AD Elements respectively.

e inh_ro_acd, inh_rw_acd are Inheritable Read Only and Read-Write

ADs of the current process before the execution of the algorithm.

As can be seen from the algorithm, Non-Inheritable ADs of the process
involved are not taken into account when computing new ADs — they are
just overwritten. This allows security policy administrator to decide on
AD Elements associated with an executable that will be passed over to any
other executable in the exec call chain (these AD Elements will not have
their inheritance flag set to the Non-Inheritable value).

When ownership of a process changes the only thing that needs to be
altered is User ADs associated with the process. This is simply accomplished
by swapping User ADs of a user owning the process with User ADs of the

new owner.
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With reference to Subsection 4.3.7, if User ADs and Executable File ADs
were not kept separately, in the context of a process, it would be extremely
complicated to properly alter Process ADs on the change of ownership as
it would be impossible to differentiate between AD Elements that originate
from owner’s ADs and the ones that were inherited from a, possibly very
long, exec call chain. The chosen solution is a tradeoff between the complex-
ity of the AD Inheritance algorithm and some overhead on performing access
control checks. As is shown in Subsection 4.3.9, it is much more important

to keep the inheritance algorithm simple.

4.3.9 File System Access Domain Access Control

LinSec groups all access types into two broad categories for the access control

purposes:

e read access: read files, search directories, execute files, follow links

etc., and

e write access: create, write, delete, move etc. files and directories.

In general, the AD access control algorithm works as follows: ADs of
a process requesting access are checked for existence of the absolute path
elements of the target file or directory in reverse order starting with the

target file or directory. The algorithm has two possible outcomes:

o Refuse access: when none of the elements of the absolute path of the
target file or directory exist in the process’ ADs, including the file
system root, or when an path element is found in the process’ ADs

but is marked as excluded from the AD.

e (rant access: if an absolute path element of the target file or directory
was found in the process’ ADs and the matching AD Element is not

marked as excluded from the AD.
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Granting access in context of LinSec File System Access Domains means
that request is passed on to the lower level file system kernel code, as illus-
trated in the Figure 4.3.1.

In context of the example from Subsection 4.3.1: access to the file
/etc/shadow would be refused for the process as there exists a match de-
noting exclusion for the requested path (/etc/shadow) in the process’ ADs.
Both read and write access to eg. /usr/doc/faq/Linuz/intro.html would be
granted as there exist a match, that is not exclusion, for /usr element of the
target path. Finally, write access to eg. /etc/inetd.conf would be refused,
even though there is a match for /etc that is not an exclusion, as the AD
where the match is found is denoted as Read-Only.

If an access of category write is requested the requesting process’ ADs

are checked as explained above in the following order:

1. User’s Read Write AD
2. Executable Files’ Non-Inheritable Read Write AD

3. Executable Files’ Inheritable Read Write AD

If an access of category read is requested the check proceeds as if the
access request were of the write category. If no hits are encountered in the

process, the algorithm proceeds to examine:

1. User’s Read Only AD
2. Executable Files’ Non-Inheritable Read Only AD

3. Executable Files’ Inheritable Read Only AD

N.B. User’s Default AD is considered as a part of the User’s Read-Write
AD.

The order in which different ADs are checked provides scope for opti-

mization depending on the nature of overall system use. The above scenario
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assumes that most of the activity on the system is initiated by users and
that is why User’s ADs have precedence in the ordering. Simply, the proba-
bility of a hit in User’s AD is high in the context. However, if, for example,
a web server is considered, checking Executable Files’ ADs first would yield
better performance. Thus, the ordering in which the check proceeds should
be configurable to ensure best performance.

The AD access control algorithm implements the first match policy. It
is important to emphasize this point for the complete understanding of the
resulting behavior. The behavior was illustrated in the previous example by
the fact that on successful match of /etc/shadow against one of the process’
AD entries the algorithm stopped further execution and access was refused

immediately®.

4.4 LinSec IP Labeling

4.4.1 Background

All remote host based attacks that take place in the Internet environment use
existing network tools, clients and purposefully written software to penetrate
remote hosts.

To aid the description the following example is used: Two hosts involved,
A and B. Host A is a mail server running a buggy version of Sendmail
MTA (Mail Transport Agent) which has a buffer overflow vulnerability. An
attacker, operating from host B, has a script that connects to the Sendmail
port and exploits the buffer overflow thus gaining the attacker root shell
access to the remote machine, host A.

Obeying the principle of least privilege, mandatory security policy of an

system should be able to restrict network connections to only the processes

8The behavior of AD access control algorithm is equivalent to the behavior implemented

by network firewall rule matching algorithms.
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that legitimately need them. In the above example, if such a policy was
in place, the attacker’s script would be denied the permission to establish
connection with Sendmail on host A as the only software that needs to be
able to communicate to remote MTAs are local MDA (Mail Delivery Agent)
i.e. mail clients and local MTA used for relaying mail, if it exists. Fur-
thermore, local MTA and MDA should not be allowed to establish network
connections if destination port is different than 25 (mail exchange/delivery
port) as they do not need the functionality for the correct operation. It
is impossible to enable this sort of behavior by using the traditional fire-
wall approach as the firewall software available can not be used to specify
fine-grained enough policy which would make distinction between individual
processes as needed. This is exactly where the IP Labeling model fits in,

depicted in Figure 4.4.1.

Process’ INET Net Request Request Result
userspace

kernelspace

, LinSec IP Labeling Access Control A

Linux Networking code

Figure 4.4: How LinSec IPL fits into Linux networking subsystem

Acronym IPL is used to mean IP Labeling in the rest of the text.

4.4.2 Overview

To obey the Least Privilege principle, in context of the network connections
established by a process, each executable file in the system may be assigned
a list of rules describing its allowed outgoing connections (Subsection 4.4.5).
These rules are transformed into a Process IPL List (Subsection 4.4.6) once

an executable is executed. In case of the Process IPL Lists there is no need
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for inheritance across the execution chains (Subsection 4.4.7).
Current LinSec IPL design covers the TCP/IP set of protocols only.
However, it should be possible for the principles to be applied to other

transport level? protocols supported by Linuz.

4.4.3 IPL Elements

LinSec IPL Lists are specified in terms of IPL Elements. Each IPL Element
consists of an IP address, corresponding IP netmask, range of ports and
a protocol identification. IPL Elements represent destination address and

port for the specified TCP/IP protocol.

4.4.4 1IPL Groups

Analogous to the idea of Capability Groups (Subsection 4.2.6), Access Do-
main Groups (Subsection 4.3.4) and IP Chains (standard Linuz firewall
software) IPL Groups consist of a number of IPL Elements. IPL Groups aid
the ease of LinSec IPL configuration and maintenance.

IPL Group 0 is denoted the default IPL Group and has a special meaning

as specified in Subsection 4.4.6.

4.4.5 Executable File IPL

With each executable file in the system a set of IPL. Groups can be as-
sociated. This set forms, so called, IPL List describing in full network

connections that a process running the executable can establish.

4.4.6 Process IPL

IPL List associated with any process in the system is simply the IPL List

of the executable file the process is running the image of. If there is no IPL

9As in the OSI seven layer model.

48



List specified for the executable or the IPL List is empty the process’ IPL
List consists only of IPL Elements belonging to IPL Group 0.

4.4.7 IPL Inheritance

Effectively, there is no inheritance performed on IPL Lists. When a process
executes another executable the existing IPL Lists are simply overwritten.
The reason for this design decision was that no examples requiring the fea-
ture were found and, more importantly, that the IPL inheritance would open
the possibility of attacks on the IPL model. An example of possible attack
scenario would be causing a mail client, which obviously needs to have per-
mission to connect to local and/or destination MTA, to execute a script via
buffer overflow or similar. This would cause the script to inherit the mail

client’s IPL Lists which is undesirable.

4.4.8 IPL Access Control

IPL Access Control takes place when requested operation and specified

INET protocol are one of the following:

e connection establishment, TCP
e connection establishment!? or message sending, UDP

e message sending, RAW

Since TCP is connection oriented protocol no messages can be exchanged

if the connection has not been established first. This is why it is enough

10Standard Linuz network API provides the notion of a connected UDP socket. UDP
socket connection is effectively only a kernel association between a connection id and a
destination address. Programmers in user space use the network id, obtained when the
connection is established, for sending UDP datagrams and the kernel ensures that the

network id is properly matched to desired destination address.
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to check IPL Lists only on connection establishment request for TCP. The
same does not apply to UDP or RAW INET protocols.

In all of the above specified operation/protocol combinations network
request specifies destination entity in terms of a IP address and, if the pro-
tocol is not RAW, destination port. IPL Access Control algorithm grants
the request i.e. passes the request to the lower OS layer as specified in Fig-
ure 4.4.1 if an IPL Element is found in requesting process’ IPL List that

matches the following criteria:
1. ipl_element—protocol == request—protocol

2. ipl.element—ip_addr & ipl_element—netmask ==

request—destination_ip & ipl_element—netmask

3. If protocol used is not RAW,

o (request—destination_port > iplelement—start_port) AND
(request—destination_port < ipl elementi—end_port), if both

ipl_element—start_port and ipl_element—end_port are defined,

or

e request—destination_port == ipl element—start_port, if only

ipl_element—start_port is defined.
Where:

e anything prefixed with ipl_element represents contents of the matching

IPL Element, and

e anything prefixed with request represents network request’s destina-

tion parameters.

Port range checking is not applicable for RAW protocol and that is why
the last step of the access control algorithm is skipped if RAW protocol is

used.
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The algorithm, as such, implies default DENY_ALL policy as if no
matching IPL Element is found the requested network operation is refused.
This can be overridden, although it is not advisable, by putting IPL Element
with IP addr 0.0.0.0 and netmask 0 in the, default, IPL. Group 0.

4.5 Summary: LinSec Mandatory Security Policy

4.5.1 Overview

LinSec Capability model (Section 4.2), File System Access Domains (Sec-
tion 4.3) and IP Labeling (Section 4.4) mechanisms form a very powerful
mandatory security model when combined. This model, however, would be
of little practical value unless substantial amount of flexibility for specifying
mandatory security policy on top of it was provided.

In the following three subsections elements of LinSec mandatory security
model that can be configured to yield overall system mandatory security
policy are listed. The individual elements listed are grouped according to
the sections they were defined in. For the explanation of LinSec specific

terminology please refer to the appropriate sections of this chapter.

4.5.2 Capability Model
e User Capability Groups
e User Capabilities (uP, uB, User Capability Groups membership)
e Executable File Capabilities (fA, fF.fE and INET Socket Capabilities)

e Global Bounding Capability Set (gB)

4.5.3 File System Access Domains

e Access Domain Groups (in terms of Access Domain Elements)
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e Executable File Access Domains (Read Only and Read-Write)

e User Access Domains (Read Only, Read-Write and Default User Access

Domain)

4.5.4 1IP Labeling

e IP Labeling Groups (in terms of IP Labeling Elements)

e Executable File IP Labeling List (in terms of IP Labeling Groups)

4.5.5 LinSec Mandatory Security Policy Specification

The flexibility provided by LinSec for specifying the mandatory security
policy, in terms of the above listed elements, is immense. Policies can also
be of arbitrary granularity ranging from the very coarse-grained ones that
effectively mimic the traditional Linuz behavior to extremely fine-grained
ones that define different roles for each of the users and different privileges
for every executable file. The functionality to implement the principle of
Least Privilege exists, it is up to the system administrator to implement it.

LinSec mandatory security policy can be specified by any process that
has CAP_LINSEC_ADMIN capability in its effective set. It should be em-
phasized that notion of the security policy administrator was not used in
the previous sentence as the capability model dictates that access control is
not based on user identities but on capability possession. One or more users
in the system might be assigned CAP_LINSEC_ADMIN and act as security

policy administrators.
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Chapter 5

Implementation

5.1 Introduction

5.1.1 Chapter Contents

This Chapter covers the implementation of LinSec, as specified in Chapter
4, in the Linuxz kernel. Due to the space constraints on this report the
implementation is presented on a rather high level with the exception of
particularly interesting parts and problems encountered. Effort was made
to explain implementation of the core LinSec mechanisms which is impor-
tant for proving that the concepts specified in Chapter 4 are practically
viable for employment in an mainstream operating system. For full details
on the implementation a reference to the, well documented, source code is

recommended.

5.1.2 Prerequisites

In order to be able to follow all the details in this Chapter, the reader is
expected to be confident with C programming and operating system design.

Some Linux and UNIX expertise is needed as well.
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5.1.3 Implementation Overview
General Information

LinSec design, as specified in Chapter 4, was implemented fully in Linuz
kernel in approximately five thousand lines of C code. The implementation
begun on Linuz kernel version 2.4.15 and was ported onwards to the newer
stable versions as they were published. Eztended Ext2 FS Attributes (EA)
kernel extension is used by LinSec implementation to enable association of
special attributes with files as specified in the Subsection 5.3. At the time
of writing this report, the current stable versions of Linuz kernel and EA

patch are 2.4.18 and 0.8.20 respectively.

Implementation approach

LinSec was developed in a modular fashion. Three main modules were

identified:

e LinSec Capability Model
e LinSec File System Access Domains

e LinSec IP Labeling

Once implemented, each of the modules was thoroughly tested through
real time use and behavior monitoring. Furthermore, each of the modules
was built as a sequence of standalone increments. Effort was made to make
increments as fine grained as possible to aid tracing of possible bugs through
kernel. Acceptance criteria for the increments was that they could be con-
figured in a way which would result in the modified Linuz kernel produce
the traditional behavior. Only when the entire modules were built was it

possible to test the desired LinSec behavior.
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Linux Kernel Subsystems Affected

LinSec implementation affected the following subsystems of the Linuz ker-

nel:

e File System (linux/fs), including Ezt2 (linux/fs/ext2) and Fzt3
(linux/fs/ext3) file systems.

e Networking System (linux/net), IP v4 in particular (linux/net/ipv4).
e Kernel Initialization System (linux/init).

e Kernel Core System (linux/kernel).

Endeavor was made to spread LinSec code across kernel as little as possi-
ble. Most of the LinSec code is contained within newly created files prefixed
with linsec_ and stored in linux/kernel directory. Original kernel code was
altered only to add calls to LinSec specific functions where needed. Fur-
thermore, all of the LinSec code can be left out of the compiled kernel if

CONFIG_LINSEC option is not chosen when selecting the compile options.

5.1.4 Chapter Layout

This Chapter proceeds in a way the actual implementation went with slight
alterations for the reasons of clarity. For successful implementation a good
understanding of Linuz kernel was needed (5.2) in the first place. To pro-
vide flexibility in defining LinSec mandatory security policies, configuration
data (5.3) and the process of communicating that data to LinSec (5.4) had
to be specified. The choice of LinSec data structures and Linuz data struc-
tures that would play major role in LinSec (5.5) was as important as the
implementation of LinSec algorithms that manipulated the data (5.8, 5.9,
5.10, 5.11). The LinSec algorithms are triggered by the relevant existing

Linuz mechanisms (5.12). Finally, to setup and administer a proper LinSec
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mandatory security policy a set of userspace administrative tools is needed

(5.13).

5.2 Linux Kernel Analysis

With reference to the LinSec design (Chapter 4), four kernel mechanisms

that would suffer most alterations were identified as:

e Access Control
e Executing a binary
e Changing ownership of a process

e Sending packets via INET protocols

Although level of understanding of these mechanisms was high on the
theoretical side [14, 25, 6], some practical insight into up-to-date kernel
was needed before the actual implementation started. The approach used
was to place calls to LinSec functions where it was thought they should
go, determined by reading the kernel source, but with the actual LinSec
functions being dummies printing a text message via printk. This proved
invaluable as it revealed some undocumented intricacies of the Linuz kernel.
Having the actual references to LinSec code in correct places in Linuz kernel

formed a framework for further implementation.

5.3 LinSec Configuration Data

LinSec Configuration Data is the data representing LinSec mandatory se-

curity policy for a system. It can be roughly divided into two groups:

1. data closely related to a particular executable file, eg. File Capabili-

ties, File Access Domains etc., and

56



2. other, more general, data eg. Capability Groups, IP Labeling Groups

etc.

To avoid penalties of frequent access to configuration files or occupying
large chunks of kernel memory, data of the group 1 is kept in the disk blocks
used by a particular executable file. The configuration data is stored in a
way that enables it to be read together with the other file’s data, avoiding
the penalties of additional reads. Functionality that provides this is not in
the original implementation of Linux kernel but is part of Eztended Ext2 &
Ezt3 Attributes [15] kernel patch (add-on) used for the purpose.

The group 2 consists of (Chapter 4):

Capability Groups configuration data

Access Domain Groups configuration data

Per User configuration data

IP Labeling Groups configuration data

This data is kept in configuration files that are read during the system
boot and stored in, LinSec implemented, kernel buffers. The data structure
used for the LinSec kernel buffers is a chained hash table as it provides an
average O(1) access time for locating an element. For each of the buffers
(storing one of the above configuration data types) a set of functions for
manipulation (retrieve, update, create and delete) of the data is provided.
An important detail to emphasize is that any function that retrieves an
element from one of the buffers returns a copy of the actual element and
not the reference to it. This prevents various race conditions from occurring

due to data sharing.
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5.4 LinSec Configuration Process

LinSec mandatory security policy can be fully configured at runtime, with-
out the need for system to be rebooted. In addition to storing configuration
data on stable storage, as outlined in Section 5.3, the data can also be fed
to the running kernel through /proc file system interface implemented by
LinSec. The changes in configuration can, thus, have an immediate effect.
In case of manipulation of LinSec user configuration data, privilege revo-
cation for all of the processes owned by the user in question takes place
atomically (Subsections 5.8.6, 5.9.4). LinSec /proc runtime configuration
interface caters for creation, modification and deletion of any of the manda-

tory security policy elements specified in Section 4.5.

5.5 LinSec Data Structures

LinSec implementation defines many data structures most of which are ob-
vious from Chapter 4 (eg. Capability Group, AD Group etc.) and detailed
consideration of which is therefore omitted.

Two data structures, however, are worth mentioning explicitly as they
take direct part in the enforcement of LinSec mandatory security policy and
will, therefore, be referred to frequently in this Chapter. These structures

and their main roles are:

e linsec_usr (linux/linsec_dt.h): holds per user configuration data such
as capability sets, access domain elements etc. (refer to Chapter 4 for

full set of items).

e linsec_task (linux/linsec_dt.h): generated runtime for each of the pro-
cesses in a system, containing privileges of the executable file each of
them is running (refer to Chapter 4 for a list of mandatory security

policy data associated with executable files).
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Both of the structures are referenced from the Linuz per process struc-
ture struct task_struct as illustrated in Figure 5.5 (cardinality is indi-

cated on the arrows).

*.1 1.1
struct user_struct linsec_usr
*.1
linsec_task
struct task_struct

Figure 5.1: Linux - LinSec per process data struct relationships

Mapping of struct task struct to linsec_task is many to one as
the reference to linsec task is copied (shared) on process forking'. To
be able to free memory occupied by a linsec_task once it is no longer
needed, the structure contains, among other elements, a reference count de-
noting the number of struct task_struct structures that are referencing
it at any particular moment. The reference count is increased on a call
to do_fork (kernel/fork.c) and it is decreased on a call to release_task
(kernel /exit.c), when a process dies or on call to do_execve (fs/exec.c)
i.e. when linsec_task for a process is replaced to reflect privileges of
the newly executed binary, respectively. Once the reference count reaches
0 memory occupied by linsec_task is released by linsec_cleanup_task
(kernel /linsec_misc.c).

linsec_usr structure is, as depicted in Figure 5.5, referenced from

! Creating new processes by calling the fork syscall.
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struct task_struct indirectly via the reference to struct user_struct.
struct user_struct is used in Linuz for user accounting and is shared?
among struct task struct structures describing processes owned by a
same user. Consequently, 1insec_usr is shared in the same manner among
struct task_struct structures. Unlike linsec_task, linsec_usr does not
contain any reference counts as it is safe to release memory it occupies once
the referencing struct user_struct is dismissed.

When a process changes its ownership, eg. by calling the sys_setuid
function, the struct user_struct referenced by it is replaced with the
struct user_struct corresponding to the new owner (uid) which in turn

references linsec_usr for the new owner (uid).

5.6 SMP Issues

As of version 2.0, Linuz kernel supports Symmetric Multi Processing (SMP)
allowing processes to run in kernel mode in parallel on different processors.
To avoid race conditions on shared kernel data, Linuz kernel provides a set
of SMP specific lock data types and corresponding locking primitives. All
LinSec shared data structures are implemented in a SMP safe manner by
making use of the Linux SMP features. In particular, to enable capabil-

ity revocation (Subsection 5.8.6) and access domain revocation (Subsection

2The first implementation of linsec_usr actually contained a reference count field
which was managed in the same sort of way as for linsec_task structure. This, however,
did not reflect completely the shared nature of struct user_struct as the reference count
represented only the number of processes sharing linsec_usr that belong to the same pro-
cess creation subtree. It is possible for independently created processes to be owned by the
same user and therefore share struct user_struct and corresponding linsec_usr. This
omission was noticed when the code for releasing of the memory occupied by linsec_usr
was implemented and tested. The kernel OOPS messages caused by LinSec code referenc-
ing linsec_usr through invalid pointers were extremely difficult to follow and it was very

hard to locate the problem.
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5.9.4), linsec_usr structure contains a set of, so called, spinlocks, that are
used to protect relevant portions of the structure as they are being up-
dated. There is no need for the similar mechanism to be implemented for
linsec_task as its contents are only used for read operations once they are

created.

5.7 LinSec Lifetime

LinSec lifetime, from system boot until system shutdown, can be divided

into two phases:

1. Initialization: used to set up LinSec (read configuration files, initialize

kernel buffers, etc.), and

2. Operation: LinSec mandatory security policy enforcement.

The Initialization phase is performed after main kernel subsystems
have been set up and just before init executable is loaded (func-
tion linsec_do_setup, kernel/linsec_setup.c, called from function init,
init/main.c). Thus, LinSec mandatory security policy enforcement starts

from the very beginning of the userspace system boot phase.

5.8 LinSec Capability Model

5.8.1 Linux Legacy
Overview

Linuz implements POSIX 1003.6 (Subsection 4.2.2) capability model to min-
imal possible extent in order to be able to claim compliance. No flexibility
in terms of specifying any form of capability policy is provided. In fact, all

of the relevant configuration details have been hardcoded in a manner which
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ensures traditional Linuz behavior®. Some of the elements of the capability
model implementation are reused by LinSec, with substantial alterations,
and some had to be excluded, as outlined in the rest of the section.

This section outlines how LinSec fits into the existing Linuz capability

model.

Capability Representation

Linuz implements capabilities as values ranging from 0 to 31. The particular
range is chosen for the easier representation in a 32-bit bitmaps where each
capability occupies one bit. As already existing capabilities occupy values
up to 28, LinSec implementation had to enlarge the possible maximum
capability value to 63. This implied a change of bitmap size for capability
set representation from 32 to 64 bits. The alterations were carried out in

linux/capability.h header file.

Supporting Functions

Linuz capability implementation also provides a basic set of functions and
macros for capability and respective bitmap manipulation. These functions

are used in LinSec but are adapted to support 64 bit wide data types.

The Task Structure

Linuz standard definition of struct task_struct contains elements repre-
senting process’ effective, permitted and inheritable capability sets as defined
by POSIX 1003.6. These are of the type kernel cap-t (linux/capability.h).
LinSec did not alter these as changes made in linux/capability.h propagated

automatically through the definition of kernel cap_t.

3Mainly traditional DAC behavior.
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User Capabilities

No support for configuring user capabilities exists in Linuz. The values of

capability sets used in the struct task_struct are hardcoded as:

e full capability set for root (uid 0), and

e empty capability set for “the rest of the world”.

Inheritance Algorithm

Linuz capability inheritance algorithm is presented in Subsection 4.2.9 and
is implemented in the function compute_creds contained in the source file
fs/exec.c. Effectively, the only thing it does, in the current Linuz capabil-
ity model implementation, is to ensure that root owned processes have all
privileges and that processes owned by anyone else have none. LinSec im-
plementation carried out substantial changes of the algorithm, as specified

in the Subsection 4.2.9.

Hardcoded Mechanisms

To support the “patchwork” implementation of capabilities certain related
mechanisms had to be hardcoded. Two, in particular, had to be disabled as

they did not comply to LinSec mandatory security model:

e When a process dies all its children are reparented to init (function
reparent_to_init, kernel/sched.c). In doing so, capabilities of the
orphaned processes are raised to full. Thus, processes having no privi-
leges initially can obtain them all if orphaned. Clearly an undesirable

effect in a mandatory security environment.

e When a non-root user executes a suid binary capability sets are
adopted to allow the process to perform actual change of ownership

(function prepare_binprm, kernel/sys.c).
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5.8.2 Executable File Capabilities

Executable File Capabilities are implemented as extended attributes (Sec-
tion 5.3) of executable files. System administrator can manipulate the at-
tributes as part of the LinSec mandatory security policy configuration pro-
cess (Section 5.4). Executable File Capabilities are retrieved from extended
attributes of a particular executable file, when they are needed, by the Ca-

pability Inheritance Algorithm (Subsection 5.8.4).

5.8.3 User Capabilities

User Capabilities are specified, by the system administrator, as part of gen-
eral LinSec per user configuration and are stored in the linsec_usr struc-

tures.

5.8.4 Capability Inheritance Algorithm

Capability Inheritance Algorithm was implemented in full as specified in
the Chapter 4 (Subsection 4.2.9). The inheritance algorithm (function

linsec_compute_creds, linsec_exec.c) is invoked in two occasions:

e when a new executable is loaded by a process, to reflect the executable
file’s privileges (eg. when exec is called by an userspace program to

run some other program), and

e when a process changes its ownership, to reflect privileges of the new

owner (eg. when setuid function is called by a suid binary).

Therefore, a call to 1insec_compute_creds is placed in compute _creds
(fs/exec.c) function invoked from do_execve (fs/exec.c) and also
in linsec.do_suid (kernel/linsec_suid.c) invoked from the family of
sys_setXuid (kernel/sys.c) functions. linsec_do_suid also handles manip-

ulation of linsec_usr (Section 5.5).
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5.8.5 Linux Process Ownership Model Problem

In a traditional Linuz approach all processes executed during the boot phase
are owned by root (a user with uid 0).

This behavior is hardcoded in Linux kernel when the init binary is exe-
cuted (definition of INIT_TASK, linux/sched.h). With the introduction of the
mandatory security policy definition (Chapter 4) the notion of the root (uid
0) user, as all powerful, was lost and it became equal to any other user in
a system. This creates a complication on boot time if the privileges of the
root, as defined in LinSec security policy for the system, are too restrictive.

To overcome the problem of association of boot processes with root user
(uid 0), LinSec hardcodes (setup-init_task, kernel/linsec_setup.c) a spe-
cial instance of linsec_usr structure (Section 5.5) to which a reference is
placed in struct task_struct (via struct user_struct) describing init
task. Values in the linsec_usr structure are chosen so that after the Ca-
pability Inheritance Algorithm (Subsection 5.8.4) is executed only privilege
settings associated with the executable file a particular process is running are
reflected in the actual process’ capability settings. This special linsec_usr
settings are inherited by all children of init until the first call to setuid
(Section 5.5) for each of them.

In this way, all programs executed during the boot phase of a system are

effectively disassociated from users, as desired.

5.8.6 User Capability Revocation

When user capability sets are modified (through linsec_usr) and the mod-
ifications are fed to running kernel (through /proc interface) two actions are

performed by LinSec:

e appropriate linsec_usr structure in LinSec kernel buffer is updated,

and
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e struct user_struct for the affected wuser is located (
linsec_user_struct_find, kernel/user.c) and, if it exists, the

referenced linsec_usr is updated accordingly.

It might be the case that no process is currently running under ownership
of the user whose settings have been changed so that corresponding struct
user_struct does not exist in kernel buffers. In this case the second action
is skipped. Update of linsec_usr capability related fields is done, in the
latter event, while holding appropriate spinlocks (Section 5.6). The effects
of the changes done to 1insec_usr will be observable on the next execution

of the Capability Inheritance Algorithm (Subsection 5.8.4) for the user.

5.8.7 Process Information Hiding

LinSec configurable mandatory security policy provides two ways of hiding

information related to processes (Chapter 4, Subsection 4.2.11):

e hide all info about a process, and

e hide info about network connections of a process.

Functionality, for both of the options, is implemented by forcing kernel
functions that provide the information, obtainable through /proc file system,
to omit the relevant data belonging to the hidden processes.

In the first case, it is enough to test whether the process to be listed
has CAP_PROC_HIDDEN in its effective capability set. The struct
task_struct for any process is easily located given the pid (process iden-
tifier). The functionality is implemented in function get_pid list in
fs/proc/base.c.

The second case, however, proved to be much more tricky to imple-
ment Linuz kernel does not provide a mechanism to determine struct

task_struct of a process that created a socket given struct sock
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(net/sock.h) structure that describes the socket. It is possible to find process
group owning a socket (receiving IO signals on the socket) but that is not
good enough. Therefore, LinSec had to extend struct sock by adding a
flag element that shows whether a socket is hidden or not, determined by
the existence of the CAP_NET_HIDDEN capability in the effective capa-
bility set of the process that created the socket at the time of the creation
(sys_socket function in net/socket.h had to be modified). After such a so-
lution has been implemented, it was enough to extend appropriate functions
in net/ipv4/raw.c, net/ipv4/udp.c and net/ipv4/tcp_ipv4 to filter network in-

formation they provide to the /proc interface based on the flag value.

5.9 LinSec Filesystem Access Domains

5.9.1 Executable File Access Domains

Executable File Access Domains are implemented as extended attributes
(Section 5.3) of executable files. Each of the executable file ADs (Chapter
4), Subsection 4.3.5) is defined in terms of:

e AD Groups (Subsection 4.3.4) executable file is a member of, and

e AD Elements (Subsection 4.3.3) belonging to the AD Groups exe-

cutable is a member of but with differing flag value.

Rationale for implementing the latter feature has to do with optimiza-
tion issues. LinSec implementation allows a maximum of 64 AD Groups to
be defined for the ease of implementation and for the performance gains of
representing AD Groups and AD Group sets as 64 bit bitmaps. However, if
new AD Groups had to be created whenever an executable requires an AD
which differs from what can be obtained from one of the existing AD Groups
just in value of the flag of one or more of constituent AD Elements, the max-

imum number of AD Groups would soon become a bottleneck. Therefore,
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LinSec allows executable files to override the flag setting of a number of
AD Elements belonging to AD Groups they are a member of by explicitly
specifying AD Elements in question and storing them directly in extended
attributes along with the AD Group membership information. For example,
supposing that AD Group 1 contains an AD Element denoting that /etc
directory can be accessed and that an executable file foo needs exactly the
AD as described by AD Group 1 but with /etc excluded from it. Instead
of defining a new AD Group for the purpose, system administrator can give
foo a membership of AD Group 1 and, in addition, explicitly assign foo an

AD Element representing /etc but with flag value denoting the exclusion.

5.9.2 Access Domain Representation

User Access Domains (Chapter 4, Subsection 4.3.6) and Process Access Do-
mains (Subsection 4.3.7) are kept in linsec_usr and linsec_task structures
(Section 5.5) respectively.

Process Access Domains are represented in 1insec_task in terms of AD

Elements rather than AD Groups for two main reasons:

e chained hashing, used for storing AD Elements, provides much better

search performance than would traversing AD Group definitions, and

e AD inheritance would be much more complicated in terms of AD
Groups with respect to possible variability in the value of flag field
of AD Elements.

User AD settings are kept in 1insec_usr both in terms of AD Groups and
in terms of AD Elements. While linsec_usr is stored on stable storage (in
config files) and while it is kept in LinSec kernel configuration buffers there is
no need to represent User ADs in terms of AD Elements (except User Default
R-W AD which is configured in terms of AD Elements) as no AD operations

are performed on the structure as such. Once a copy of linsec usr is
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requested (linsec_get_user function, kernel/linsec_buffs.c), to be referenced
from a struct user_struct (Section 5.5), AD Group representation of User
ADs is expanded into corresponding AD Element representation which is

stored in hash tables* of the 1insec_usr copy returned.

5.9.3 Access Domain Inheritance

Access Domain Inheritance algorithm was implemented in full ( do_ad_inh
function, kernel/linsec_exec.c) according to the specification in Chapter 4
(Subsection 4.3.8). The inheritance algorithm is triggered by a new binary
being loaded for execution (from do_execve function, fs/exec.c) to reflect
privileges of the executable file in 1insec_task structure. When ownership
of a process changes (sys_setXuid family of functions, kernel/sys.c), there is
no need to perform the inheritance algorithm explicitly as the replacement
of linsec_usr itself (Section 5.5) achieves the desired shift in privileges for
the process.

During testing it arose that no AD inheritance should take place if pro-
cess ownership change occurred before a call to do_execve (fs/exec.c). For
example, shell program should not inherit AD settings from login pro-
gram that executed it. Therefore on call to one of sys_setXuid func-
tions (kernel/sys.c), linsec_do_suid, among other things, sets a flag (im-
plemented by LinSec) in struct task_struct to denote ownership change
for the process. When Access Domain Inheritance algorithm executes it
checks the flag for current process and if it is set no inheritance takes place

and the flag is cleared.

5.9.4 User Access Domain Revocation

User Access Domain Revocation is completely analogous to the User Capa-

bility Revocation (Section 5.8.6) in its implementation with the following

“chained hashing based on inode number
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slight differences:

e Changes to a linsec_usr structure referenced from a struct
user_struct structure are being carried out while holding AD related

spinlocks of the linsec_usr.

o Effects of the changes carried out on AD related fields in 1linsec_usr
are observable immediately after the update process has finished. This
is because AD access control checks take place directly on linsec_usr
and, unlike for the capability related fields, no separate algorithm has

to be executed to reflect the changes in process’ privileges.

5.9.5 Access Domain Access Control

AD Access Control mechanism was implemented fully as specified
in Chapter 4 (Subsection 4.3.9) in function linsec_check_ad _perms
(kernel /linsec_access_control.c).

After the inspection of all file system related system calls provided by
Linuz kernel it was noted that traditional DAC for all of them is performed
by the permission function (fs/namei.c). The logical choice would be to
place a call to 1insec_check_ad _perms in this function. The parameter to
the permission function that denotes a file, for which access control check
is to be performed, is of type struct inode (linux/fs.h). Unfortunately,
struct inode does not provide sufficient information for the algorithm to
be able to traverse the file’s parent directories up to the file system root as
required by the specification. Therefore, a call to 1insec_check ad perms
had to be placed in every single file system related system call just before a

call to the permission function to obtain the desired behavior.
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5.10 LinSec Socket Access Control

5.10.1 Socket Access Control Information Storage

Because of its “per executable file” nature, Socket Access Control (SAC)
(Chapter 4, Subsection 4.2.12) information is stored in extended file system
attributes of executable files. SAC is retrieved by linsec read file sac
function ( linsec_attr.c) when an binary is being read into memory for execu-
tion (do_execve, fs/exec.c). Once in memory, SAC information is stored in
linsec_task associated with the process that executed the binary (Section
5.5).

Due to the difficulty of matching struct sock (net/sock.h) with struct
task_struct of the process that created the socket, as explained in Subsec-
tion 5.8.7 and affecting access control algorithm (Subsection 5.10.2), LinSec
implementation was forced to extend struct sock by another element. The
new field represents capabilities required to communicate to a socket and is
initialized when the socket is being bound (sys_bind function, net/socket.c)
according to the info contained in 1insec_task of the process creating the
socket. If no SAC entry is defined for a socket being bound, the required

capability set is initialized to be empty.

5.10.2 Socket Access Control Algorithm

SAC algorithm is triggered by four events:

° 4 connection request using TCP (tcp-v4_connect,

net/ipv4/tcp_ipvé.c),
e a connection request using UDP® (udp_connect, net/ipv4/udp.c),
e a packet send request using UDP (udp_sendmsg), and

e a packet send request using RAW IP (raw_sendmsg, net/ipv4/raw.c).

% As explained in the Section 4.2.
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The algorithm proceeds in the following steps:

1. Determine whether the destination IP address is local (
linsec_is_addr_local_v4, kernel/linsec_ipc.c). This is accom-
plished by traversing the list of registered network devices and
comparing I[P addresses bound to each one with the requested

destination IP.

2. Match the destination port number to a struct sock examining var-
ious protocol dependant hash tables. The matching is based on the

destination port number, network device id and the protocol used.

3. Check whether the process that requested the service contains capa-

bilities required by the socket in its effective capability set.

Only if the last step of the above algorithm fails, i.e. if the process
requesting the service is not allowed to communicate to the desired socket, is
the service forced to fail. Otherwise the algorithm exits and allows standard

Linuz networking code to continue servicing a request.

5.11 LinSec IP Labeling

5.11.1 IP Labeling Information Storage

As IP Labeling (IPL) (Chapter 4, Section 4.4) information is, by its defi-
nition, closely related to executable files it is, therefore, kept in extended
file system attributes of executable files. IPL lists of an executable file are
described in terms of IPL Groups file is a member of. In implementation
terms, extended attribute describing IPL list of an executable file just holds
a 64 bit bitmap in which each IPL Group is represented by a single bit. IPL
information is retrieved from extended attributes by linsec read file_ipl

(kernel/linsec_attr.c) when the executable is loaded in memory for execution
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(do_execve function, fs/exec.c). Once read, the bitmap is transformed into
a linked list of IPL Elements that is stored in linsec_task structure of the

process that called do_execve.

5.11.2 IP Labeling Access Control Algorithm

IPL Access Control Algorithm is implemented in linsec_check_ipl func-
tion (kernel/linsec_access_control.c) as specified in Chapter 4 (Subsection
4.4.8). The algorithm is triggered by the same set of events that cause
SAC (Subsection 5.10.2) algorithm to execute. A call to linsec_check_ipl
is, however, placed before a call to SAC algorithm, in the affected network
subsystem functions, to avoid the costly invocation of the SAC algorithm if

much faster IPL algorithm fails the service request.

5.12 Exec and Setuid

LinSec implementation, as outlined in this Chapter, heavily depends on two
kernel mechanisms to trigger LinSec specific process’ privilege recomputa-
tion mechanisms. As the mechanisms play the central role in LinSec and
they were referred to throughout the Chapter it is worth summarizing the
actions they trigger for clarity. The mechanisms, their role within LinSec

and the LinSec actions they trigger are:

e Executing a binary (do_execve function, fs/exec.c) - a trigger for pro-
cess’ privilege recomputation to reflect the privileges of newly exe-
cuted binary (linsec_do_exec, kernel/linsec_exec.c). LinSec actions

performed on the event:

1. recompute process’ capabilities, linsec_compute_creds function

(kernel/linsec_exec.c),

2. allocate new linsec_task structure for the process,
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3. read SAC settings from file’s extended attributes into the

linsec_task, linsec_read file sac (kernel/linsec_attr.c),

4. read IPL settings from file’s extended attributes into the

linsec_task, linsec_read file_ipl (kernel/linsec_attr.c),

5. if suid flag is not set in old 1insec_task perform AD inheritance,

do_ad_inh (kernel/linsec_exec.c),

6. read AD settings from file’s extended attributes into the
linsec_task, linsec read file adgrps (kernel/linsec_attr.c)

and expand_ad_gid (kernel/linsec_exec.c),

7. clean up old linsec_task, linsec_cleanup_task

(kernel/linsec_misc.c),

8. replace old linsec_task with the new one.

e Changing ownership of a process (sys_setXuid family of functions,
kernel/sys.c) - a trigger for process’ privilege recomputation to re-
flect privileges of the new owner (1insec_do_suid, kernel/linsec_suid.c).

LinSec actions performed:

1. set suid flag in current’s linsec_task to denote that process

ownership switch took place,

2. recompute process’ capabilities according to the new user’s ca-
pability settings and the capability settings of the binary whose

image the process is running.

Reference from linsec_task structure, describing the process chang-
ing the owner, to the linsec_usr structure, containing LinSec specific
information about the new owner, is updated prior to execution of the
above algorithm. As linsec_usr is referenced indirectly via struct
user_struct (Section 5.5), the update of struct user_struct (func-

tion set_user, kernel/sys.c ) is at the same time the update of the
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linsec_usr. However, if it happens that struct user_struct for the
particular user does not exist in kernel buffers at the time (i.e. no
process in the system are currently owned by the user), a new one is
created by the set_user function and appropriate linsec_usr is re-
quested from LinSec via linsec_get_user function. If no linsec_usr
for the user exists in LinSec kernel buffers a new one is created, ini-

tialized to default and stored in the buffers for future reference.

5.13 Userspace Administrative Tools

For LinSec to represent a fully functional package a complete set of userspace
tools to manage the mandatory security policy has to be provided. Due
to the time constraints, LinSec userspace tools have been regarded as an
external element from the project onset. However, LinSec provides interface
to userspace via config files and /proc file system (Section 5.3). The interface
implemented is complete and provides functionality for manipulating any of
the aspects of LinSec mandatory security policy specified in Chapter 4,
Section 4.5. The exclusion of the userspace tools from the project does not
hamper its academic value but it severely impacts LinSec acceptance in
the real world. As one of the aims of LinSec was that it should represent a
practical system the decision was made to allow external development of the
tools according to the strict interface specification. Userspace tools were,
therefore, implemented by Mr Bosko Radivojevic and Mr Veselin Mijuskovic
at the Computer Centre, Faculty of Electrical Engineering, University of

Belgrade.

5.14 Summary

LinSec implementation represents a complete realization of the design as

specified in Chapter 4.
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In as much as the design itself is clear and the concepts are well under-
stood, the implementation in the Linuz kernel proved very challenging. The
difficulties encountered were largely due to the sheer size of the Linuz kernel
source code (in excess of 2M lines of code) contributed to by hundreds of de-
velopers worldwide. From the very readable, easy to follow, largely MINIX
source code at the very beginning, Linuz kernel has evolved to a very in-
tricate set of optimizations, code interdependencies and side effects which
are anything but obvious or easy to follow. Not only did the LinSec imple-
mentation have to adapt to the Linuz kernel but some of the Linux kernel
mechanisms had to be altered to avoid clashes of methodologies (mainly
DAC vs. MAC issues). Combining LinSec design with an mature operating

system has shown to be equally challenging to devising the design itself.
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Chapter 6

Testing

6.1 Introduction

Due to the fact that LinSec was implemented as a Linuz kernel add-on
(patch) and is deeply embedded in it there is no way of running LinSec code
separately for testing purposes. Therefore, application of the standard test-
ing procedures found in software engineering books was simply not possible
for this project. LinSec was tested in a way that fits its nature, as described
in the rest of the chapter.

Figure 6.1 is a pictorial representation of the testing process and criteria
and the way it fits the overall structure of LinSec implementation. It is

further discussed in the following sections.

6.2 Test Criteria

Two main testing criteria were used for accepting or rejecting any tested

code:

1. Ability of the tested code, being embedded into the Linuz kernel and
running within, to reproduce the traditional Linuxz behavior. This

criteria was used to ensure the correctness of implementation of the
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_ Overall System
LinSec Test criteria: 1 & 2

LinSec Modules
Test criteria; 1 & 2

Capability Model Filesystem Access Domains IP Labeling

Various Sub—Modules Various Sub—Modules Various Sub—Modules

LinSec Sub—Module
Test criteria: 1

Figure 6.1: Approach to Testing

particular bit of LinSec code, both in terms of error free coding and

in terms of the correct interaction with existing Linuz mechanisms.

2. Ability of the tested code, running within the Linuz kernel, to produce
the required LinSec specific behavior as specified in the design (Chap-
ter 4). This criteria was used to ensure the correct LinSec specific

operation of the tested bit of code.

6.3 Test Process

LinSec was developed in a modular fashion as depicted by the tree in Fig-
ure 6.1. Firstly, it was subdivided into a set of modules that could exhibit

autonomous operation (middle layer in Figure 6.1) and then these mod-
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ules were subdivided into a set of comprising submodules that implemented
various parts of the overall module functionality (lower layer in Figure 6.1).

As they were implemented, each of the submodules was tested according
to the first test criteria (Section 6.2). The reason the second criteria was
not used in this case is that the submodules themselves were not able of
producing LinSec specific behavior on their own.

Once all of the submodules of a larger LinSec module were implemented
and tested on their own the module as a whole was tested. In this case, both
of the test criteria were used to ensure the correct interaction of submodules
among themselves and with the rest of the Linuxz kernel and also to test the
required LinSec specific behavior of the module.

Per module LinSec behavior included, among other:

e Capability module: configuring user (including capability groups) and
executable files’ capabilities and ensuring the correctness of the capa-
bility inheritance algorithm by observing the privileges of the running
processes. Distributing roles across users and disempowering root.

Testing capability revocation.

e Filesystem Access Domains module: configuring user and executable
files’ access domains (through the usage of the access domain groups)
and observing contents of access domains belonging to the processes in
the system to ensure the correctness of the AD inheritance algorithm
and other related mechanisms. Testing effects of various user and
executable files’ access domain configurations. Testing access domain

revocation.

e [P Labeling module: configuring IP labeling groups, associating them
to executable files and testing network connectivity of the correspond-

ing processes. Testing [P Labeling revocation.
Finally, when all of the modules were developed and tested, LinSec as a
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whole was tested. Again, both of the criteria were used to ensure the correct
intra module interaction, stable operation of the modified Linuz kernel and

the desired LinSec specific behavior of the overall system.

6.4 Test Environment
LinSec testing was carried out in two distinct environments:

e On a dedicated test machine with no other functionality which pro-

vided a strictly controlled environment, and

e On several Linux systems in Computer Centre, Faculty of EE, Uni-
versity of Belgrade, which have the role of secondary DNS, FTP and
WWW servers in the centre. This represented a real world, hectic

environment.

Testing of submodules and the initial LinSec testing was carried out
solely in the former environment. Modules as a whole, providing some ob-
servable LinSec functionality, were tested in both environments. The dedi-
cated testing machine was also used for reproducing and tracing of any bugs

discovered during the testing.

6.5 Summary

The approach used for testing proved to be fit for the particular nature of
the project. The testing itself yielded valuable feedback during the imple-
mentation. Careful analysis of the problem and Linuz kernel source code at
the beginning and thorough design resulted in no conceptual errors and ma-
jor bugs or system deficiencies being introduced during the implementation
phase. Several issues, described in Chapter 5, arose due to the intricacies
in the Linuz kernel code, some of which took days to identify. Most of the

“ordinary” programming omissions and bugs were discovered in real world
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use, at the Faculty of EE, University of Belgrade. All of these were easily
rectified.
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Chapter 7

LinSec Benchmarking

7.1 Introduction

LinSec, although functional, would be of little practical value if its perfor-
mance had a substantial impact on the overall performance of a host system.
This Chapter describes benchmarks carried out to assess the performance

related aspect of LinSec as well as the obtained results.

7.2 Benchmark Target

From LinSec design (Chapter 4) and implementation (Chapter 5) it can be

observed that Linuz kernel mechanisms most affected by the alterations are:

e executing a binary (do_execve function),
e changing ownership of a process (setXuid family of functions), and

o file system access control.

It can, thus, be expected that these mechanisms bare most of the per-

formance degradation.
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Other Linuz kernel mechanisms, like eg. INET networking code, are
also affected but to a much lesser extent and as such are not considered in
the performed series of benchmarks.

Furthermore, process ownership change mechanism are not bechmarked

as well since:

e As can be seen from Section 5.12, LinSec mechanisms triggered by pro-
cess ownership change are largely subset of the mechanisms triggered

by do_execve.

e Calls to setXuid family of functions are very rare compared to the
number of invocations of the other two mechanisms. Moreover, by
introduction of mandatory security policy it is reasonable to expect

that setXuid functionality will become obsolete.
Therefore, benchmarking performed concentrates on assessing perfor-
mance degradation of do_execve and the fs access control mechanisms.
7.3 Benchmark Structure

Most of the COTS! benchmark suites available for UNIX platforms and

Linuz in particular target issues such as:

memory latency and bandwidth,

I/O device latency and bandwidth,

context switching,

system call overhead,

e processor performance, etc.

!Common Off The Shelf.
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These tests do not target the desired kernel mechanisms and are unsuit-
able for benchmarking LinSec.

It transpired that kernel compilation task is fit for the purpose. Each
time Linuz kernel is compiled gcc is executed on several thousand source files
(actual number depends on the kernel configuration in place). Every new
invocation of gcc means creating a new process and executing the binary
via do_execve. In addition, every instance of gcc reads one or more source
files and writes an object file thus triggering the fs access control mechanism
several times per run.

The approach to benchmarking using the kernel compilation has three

steps:

1. perform multiple kernel compilations on both platforms running Lin-

Sec and on platforms running clean Linux kernel,

2. use standard UNIX time utility to measure time spent in kernel space

consumed by each of the compilations, and

3. produce benchmark result by averaging and comparing the observed

kernel time consumed by kernel compilations on both platforms.

One aspect of LinSec setup used for the benchmarks having an explicit

effect on the results is:

e Only one AD Group exists, the default one, containing only file sys-
tem root as an element. This causes AD Access Control algorithm
to exhibit worst case performance as it needs to iterate a number of
times that is equivalent to the depth in the file system tree branch of
the target file to find a match (file system root in this case). Exis-
tence of multiple AD Groups would increase the time needed for pro-
cess creation linearly with the number of elements each AD Group, a

process is member of, contains. This is considered negligible as it is
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performed only when first process owned by a user is created in the
system (linsec_usr being retrieved from LinSec buffers) and when an

executable is loaded to be executed.

Different possible capability related configurations do not influence
benchmark results as, irrespective of the configuration, the same set of op-
erations is always performed on them. An exception to this is reflecting
capability group settings in a permitted capability set of a process whose
owner is a member of the capability groups. However, analogous to the

above AD case, the time taken for this operation is negligible.

7.4 Benchmark Environment
The benchmarking was performed on two different hardware platforms:

1. Host A:

e Dual Pentium IIT 1GHz
e L1 T& D cache: 16KB
e L2 cache: 256KB

¢ 1GB RAM

e 2x Adaptec AIC7899 Ultra 160 with 4x IBM 18GB HDD
2. Host B:

e Pentium Pro 200 MHz

L1T1 & D cache: 8KB

L2 cache: 256KB

96MB RAM

IDE, HDD 2Gb ST32140A
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7.5 Benchmark Results

7.5.1 Host A

The results obtained on Host A are the following (all values are in seconds):

LinSec | Vanilla

1. | 13.060 | 13.110
2.1 12.300 | 12.030
3.1 12,760 | 12.510
4. | 12.300 | 12.720
5. | 12.270 | 12.240
6. | 12.970 | 12.710
7.1 12.820 | 12.230
8. | 12,370 | 12.190
9. | 12.200 | 12.110
10. | 12.660 | 11.990
AVG | 12.517 | 12.303

N.B. The AVG (average) value excludes the first measurement as it is
almost certainly caused by cache related penalties.
Therefore, on Host A, kernel running LinSec is approximately 1.7%

slower than the clean kernel.

7.5.2 Host B

The results obtained on Host B are the following (all values are in seconds):
N.B. The AVG (average) value excludes the first measurement as it is
almost certainly related to cache related penalties.
In this case no LinSec related performance penalty can be observed from
the data. This represents a very interesting result that suggests that on Host

B, being a much weaker hardware platform, performance bottlenecks exist
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LinSec | Vanilla

1. | 42.160 | 41.950
2. | 41.020 | 42.030
3. | 41.530 | 42.000
4. | 41.830 | 41.430
5. | 41.120 | 41.470
6. | 41.350 | 41.330
7. | 41.620 | 41.400
8. | 41.700 | 41.380
9. | 40.710 | 40.360
10. | 41.370 | 42.090
AVG | 41.361 41.61

that mask out the impact of LinSec code on overall system performance.

7.6 Conclusion

The scope of the performance assessment carried out was limited both in
terms of the benchmark structure, due to the unavailability of appropriate
benchmark suites, and in terms of the hardware platforms and functional
environments covered.

The approach taken has both pros and cons:

e Pro: Linuz kernel compilation represents a mix of activities that can
be found in a heavily loaded system. Furthermore, kernel compilation
targets two LinSec mechanisms expected to cause most performance
degradation, executing a binary and file system access control. There-
fore, the results obtained should be representative of LinSec perfor-

mance in real world applications.
e Con: The benchmark performed is too coarse grained to precisely show
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the actual performance degradation of the affected kernel mechanisms
solely. A Custom made benchmark suite would certainly provide valu-
able detailed information that might pinpoint LinSec mechanisms that

need optimization.

Overall, the benchmark demonstrated that LinSec implementation did
not introduce substantial performance degradation into Linuz kernel. The
results obtained are favorable and show that a mandatory security mech-
anisms can be implemented in Linuz kernel without affecting the system
usability. It is, however, expected that further testing, both using a pur-
posefully developed benchmark suite and gathered as feedback from the
Open Source community, will prompt optimization and redevelopment of

parts of the LinSec code.
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Chapter 8

Conclusion

8.1 Project Summary

LinSec was envisaged as a system that would provide a mandatory security
policy based access control in Linuz as opposed to the traditionally im-
plemented discretionary access control mechanisms. The inspiration being
continuing failures of DAC' in providing reliable security.

The concepts and ideas used for LinSec design are not new to the field
but they were never combined together in a way done by LinSec. Mandatory
security policy introduced by LinSec is based on Capabilities and File System
Access Domains.

LinSec was fully implemented in approximately 3 months and in excess
of 5,000 lines of kernel code. The implementation of the design proved tricky
in an existing, highly developed, mainstream operating system like Linuz is.
A lot of care had to be taken of the side effects of any changes made to Linux
kernel code as well as of the clash of methodologies. Several Linuxz kernel
mechanisms had to be adapted to support the notion of mandatory security.
LinSec was implemented in a way that provides as transparent as possible
transition to it and can be employed safely in all existing Linuz systems.

Performance benchmarks carried out on LinSec have shown minimal
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overhead introduced. Minimal being less than 2% in worst benchmarked
case.

Testing of LinSec was carried out by the author at UCL and also at the
Computer Centre, Faculty of EE, University of Belgrade. No conceptual mis-
takes were encountered throughout the implementation and testing phase,
owing to the careful and detailed design. Several “ordinary” programming
bugs were discovered and were easily rectified.

Overall, LinSec project has fulfilled its initial requirements. It repre-
sents a fully functional Linuz kernel patch which, when applied, enables a
significant increase in system security through the highly flexible and config-
urable mandatory security policy provided. Furthermore, LinSec is released
to the Open Source community via the web site www.linsec.org (still under
construction at the time of writing this report) and under the terms and

conditions of GNU/GPL license.

8.2 LinSec Future

LinSec, although functional, because of its evolving nature, is not finished
and will probably never be. Further development shall be based on the
feedback obtained from the Open Source community and future expansion
of the areas LinSec is built on. Major directions in which LinSec will evolve

are roughly:

e Extension of existing LinSec features or introduction of new ones in

order for LinSec to be able to:

1. Respond to new security challenges: In particular, LinSec cur-
rently lacks sophisticated network security mechanisms provided
by most network intrusion detection systems. Also, the existing

LinSec mechanisms have to evolve as existing exploits evolve.
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2. Fit better in the environments it is used in: For example, one of
the interesting ideas is to expand the existing capability model to
fit distributed systems eg. to provide capability based means of
defining privileges in a distributed computing environments. Em-

bedded Linuz also represents an interesting challenge for LinSec.

e Natural evolution with the Linuz kernel.

e Various optimizations of LinSec mechanisms, as outlined in chapters

6 and 7.

However, it is difficult to predict all possible requirements that will arise
as a consequence of the way LinSec will hopefully be used in. Open Source
world is full of surprises and the future of LinSec depends on its ability to

overcome thus imposed challenges.

8.3 Project Scope

Scope of the LinSec project far exceeds the undergraduate curricula at the
Department of Computer Science, UCL, in almost all aspects that were

required for its successful completion, namely:
e C programming,
e Operating Systems theory and practice,
e Linux OS and

e Computer Security.

Although the author had strong background in these areas, large pro-
portion of the knowledge required has been acquired during the project
realization from the literature, various online sources and practice. Further-

more, the fact that very few projects exist that address the same problem
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in Linuz added a rather strong research component to the LinSec project.
This is regarded as invaluable experience.

The Linuz related background knowledge came largely from, in addition
to the sources listed in the bibliography, various Linuz kernel development
forums and mailing lists such as: the linuz-kernel mailing list, the Linux

Security Module (LSM) mailing list, the kernel-newbies mailing list, etc.
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Appendix A

Systems Manual

A.1 Introduction

The Systems Manual provides instructions on how to include LinSec code,
provided on the floppy disk accompanying this report, into the Linuxz kernel
source code and how to compile the extended kernel.

The manual does not cover installation and setup of Linuz nor any of
the needed administrative actions. Anyone wishing to use LinSec should be
familiar with the Linuz system administration.

All of the steps in the described procedure need to be performed as root

user.

A.2 Software Requirements

e Any Linuz desktop/server distribution, installed and running.

e Linux kernel source code, version 2.4.17.

e GNU, or compatible, C compiler.

e standard Linuz/UNIX patch tool.

All of the above software is included on the standard Linuz distributions.
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A.3 Step I - Patching the Kernel

1. Copy the LinSec patch (linsec.patch), from the floppy disk, into
the top kernel source code directory, eg. mcopy a:linsec.patch

/usr/src/linux.

2. Change the current working directory to the top kernel source direc-

tory, eg. cd /usr/src/linux.

3. Include LinSec source into the kernel source code tree using the patch

tool: patch -pl < linsec.patch.

LinSec code is now included into the Linuz kernel source code tree. Most

of the code can be found in linsec_*.c files in the kernel kernel subdirectory.

A.4 Step II - Configuring and Compiling the Ker-

nel

1. Start the kernel configuration process in a preferred way (either by
executing make config or by executing make menuconfig in the top

kernel source directory).
2. In the Code Maturity Level Options choose the following options:
e Prompt for development and/or incomplete code/drivers.
3. In the File Systems section choose the following options:

e Extended filesystem attributes.

Extended user attributes.

Extended attributes for ext2 (if using ext2).

Extended attribute block sharing for ext2 (if using ext2).

Extended attributes for ext3 (if using ext3).
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4. In the LINSEC section choose the following options:

e LINSEC support.

5. Compile the kernel in the preferred way (eg. by executing make dep;

make clean; make bzImage).

A.5 Step III - Installing and Running the Kernel

To install the precompiled kernel with LinSec support use the standard
preferred procedure.

In order to run the kernel some initial LinSec specific configuration has to
be performed. This is a laborious manual process and tools for automating it
are being developed at the time of writing this report. Therefore, no details
regarding running the modified Linuz kernel are included in this version of
the Systems Manual.

N.B. The configuration tools were not regarded as a part of the final year

project. They are, however, part of the overall LinSec project.
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Appendix B

Users Manual

The Users Manual should include instructions on how to use LinSec
userspace tools to configure system’s mandatory security policy. However,
as userspace administrative tools were not regarded as part of the final year
project and as they have been developed externally, there is no scope for
details on them in this report. Overall LinSec documentation, as released
to the Open Source community at the site www.linsec.org (still under con-
struction at the time of writing this report), will include full users manual,

systems manual and the source code.
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Appendix C

November Project Plan

1.1 Student Name:

Boris Dragovic (bdragovic@cs.ucl.ac.uk)

1.2 Project Title:

LinSec - Linux security protection and intrusion detection system
1.3 Supervisor:

Graham Knight

1.4 External Supervisor:

Prof Jon Crowcroft, Cambridge University Computer Laboratory

2.1 Project Aim:

The main project aims are introduction of Mandatory Access Controls
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(MAC) to Linux operating system as opposed to the currently implemented
Discretionary Access Controls (DAC), provision of mechanisms for enabling
fine grain user role division in the system and eliminating the notion of

all powerful root user.

2.2 Project Objectives:

There are two main mechainsms that need to be built into Linux to

enable the fullfillment of the above specified aims: capabilities and
filesystem access domains.

2.2.1 Capabilities

As of the version 2.2.0 Linux supports POSIX capability model but only
partially. A portion of access control using capabilities has been implemented
as well as capability bounding set but unfortunately no fs support is available
yet which results in still having allpowerfull root user and the rest of the
world. The current implementation is only an incomplete framework and needs to
be heavily extended.

2.2.2 Process Capabilities

The implementation of POSIX capabilities defines three bitmapped sets

of capabilities (in the task struct) for each process:

- Inheritable set (pI): set of capabilities that will be passed

over to children processes spawned using exec() call.

- Permitted set (pP): set of capabilities that a process can
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acquire during its lifetime.

- Effective set (pE): set of capabilities that are currently

used for access controll.

2.2.3 File Capabilities

Every executable file can have three sets of capabilities:

- Allowed set (fA): set of capabilities that an executable can

inherit from the parent process when turned into a new process

by exec().

- Forced set (fF): set of capabilities that the new process must

contain in its permitted/effective set after exec().

- Effective set (fE): set of capabilities that will be copied

from the permitted set of the new process to its effective set.

If any of the sets haven’t been defined for the file the default is

used.

2.2.4.1 User Capabilities

Each user in the system has two capability sets associated:

- User permitted (uP): this capability set is added to the

pP of a new process (created by the user, under his uid)

thus enabling each user to have some extra rights on the system.
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- User bounding (uB): capability set representing the maximum

set of capabilities any process of specific user can ever reach.

If the uP and uB haven’t been specified for a certain uid the default

is used.

2.2.4.2 User capability groups

Capability groups represent an idea analogue to user groups in standard
Unix in terms of capabilities. Each capability group has a set of
capabilities associated with it. A user can be in one or more capability
groups at a time (at least in the default one). Capabilities possesed
by the capability group a user is member of become part of user’s

permitted capability set according to the following algorithm:

uP’ =uP | gxP | gyP | ... | gzP;

where uP’ is resulting permitted capability set, uP is users individual
permitted set and g[n]P are capability sets of capability groups

user is member of. uP’ is computed when capability inheritance
algorithm is executed.

2.2.5 Global Capabilities

Each system has a global capability bounding set (gB) that represents

the maximum capability set any of the process on the system can ever

acquire.
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2.2.6 New capabilities

In order to reach maximal flexibility and usability of the POSIX

capability model, LinSec will implement several new capabilities:

- CAP_PROC_PROTECTED: process that has this capability will
not receive any signals unless the sending process has

CAP_PROC_GOD capability and the usual rights to send signals.

- CAP_PROC_UNKILLABLE: same as above but applies only for

signals 2, 3, 9 and 15.

- CAP_PROC_GOD: process that has this capability can send
signals to any process that has CAP_PROC_PROTECTED or
CAP_PROC_UNKILLABLE if it has usual rights (same uid or

CAP_KILL capability).

- CAP_PROC_HIDDEN: process having this capability is not to

be listed in /proc.

- CAP_NET_HIDDEN: network connection info of the process with

this capability are not listed in /proc.

- CAP_SYS_BOOTTIME: process with this capability may execute

during system booting.

- CAP_MOD_CAP: process with this capability may modify its

own permitted capability set.

101



- CAP_ACD_OVERRIDE: process with this capability may overide

its access domain and access files outside it.

- CAP_MOD_ROUTE: process with this capability may modify

kernel routing table.

- CAP_MOD_FW: process with this capability may modify kernel

firewall rules.

This 1list is expected to enlarge as critical regions that must be

protected in this way are identified.

2.2.7 Algorithm for computing capabilities of a new process

Capability sets of the newly created process are computed on the

execution of exec() sys call according to the following algorithm:

1) pI’ = pI

2) pP’ = (fF | (fA & (pI’ | uP))) & uB & gB
3) pE’ = pP’ & fE

where:

pP - permitted set of the parent process

pI - inheritable set of the parent process

pE - effective set of the parent process

’ appended to the end of the above names denotes that the respective
set belongs to the new process eg. pP’ is the permitted set of the
new process

fA, fF, fE - file allowed/forced/effective capability sets
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The order of the above computations is important and should not be

changed.

N.B. uP is actually original uid uP combined with capabilities

possesed by capability groups uid is member of

2.2.8 Capability controled system booting

The need for being able to control which processes execute during the
system boot has been identified. From the point of view of the Linux
kernel the system has finished booting process when init is forked.

On the other hand, from users point of view, the booting has finished
when all the startup scripts invoked by init have finished execution.
CAP_PROC_BOOTTIME capability is introduced to denote programs that are
allowed to execute during the init execution phase of system boot. All
other programs invoked by exec() during the boot phase (need to alocate

kernel variable to indicate this) are stoped.

2.2.9 Capability based process protection

Processes having CAP_PROC_PROTECTED and CAP_PROC_UNKILLABLE capabilities
set are protected from receiving any/fatal signals. They can only
receive signals from a process that has CAP_PROC_GOD capability set

and has the same uid or CAP_KILL capability.
Processes having CAP_PROC_HIDDEN are completely invisible and so are net

connections of processes that posses CAP_NET_HIDDEN capability (from

the users point of view). These can be used for various mission critical
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applications or intrusion detection software.

2.2.10 Inet socket IPC protection

With each socket in the system a set of capabilities required to
communicate to the socket can be associated as an attribute of
the executable fs image of the process that created the socket.
When a connection is initiated to a socket in case of TCP or when
packet is sent to a socket in case of UDP and RAW IP the process
initiating the connectiong (or sending a message) has to have

in its effective capability set all of the capabilities required

by the destination socket in order for the operation to succeed.
2.2.11 Unix domain sockets

Required set of capabilities to connect to any process’ unix domain
socket may be defined on per socket basis. If a source process does
not posses a required set of capabilities to connect to destination
socket of the destination process its connection request will be
refused.

2.2.12 Routing and Firewall tables

Routing and firewall kernel tables can only be modified by processes

that posses CAP_MOD_ROUTE and CAP_MOD_FW capabilities.

2.2.13 Dev Security
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Certain system resources, such as raw I/0 to certain devices needs to
be protected. Therefore, separate capabilities will be required for
accessing /dev/mem, /dev/[raw disks], /dev/[io ports], /dev/[net] etc.

as the project develops.

2.3.1 Acess Domains

The term "Access Domain" denotes a reachable file system environment
of a process. Each of the processes on the system can have specific
portion of the filesystem reachable to them. Furthermore, each proces

can have to access domains:

i) read only access domain

ii) read write accesss odmain

References to the access domains of each of the processes on the
system are kept in their task structure. Access domain structure holds
dev/inode pairs of each of the files and directories that can be
accessed by the process. It is sufficient that one of the parent
directory’s dev/inode pair is in process’ access domain to access

any of the files below it in fs hiararchy.

Access domains are originaly stored as extended fs attributes of

executables.

2.3.2 Access Domain Groups

In the analogy to the capability groups and traditional notion of

user groups there are also access domain groups. Each user can

be a member of one or more of the access domain groups either in
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a read only or read write manner. Each user is a member of at

least default access domain groups.

2.3.3 Inheritance of access domains

When a new process is spawned to execute an executable fs image access

domains are inherited by obeying the following algorithm:

child->rw_acd = parent->rw_acd + executable->rw_acd;

child->ro_acd = parent->ro_acd + executable->ro_acd;

where child/parent->ro_acd and rw_acd are access domains related to
executables that were called to create parent, grand parent etc.
processes. So effectively, access domains are inherited through
exec call chain.

If suid is called to change real uid of process a special flag in
current’s task_struct is turned on to tell next exec to break the

access domain inheritance chain. In such a case the algorithm is:

child->rw_acd = executable->rw_acd;

child->ro_acd = executable->ro_acd;

User specific access domains come into play when access control check
is performed. Then both current->rx_ad and uid->rx_ad are checked,
where uid->rx_ad represents rw_ad and ro_ad which is uid specific and

depends on access domain groups uid is member of.

2.4.0 Network security
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Network security doesen’t depend neither on capability support or

access domains but it is an important part of the overall security system.

2.4.1 IP Labeling

Task struct of each of the processes in the system might have an

IP Labeling list associated with it that is checked whenever the
process tries to establish a net connection (INET family only). Entries
in the IP Labeling list contain touples [protocol, source ip,

source port, destination ip, destination port], they may contain 7%’
representing a joker sign. If the connection is not found to be allowed

in the labeling list it is refused to the process.

2.5.0 Admin tool

LinSec will comprise a set of security admin tools that will enable
on-the-fly reconfiguration of the features of the security system.
The use of the tools will be granted only after a suitable password
has been obtained from the invoking user.

2.6.0 Error messages

Each of the events where access to an object hasn’t been granted by

LinSec system will be logged.

3.0 Expected outcomes/deliverables

I expect to produce a very detailed design of the overall system

meeting all of the objectives mentioned above. However, it might not be
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possible to implement all of the objectives fully and therefore system

is going to be implemented in an incremental fashion where each of the
increments would be functional and operational on its own. The objectives
with lower priority are: IPC Security, Dev Security, IP Labeling, Routing and
Firewall tablesa. None the less, I shall do my best to implement all of

the objectives fully.

The system is expected to be completely transparent to all existing

software (depending on the security policy implemented by the system
administrator) so that it can be seamlessly used on existing linux servers.

The form in which linsec is distributed will be a series of kernel patches.

4.0 Work plan

* Project start - end of reading week (5 weeks):
Further background research, reading and documenting parts of
the Linux kernmel relevant to the project to understand existing

kernel mechanisms, outline design
* End of reading week - end of term (5 weeks):
Detailed design phase, some test code, placing skeleton into linux

kernel, testing thus obtained flow of control

* End of term - reading week (8 weeks):

Full implementation

* Start of reading week - end of term (6 weeks):

Work on final report
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Appendix D

Interim Report

1. Student’s name:

Boris Dragovic

2. Project title:

LinSec - Linux Security Protection System

The title that was specified in the November Project Plan was "LinSec - Linux
Security Protection and Intrusion Detection System". However, as the intrusion
detection aspect of the project is addressed only by the fact that warning
messages are produced and logged on an attempt to violate the system security
policy I decided to leave out that part of the title. Any full featured IDS can
base its detection mechanisms on the messages produced by LinSec. The fact that
the intrusion detection part of the title existed in the first place is due to

the misunderstanding of the term.

3. Supervisor:
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Graham Knight

4. External supervisor:

Prof Jon Crowcroft, Computer Lab, University of Cambridge

5. Progress made to date:

5.1. LinSec design

The design of the overall LinSec project has been fully finished during the
first term in accordance with the project schedule. The design contains
definitions of all algorithms, mechanisms, scenarios that are neccessary for
corect operation of LinSec as well as documentation on parts of the Linux
kernel that needs to be modified and the ways the modifications should be

carried out.

5.2, LinSec implementation

Up until this moment full support for capability based MAC operation has been
implemented in the Linux kernel (current ver. 2.4.17) according to the
specification in the November project plan. The capability model comprises both
per user and per executable file capability association. User space admin tool
for capability manipulation has been developed as well. The capability model

is approximately 45% of the overall expected size of LinSec and was implemented
in about 1,700 lines of kernel only code (excluding user space admin tool). The
modifications to Linux kernel were across files system code, process management
code and bootup code. The system is standalone and fully operational, it is

being tested in real world envirnment at the Faculty of EE, University of
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Belgrade.

6. Further work to be done

Before the Final Report deadline, at the current pace, I expect to fully
implement file system access domain access control mechanism. IP Labeling and
TCP/IP INET Socket access control as well as other minor features will be
implemented time permitting. The capability model + access domain mechanisms
represent 957, of the overall project and I hope that I will have time to

implement all of the features.
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Appendix E

LinSec Source Code

E.1 Introduction

This Appendix contains a portion of LinSec C source code. In particular,

code from four different source files has been included:

1. linsec_setup.c: not all source code from this file has been included,
due to the space constraints. The source code presented contains the
functions responsible for:

e Setting up the init task (pid 1) LinSec specific configuration.
e Configuring capability groups (through the /proc interface).

e Configuring file system access domains (through the /proc inter-

face).

e Configuring LinSec specific user parameters (through the proc

interface).

e Managing executable files’ capability group and file system access

domain settings (through the /proc interface).

e Reading user, file system access domain groups and capability

groups configuration files.
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2. linsec_suid.c: code responsible for LinSec actions triggered by a process

ownership change (invoked from the sys_setXuid family functions).

3. linsec_exec.c: code responsible for LinSec actions triggered by execut-

ing a binary (invoked from the do_execve function).

4. linsec_access_control.c: code responsible for performing LinSec specific

access control checks on:
e File system access domains.
e Signaling capabilities.
e Process hiding capabilities.

e TP Labeling lists.

The code included was chosen on the grounds of relevance to the contents
of the report.

The full source code can be found, released under the terms and condi-
tions of the GNU/GPL license, on the disk included with the report. The
source code is in the form of a standard kernel patch due to the nature of
the project. To access the code in a more readable format please apply the

patch to the Linuz kernel source code, as explained in the Systems Manual.

E.2 The Source Code
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