

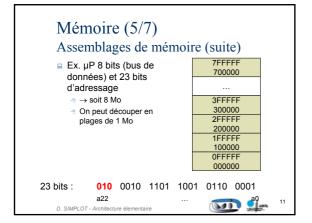
Mémoire (4/7)

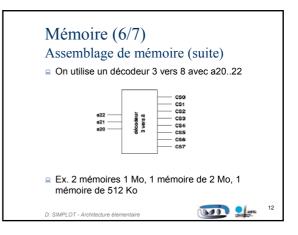
Assemblage de mémoire

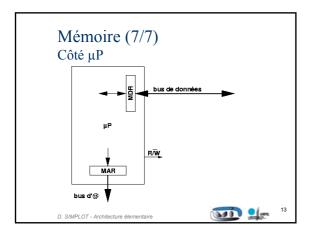
■ Espace d'adressage du µP

Déterminé par la taille du bus d'adresses

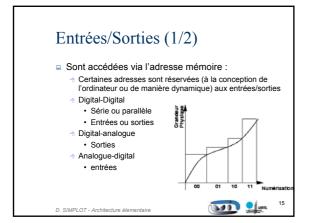
10 bits → 2¹0 mots = 1024 mots = 1 Kilomot

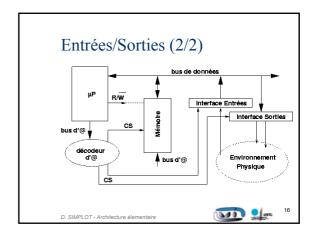

16 bits → 2¹6 mots = 65536 mots = 64 Kilomot

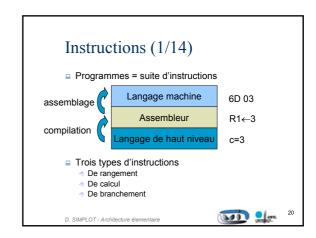

20 bits → 2²0 mots = 1024x1Kmot = 1 Mégamot


30 bits → 2²0 mots = 1024x1Mmot = 1 Gigamot

32 bits → 2³2 mots = 4x1Gmot = 4 Gigamot

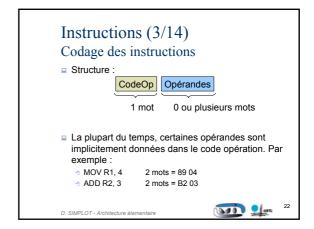

On découpe l'espace d'adressage en « plages mémoire ».




Architecture des Ordinateurs
Partie II : Microprocesseur

2. Instructions machines

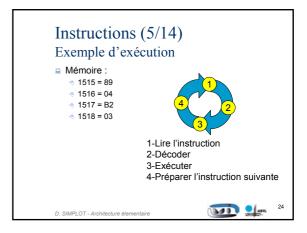
David Simplot simplot@fil.univ-lille1.fr



Instructions (2/14) Exemples d'instructions « machine »

R1←4	MOV R1,4	Mettre la valeur 4 dans le
	LD R1,4	registre R1
R1←R2	MOV R1,R2	Mettre la valeur de R2 dans le registre R1
	LD R1,R2	
R1←MEM(1515)	MOV R1,[1515]	Copie la valeur stockée en mémoire à l'@ 1515 dans R1
R1←R1+2	ADD R1,2	Additionne 2 à la valeur de R1 et range dans R1
R1←R1+1	INC R1	Incrémente de 1 la valeur de R1
R2←R2-R4	SUB R2,R4	Soustraie à R2 la valeur de R4 et range dans R2
D. SIMPLOT - Architecture élementaire		

Instructions (4/14) Codage des instructions (suite) MOV R1, 4


- **89 04**
- ↑ 1000 1001 0000 0100
- ↑ 10001 001 0000 0100
- → MOV R1 4

■ ADD R2, 3

- ⊕ B2 03
- **1011 0010 0000 0011**
- **10110 010 0000 0011**
- ⊕ ADD R2 3

D. SIMPLOT - Architecture élementaire

Instructions (7/14) Exemple d'exécution (suite)

- Phase 1 Lire l'instruction
 - 4 PC vaut 1515
 - Mettre PC dans MAR et donner l'ordre de lecture
 - PCout LDMAR
 - Read WaitMemory
 - Placer la valeur de MDR dans IR pour que l'instruction soit décodée
 - · MDRout LDIR
 - Pb. Lors de la phase 3, on va avoir besoin de récupérer les paramètres qui sont à PC+1
 - → on anticipe

D. SIMPLOT - Architecture élementaire

Instructions (8/14) Exemple d'exécution (suite)

■ Phase 1 (suite)

D SIMPLOT - Architecture élementaire

- On profite du fait que la lecture en mémoire est lente pour incrémenter PC
- Dès que l'on est en phase 3, PC pointe vers le premier argument
- Nb. S'il n'y a pas d'arguments, PC pointe vers l'instruction suivante.
- - PCout LDMAR LDX
 - Read INCX LDY
 - · Yout LDPC WaitMemory
 - MDRout LDIR

D. SIMPLOT - Architecture élementaire

1

Instructions (9/14) Exemple d'exécution (suite)

- Phase 2 décodage de l'instruction
 - Pris en charge par l'UC (unité de contrôle)
- Phase 3 exécution
 - Deux sous-phases :
 - · 3.1 Récupérer les arguments éventuellement
 - 3.2 Exécution
 - → 3.1 lecture argument + incrémentation PC
 - PCout LDMAR LDX
 - Read INCX LDY
 - Yout LDPC WaitMemory

D. SIMPLOT - Architecture élementaire

Instructions (10/14) Exemple d'exécution (suite)

- □ Phase 3 (suite)
 - → 3.1 lecture argument + incrémentation PC
 - PCout LDMAR LDX
 - Read INCX LDY
 - Yout LDPC WaitMemory
 - 3.2 exécuter l'instruction (ici MOV R1,4)
 - R1out LDX
 - MDRout ADD LDY
 - Yout LDR1
- Phase 4 (préparer l'instruction suivante)
 - ♣ Rien pour l'instant ☺

D. SIMPLOT - Architecture élementaire

