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Chapter 1

1.Introduction to OpenGL

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• Appreciate in general terms what OpenGL does

• Identify different levels of rendering complexity

• Understand the basic structure of an OpenGL program

• Recognize OpenGL command syntax

• Identify the sequence of operations of the OpenGL rendering pipeline

• Understand in general terms how to animate graphics in an OpenGL program
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This chapter introduces OpenGL. It has the following major sections:

• “What Is OpenGL?” explains what OpenGL is, what it does and doesn’t do, and
how it works.

• “A Smidgen of OpenGL Code” presents a small OpenGL program and briefly
discusses it. This section also defines a few basic computer-graphics terms.

• “OpenGL Command Syntax” explains some of the conventions and notations used
by OpenGL commands.

• “OpenGL as a State Machine” describes the use of state variables in OpenGL and
the commands for querying, enabling, and disabling states.

• “OpenGL Rendering Pipeline” shows a typical sequence of operations for
processing geometric and image data.

• “OpenGL-Related Libraries” describes sets of OpenGL-related routines, including
an auxiliary library specifically written for this book to simplify programming
examples.

• “Animation” explains in general terms how to create pictures on the screen that
move.

What Is OpenGL?

OpenGL is a software interface to graphics hardware. This interface consists of about
150 distinct commands that you use to specify the objects and operations needed to
produce interactive three-dimensional applications.

OpenGL is designed as a streamlined, hardware-independent interface to be
implemented on many different hardware platforms. To achieve these qualities, no
commands for performing windowing tasks or obtaining user input are included in
OpenGL; instead, you must work through whatever windowing system controls the
particular hardware you’re using. Similarly, OpenGL doesn’t provide high-level
commands for describing models of three-dimensional objects. Such commands might
allow you to specify relatively complicated shapes such as automobiles, parts of the
body, airplanes, or molecules. With OpenGL, you must build up your desired model
from a small set ofgeometric primitives—points, lines, and polygons.

A sophisticated library that provides these features could certainly be built on top of
OpenGL. The OpenGL Utility Library (GLU) provides many of the modeling features,
such as quadric surfaces and NURBS curves and surfaces. GLU is a standard part of
every OpenGL implementation. Also, there is a higher-level, object-oriented toolkit,
Open Inventor, which is built atop OpenGL, and is available separately for many
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implementations of OpenGL. (See “OpenGL-Related Libraries” for more information
about Open Inventor.)

Now that you know what OpenGLdoesn’t do, here’s what itdoes do. Take a look at the
color plates—they illustrate typical uses of OpenGL. They show the scene on the cover
of this book,rendered(which is to say, drawn) by a computer using OpenGL in
successively more complicated ways. The following list describes in general terms how
these pictures were made.

• “Plate 1” shows the entire scene displayed as awireframe model—that is, as if all
the objects in the scene were made of wire. Eachline of wire corresponds to an
edge of a primitive (typically a polygon). For example, the surface of the table is
constructed from triangular polygons that are positioned like slices of pie.

Note that you can see portions of objects that would be obscured if the objects
were solid rather than wireframe. For example, you can see the entire model of the
hills outside the window even though most of this model is normally hidden by the
wall of the room. The globe appears to be nearly solid because it’s composed of
hundreds of colored blocks, and you see the wireframe lines for all the edges of all
the blocks, even those forming the back side of the globe. The way the globe is
constructed gives you an idea of how complex objects can be created by
assembling lower-level objects.

• “Plate 2” shows adepth-cued version of the same wireframe scene. Note that the
lines farther from the eye are dimmer, just as they would be in real life, thereby
giving a visual cue ofdepth. OpenGL uses atmospheric effects (collectively
referred to asfog) to achieve depth cueing.

• “Plate 3” shows anantialiased version of the wireframe scene. Antialiasing is a
technique for reducing the jagged edges (also known asjaggies) created when
approximating smooth edges usingpixels—short for pictureelements—which are
confined to a rectangular grid. Such jaggies are usually the most visible with
near-horizontal or near-vertical lines.

• “Plate 4” shows aflat-shaded, unlit version of the scene. The objects in the scene
are now shown as solid. They appear “flat” in the sense that only one color is used
to render each polygon, so they don’t appear smoothly rounded. There are no
effects from any light sources.

• “Plate 5” shows alit, smooth-shaded version of the scene. Note how the scene
looks much more realistic and three-dimensional when the objects are shaded to
respond to the light sources in the room as if the objects were smoothly rounded.

• “Plate 6” addsshadows andtextures to the previous version of the scene. Shadows
aren’t an explicitly defined feature of OpenGL (there is no “shadow command”),
but you can create them yourself using the techniques described in Chapter 14.
Texture mapping allows you to apply a two-dimensional image onto a
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three-dimensional object. In this scene, the top on the table surface is the most
vibrant example of texture mapping. The wood grain on the floor and table surface
are all texture mapped, as well as the wallpaper and the toy top (on the table).

• “Plate 7” shows amotion-blurred object in the scene. The sphinx (or dog,
depending on your Rorschach tendencies) appears to be captured moving forward,
leaving a blurred trace of its path of motion.

• “Plate 8” shows the scene as it’s drawn for the cover of the book from a different
viewpoint. This plate illustrates that the image really is a snapshot of models of
three-dimensional objects.

• “Plate 9” brings back the use of fog, which was seen in “Plate 2,” to show the
presence of smoke particles in the air. Note how the same effect in “Plate 2” now
has a more dramatic impact in “Plate 9.”

• “Plate 10” shows thedepth-of-field effect, which simulates the inability of a
camera lens to maintain all objects in a photographed scene in focus. The camera
focuses on a particular spot in the scene. Objects that are significantly closer or
farther than that spot are somewhat blurred.

The color plates give you an idea of the kinds of things you can do with the OpenGL
graphics system. The following list briefly describes the major graphics operations
which OpenGL performs to render an image on the screen. (See “OpenGL Rendering
Pipeline” for detailed information about this order of operations.)

1. Construct shapes from geometric primitives, thereby creating mathematical
descriptions of objects. (OpenGL considers points, lines, polygons, images, and
bitmaps to be primitives.)

2. Arrange the objects in three-dimensional space and select the desired vantage
point for viewing the composed scene.

3. Calculate the color of all the objects. The color might be explicitly assigned by the
application, determined from specified lighting conditions, obtained by pasting a
texture onto the objects, or some combination of these three actions.

4. Convert the mathematical description of objects and their associated color
information to pixels on the screen. This process is calledrasterization.

During these stages, OpenGL might perform other operations, such as eliminating parts
of objects that are hidden by other objects. In addition, after the scene is rasterized but
before it’s drawn on the screen, you can perform some operations on the pixel data if you
want.

In some implementations (such as with the X Window System), OpenGL is designed to
work even if the computer that displays the graphics you create isn’t the computer that
runs your graphics program. This might be the case if you work in a networked computer
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environment where many computers are connected to one another by a digital network.
In this situation, the computer on which your program runs and issues OpenGL drawing
commands is called theclient, and the computer that receives those commands and
performs the drawing is called theserver. The format for transmitting OpenGL
commands (called theprotocol) from the client to the server is always the same, so
OpenGL programs can work across anetwork even if the client and server are different
kinds of computers. If an OpenGL program isn’t running across a network, then there’s
only one computer, and it is both the client and the server.

A Smidgen of OpenGL Code

Because you can do so many things with the OpenGL graphics system, an OpenGL
program can be complicated. However, the basic structure of a useful program can be
simple: Its tasks are to initialize certain states that control how OpenGL renders and to
specify objects to be rendered.

Before you look at some OpenGL code, let’s go over a few terms.Rendering, which
you’ve already seen used, is the process by which a computer creates images from
models. Thesemodels, or objects, are constructed from geometric primitives—points,
lines, and polygons—that are specified by theirvertices.

The final rendered image consists of pixels drawn on the screen; a pixel is the smallest
visible element the display hardware can put on the screen. Information about the pixels
(for instance, what color they’re supposed to be) is organized in memory into bitplanes.
A bitplane is an area of memory that holds onebit of information for every pixel on the
screen; the bit might indicate how red a particular pixel is supposed to be, for example.
The bitplanes are themselves organized into aframebuffer, which holds all the
information that the graphics display needs to control the color and intensity of all the
pixels on the screen.

Now look at what an OpenGL program might look like. Example 1-1 renders a white
rectangle on a black background, as shown in Figure 1-1.
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Figure 1-1 White Rectangle on a Black Background

Example 1-1 Chunk of OpenGL Code

#include <whateverYouNeed.h>

main() {

   InitializeAWindowPlease();

   glClearColor (0.0, 0.0, 0.0, 0.0);
   glClear (GL_COLOR_BUFFER_BIT);
   glColor3f (1.0, 1.0, 1.0);
   glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
   glBegin(GL_POLYGON);
      glVertex3f (0.25, 0.25, 0.0);
      glVertex3f (0.75, 0.25, 0.0);
      glVertex3f (0.75, 0.75, 0.0);
      glVertex3f (0.25, 0.75, 0.0);
   glEnd();
   glFlush();

   UpdateTheWindowAndCheckForEvents();
}

The first line of the main() routine initializes awindow on the screen: The
InitializeAWindowPlease() routine is meant as a placeholder for window
system-specific routines, which are generally not OpenGL calls. The next two lines are
OpenGL commands that clear the window to black: glClearColor() establishes what
color the window will be cleared to, and glClear() actually clears the window. Once the
clearing color is set, the window is cleared to that color whenever glClear() is called.
This clearing color can be changed with another call to glClearColor(). Similarly, the
glColor3f() command establishes what color to use for drawing objects—in this case,
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the color is white. All objects drawn after this point use this color, until it’s changed with
another call to set the color.

The next OpenGL command used in the program, glOrtho(), specifies thecoordinate
system OpenGL assumes as it draws the final image and how the image gets mapped to
the screen. The next calls, which are bracketed by glBegin() and glEnd(), define the
object to be drawn—in this example, a polygon with four vertices. The polygon’s
“corners” are defined by the glVertex3f() commands. As you might be able to guess from
the arguments, which are (x, y, z) coordinates, the polygon is a rectangle on the z=0
plane.

Finally, glFlush() ensures that the drawing commands are actually executed rather than
stored in abuffer awaiting additional OpenGL commands. The
UpdateTheWindowAndCheckForEvents() placeholder routine manages the contents of
the window and begins event processing.

Actually, this piece of OpenGL code isn’t well structured. You may be asking, “What
happens if I try to move or resize the window?” Or, “Do I need to reset the coordinate
system each time I draw the rectangle?” Later in this chapter, you will see replacements
for both InitializeAWindowPlease() and UpdateTheWindowAndCheckForEvents() that
actually work but will require restructuring the code to make it efficient.

OpenGL Command Syntax

As you might have observed from the simple program in the previous section, OpenGL
commands use the prefix gl and initial capital letters for each word making up the
command name (recall glClearColor(), for example). Similarly, OpenGL defined
constants begin with GL_, use all capital letters, and use underscores to separate words
(like GL_COLOR_BUFFER_BIT).

You might also have noticed some seemingly extraneous letters appended to some
command names (for example, the 3f in glColor3f() and glVertex3f()). It’s true that the
Color part of the command name glColor3f() is enough to define the command as one
that sets the current color. However, more than one such command has been defined so
that you can use different types of arguments. In particular, the 3 part of the suffix
indicates that three arguments are given; another version of the Color command takes
four arguments. The f part of the suffix indicates that the arguments are floating-point
numbers. Having different formats allows OpenGL to accept the user’s data in his or her
own data format.

Some OpenGL commands accept as many as 8 different data types for their arguments.
The letters used as suffixes to specify these data types for ISO C implementations of
OpenGL are shown in Table 1-1, along with the corresponding OpenGL type
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definitions. The particular implementation of OpenGL that you’re using might not
follow this scheme exactly; an implementation in C++ or Ada, for example, wouldn’t
need to.

Thus, the two commands

glVertex2i(1, 3);
glVertex2f(1.0, 3.0);

are equivalent, except that the first specifies the vertex’s coordinates as 32-bit integers,
and the second specifies them as single-precision floating-point numbers.

Note: Implementations of OpenGL have leeway in selecting which C data type to use
to represent OpenGL data types. If you resolutely use the OpenGL defined data
types throughout your application, you will avoid mismatched types when
porting your code between different implementations.

Some OpenGL commands can take a final letter v, which indicates that the command
takes a pointer to a vector (or array) of values rather than a series of individual
arguments. Many commands have both vector and nonvector versions, but some
commands accept only individual arguments and others require that at least some of the
arguments be specified as a vector. The following lines show how you might use a vector
and a nonvector version of the command that sets the current color:

glColor3f(1.0, 0.0, 0.0);

GLfloat color_array[] = {1.0, 0.0, 0.0};

Suffix Data Type Typical Corresponding
C-Language Type

OpenGL Type Definition

b 8-bit integer signed char GLbyte

s 16-bit integer short GLshort

i 32-bit integer int or long GLint, GLsizei

f 32-bit floating-point float GLfloat, GLclampf

d 64-bit floating-point double GLdouble, GLclampd

ub 8-bit unsigned integer unsigned char GLubyte, GLboolean

us 16-bit unsigned integer unsigned short GLushort

ui 32-bit unsigned integer unsigned int or unsigned
long

GLuint, GLenum, GLbitfield

Table 1-1 Command Suffixes and Argument Data Types
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glColor3fv(color_array);

Finally, OpenGL defines the typedef GLvoid. This is most often used for OpenGL
commands that accept pointers to arrays of values.

In the rest of this guide (except in actual code examples), OpenGL commands are
referred to by their base names only, and an asterisk is included to indicate that there may
be more to the command name. For example, glColor*() stands for all variations of the
command you use to set the current color. If we want to make a specific point about one
version of a particular command, we include the suffix necessary to define that version.
For example, glVertex*v() refers to all the vector versions of the command you use to
specify vertices.

OpenGL as a State Machine

OpenGL is a state machine. You put it into various states (or modes) that then remain in
effect until you change them. As you’ve already seen, the current color is a state variable.
You can set the current color to white, red, or any other color, and thereafter every object
is drawn with that color until you set the current color to something else. The current
color is only one of many state variables that OpenGL maintains. Others control such
things as the current viewing and projection transformations, line and polygon stipple
patterns, polygon drawing modes, pixel-packing conventions, positions and
characteristics of lights, and material properties of the objects being drawn. Many state
variables refer to modes that are enabled or disabled with the command glEnable() or
glDisable().

Each state variable or mode has a default value, and at any point you can query the
system for each variable’s current value. Typically, you use one of the six following
commands to do this: glGetBooleanv(), glGetDoublev(), glGetFloatv(), glGetIntegerv(),
glGetPointerv(), or glIsEnabled(). Which of these commands you select depends on
what data type you want the answer to be given in. Some state variables have a more
specific query command (such as glGetLight*(), glGetError(), or
glGetPolygonStipple()). In addition, you can save a collection of state variables on an
attribute stack with glPushAttrib() or glPushClientAttrib(), temporarily modify them,
and later restore the values with glPopAttrib() or glPopClientAttrib(). For temporary
state changes, you should use these commands rather than any of the query commands,
since they’re likely to be more efficient.

See Appendix B for the complete list of state variables you can query. For each variable,
the appendix also lists a suggested glGet*() command that returns the variable’s value,
the attribute class to which it belongs, and the variable’s default value.
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OpenGL Rendering Pipeline

Most implementations of OpenGL have a similar order of operations, a series of
processing stages called the OpenGL rendering pipeline. This ordering, as shown in
Figure 1-2, is not a strict rule of how OpenGL is implemented but provides a reliable
guide for predicting what OpenGL will do.

If you are new to three-dimensional graphics, the upcoming description may seem like
drinking water out of a fire hose. You can skim this now, but come back to Figure 1-2 as
you go through each chapter in this book.

The following diagram shows the Henry Ford assembly line approach, which OpenGL
takes to processing data. Geometric data (vertices, lines, and polygons) follow the path
through the row of boxes that includes evaluators and per-vertex operations, while pixel
data (pixels, images, and bitmaps) are treated differently for part of the process. Both
types of data undergo the same final steps (rasterization and per-fragment operations)
before the final pixel data is written into the framebuffer.

Figure 1-2 Order of Operations

Now you’ll see more detail about the key stages in the OpenGL rendering pipeline.

Display Lists

All data, whether it describes geometry or pixels, can be saved in adisplay list for
current or later use. (The alternative to retaining data in a display list is processing the
data immediately—also known asimmediate mode.) When a display list is executed, the
retained data is sent from the display list just as if it were sent by the application in
immediate mode. (See Chapter 7 for more information about display lists.)
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Evaluators

All geometric primitives are eventually described by vertices. Parametric curves and
surfaces may be initially described by control points and polynomial functions called
basis functions. Evaluators provide a method to derive the vertices used to represent the
surface from the control points. The method is a polynomial mapping, which can
produce surface normal, texture coordinates, colors, and spatial coordinate values from
the control points. (See Chapter 12 to learn more about evaluators.)

Per-Vertex Operations

For vertex data, next is the “per-vertex operations” stage, which converts the vertices
into primitives. Some vertex data (for example, spatial coordinates) are transformed by
4 x 4 floating-point matrices. Spatial coordinates are projected from a position in the 3D
world to a position on your screen. (See Chapter 3 for details about the transformation
matrices.)

If advanced features are enabled, this stage is even busier. If texturing is used, texture
coordinates may be generated and transformed here. If lighting is enabled, the lighting
calculations are performed using the transformed vertex, surface normal, light source
position, material properties, and other lighting information to produce a color value.

Primitive Assembly

Clipping, a major part of primitive assembly, is the elimination of portions of geometry
which fall outside a half-space, defined by a plane. Point clipping simply passes or
rejects vertices; line or polygon clipping can add additional vertices depending upon
how the line or polygon is clipped.

In some cases, this is followed by perspective division, which makes distant geometric
objects appear smaller than closer objects. Then viewport and depth (z coordinate)
operations are applied. If culling is enabled and the primitive is a polygon, it then may
be rejected by a culling test. Depending upon the polygon mode, a polygon may be
drawn as points or lines. (See “Polygon Details” in Chapter 2.)

The results of this stage are complete geometric primitives, which are the transformed
and clipped vertices with related color, depth, and sometimes texture-coordinate values
and guidelines for the rasterization step.
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Pixel Operations

While geometric data takes one path through the OpenGL rendering pipeline, pixel data
takes a different route. Pixels from an array in system memory are first unpacked from
one of a variety of formats into the proper number of components. Next the data is
scaled, biased, and processed by a pixel map. The results are clamped and then either
written into texture memory or sent to the rasterization step. (See “Imaging Pipeline” in
Chapter 8.)

If pixel data is read from the frame buffer, pixel-transfer operations (scale, bias,
mapping, and clamping) are performed. Then these results are packed into an
appropriate format and returned to an array in system memory.

There are special pixel copy operations to copy data in the framebuffer to other parts of
the framebuffer or to the texture memory. A single pass is made through the pixel
transfer operations before the data is written to the texture memory or back to the
framebuffer.

Texture Assembly

An OpenGL application may wish to apply texture images onto geometric objects to
make them look more realistic. If several texture images are used, it’s wise to put them
into texture objects so that you can easily switch among them.

Some OpenGL implementations may have special resources to accelerate texture
performance. There may be specialized, high-performance texture memory. If this
memory is available, the texture objects may be prioritized to control the use of this
limited and valuable resource. (See Chapter 9.)

Rasterization

Rasterization is the conversion of both geometric and pixel data intofragments. Each
fragment square corresponds to a pixel in the framebuffer. Line and polygon stipples,
line width, point size, shading model, and coverage calculations to support antialiasing
are taken into consideration as vertices are connected into lines or the interior pixels are
calculated for a filled polygon. Color and depth values are assigned for each fragment
square.
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Fragment Operations

Before values are actually stored into the framebuffer, a series of operations are
performed that may alter or even throw out fragments. All these operations can be
enabled or disabled.

The first operation which may be encountered is texturing, where atexel (texture
element) is generated from texture memory for each fragment and applied to the
fragment. Then fog calculations may be applied, followed by the scissor test, the alpha
test, the stencil test, and the depth-buffer test (the depth buffer is for hidden-surface
removal). Failing an enabled test may end the continued processing of a fragment’s
square. Then, blending, dithering, logical operation, and masking by a bitmask may be
performed. (See Chapter 6 and Chapter 10) Finally, the thoroughly processedfragment
is drawn into the appropriate buffer, where it has finally advanced to be a pixel and
achieved its final resting place.

OpenGL-Related Libraries

OpenGL provides a powerful but primitive set of rendering commands, and all
higher-level drawing must be done in terms of these commands. Also, OpenGL
programs have to use the underlying mechanisms of the windowing system. A number
of libraries exist to allow you to simplify your programming tasks, including the
following:

• The OpenGL Utility Library (GLU) contains several routines that use lower-level
OpenGL commands to perform such tasks as setting up matrices for specific
viewing orientations and projections, performing polygon tessellation, and
rendering surfaces. This library is provided as part of every OpenGL
implementation. Portions of the GLU are described in theOpenGL Reference
Manual. The more useful GLU routines are described in this guide, where they’re
relevant to the topic being discussed, such as in all of Chapter 11 and in the section
“The GLU NURBS Interface” in Chapter 12. GLU routines use the prefix glu.

• For every window system, there is a library that extends the functionality of that
window system to support OpenGL rendering. For machines that use the X
Window System, the OpenGL Extension to the X Window System (GLX) is
provided as an adjunct to OpenGL. GLX routines use the prefix glX. For Microsoft
Windows, the WGL routines provide the Windows to OpenGL interface. All WGL
routines use the prefix wgl. For IBM OS/2, the PGL is the Presentation Manager to
OpenGL interface, and its routines use the prefix pgl.
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All these window system extension libraries are described in more detail in both
Appendix C. In addition, the GLX routines are also described in theOpenGL
Reference Manual.

• The OpenGL Utility Toolkit (GLUT) is a window system-independent toolkit,
written by Mark Kilgard, to hide the complexities of differing window system
APIs. GLUT is the subject of the next section, and it’s described in more detail in
Mark Kilgard’s bookOpenGL Programming for the X Window System (ISBN
0-201-48359-9). GLUT routines use the prefix glut. “How to Obtain the Sample
Code” in the Preface describes how to obtain the source code for GLUT, using ftp.

• Open Inventor is an object-oriented toolkit based on OpenGL which provides
objects and methods for creating interactive three-dimensional graphics
applications. Open Inventor, which is written in C++, provides prebuilt objects and
a built-in event model for user interaction, high-level application components for
creating and editing three-dimensional scenes, and the ability to print objects and
exchange data in other graphics formats. Open Inventor is separate from OpenGL.

Include Files

For all OpenGL applications, you want to include the gl.h header file in every file.
Almost all OpenGL applications use GLU, the aforementioned OpenGL Utility Library,
which requires inclusion of the glu.h header file. So almost every OpenGL source file
begins with

#include <GL/gl.h>
#include <GL/glu.h>

If you are directly accessing a window interface library to support OpenGL, such as
GLX, AGL, PGL, or WGL, you must include additional header files. For example, if you
are calling GLX, you may need to add these lines to your code

#include <X11/Xlib.h>
#include <GL/glx.h>

If you are using GLUT for managing your window manager tasks, you should include

#include <GL/glut.h>

Note that glut.h includes gl.h, glu.h, and glx.h automatically, so including all three files
is redundant. GLUT for Microsoft Windows includes the appropriate header file to
access WGL.
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GLUT, the OpenGL Utility Toolkit

As you know, OpenGL contains rendering commands but is designed to be independent
of any window system or operating system. Consequently, it contains no commands for
opening windows or reading events from the keyboard or mouse. Unfortunately, it’s
impossible to write a complete graphics program without at least opening a window, and
most interesting programs require a bit of user input or other services from the operating
system or window system. In many cases, complete programs make the most interesting
examples, so this book uses GLUT to simplify opening windows, detecting input, and
so on. If you have an implementation of OpenGL and GLUT on your system, the
examples in this book should run without change when linked with them.

In addition, since OpenGL drawing commands are limited to those that generate simple
geometric primitives (points, lines, and polygons), GLUT includes several routines that
create more complicated three-dimensional objects such as a sphere, a torus, and a
teapot. This way, snapshots of program output can be interesting to look at. (Note that
the OpenGL Utility Library, GLU, also has quadrics routines that create some of the
same three-dimensional objects as GLUT, such as a sphere, cylinder, or cone.)

GLUT may not be satisfactory for full-featured OpenGL applications, but you may find
it a useful starting point for learning OpenGL. The rest of this section briefly describes
a small subset of GLUT routines so that you can follow the programming examples in
the rest of this book. (See Appendix D for more details about this subset of GLUT, or
see Chapters 4 and 5 ofOpenGL Programming for the X Window System for information
about the rest of GLUT.)

Window Management

Five routines perform tasks necessary to initialize a window.

• glutInit(int *argc, char **argv) initializes GLUT and processes any command line
arguments (for X, this would be options like -display and -geometry). glutInit()
should be called before any other GLUT routine.

• glutInitDisplayMode(unsigned intmode) specifies whether to use anRGBA or
color-index color model. You can also specify whether you want a single- or
double-buffered window. (If you’re working in color-index mode, you’ll want to
load certain colors into the color map; use glutSetColor() to do this.) Finally, you
can use this routine to indicate that you want the window to have an associated
depth, stencil, and/or accumulation buffer. For example, if you want a window
with double buffering, the RGBA color model, and a depth buffer, you might call
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH).

• glutInitWindowPosition(int x, int y) specifies the screen location for the upper-left
corner of your window.
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• glutInitWindowSize(intwidth, int size) specifies the size, in pixels, of your
window.

• int glutCreateWindow(char *string) creates a window with an OpenGL context. It
returns a unique identifier for the new window. Be warned: Until glutMainLoop()
is called (see next section), the window is not yet displayed.

The Display Callback

glutDisplayFunc(void (*func)(void)) is the first and most important event callback
function you will see. Whenever GLUT determines the contents of the window need to
be redisplayed, the callback function registered by glutDisplayFunc() is executed.
Therefore, you should put all the routines you need to redraw the scene in the display
callback function.

If your program changes the contents of the window, sometimes you will have to call
glutPostRedisplay(void), which gives glutMainLoop() a nudge to call the registered
display callback at its next opportunity.

Running the Program

The very last thing you must do is call glutMainLoop(void). All windows that have been
created are now shown, and rendering to those windows is now effective. Event
processing begins, and the registered display callback is triggered. Once this loop is
entered, it is never exited!

Example 1-2 shows how you might use GLUT to create the simple program shown in
Example 1-1. Note the restructuring of the code. To maximize efficiency, operations that
need only be called once (setting the background color and coordinate system) are now
in a procedure called init(). Operations to render (and possibly re-render) the scene are
in the display() procedure, which is the registered GLUT display callback.



OpenGL-Related Libraries 17

Example 1-2 Simple OpenGL Program Using GLUT: hello.c

#include <GL/gl.h>
#include <GL/glut.h>

void display(void)
{
/*  clear all pixels  */
    glClear (GL_COLOR_BUFFER_BIT);

/*  draw white polygon (rectangle) with corners at
 *  (0.25, 0.25, 0.0) and (0.75, 0.75, 0.0)
 */
    glColor3f (1.0, 1.0, 1.0);
    glBegin(GL_POLYGON);
        glVertex3f (0.25, 0.25, 0.0);
        glVertex3f (0.75, 0.25, 0.0);
        glVertex3f (0.75, 0.75, 0.0);
        glVertex3f (0.25, 0.75, 0.0);
    glEnd();

/*  don’t wait!
 *  start processing buffered OpenGL routines
 */
    glFlush ();
}

void init (void)
{
/*  select clearing (background) color       */
    glClearColor (0.0, 0.0, 0.0, 0.0);

/*  initialize viewing values  */
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
}

/*
 *  Declare initial window size, position, and display mode
 *  (single buffer and RGBA).  Open window with “hello”
 *  in its title bar.  Call initialization routines.
 *  Register callback function to display graphics.
 *  Enter main loop and process events.
 */
int main(int argc, char** argv)
{
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    glutInit(&argc, argv);
    glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
    glutInitWindowSize (250, 250);
    glutInitWindowPosition (100, 100);
    glutCreateWindow (“hello”);
    init ();
    glutDisplayFunc(display);
    glutMainLoop();
    return 0;   /* ISO C requires main to return int. */
}

Handling Input Events

You can use these routines to register callback commands that are invoked when
specified events occur.

• glutReshapeFunc(void (*func)(int w, int h)) indicates what action should be taken
when the window is resized.

• glutKeyboardFunc(void (*func)(unsigned charkey, int x, int y)) and
glutMouseFunc(void (*func)(int button, int state, int x, int y)) allow you to link a
keyboard key or a mouse button with a routine that’s invoked when the key or
mouse button is pressed or released.

• glutMotionFunc(void (*func)(int x, int y)) registers a routine to call back when the
mouse is moved while a mouse button is also pressed.

Managing a Background Process

You can specify a function that’s to be executed if no other events are pending—for
example, when the event loop would otherwise be idle—with glutIdleFunc(void
(* func)(void)). This routine takes a pointer to the function as its only argument. Pass in
NULL (zero) to disable the execution of the function.

Drawing Three-Dimensional Objects

GLUT includes several routines for drawing these three-dimensional objects:

cone icosahedron teapot

cube octahedron tetrahedron

dodecahedron sphere torus
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You can draw these objects as wireframes or as solid shaded objects with surface
normals defined. For example, the routines for a cube and a sphere are as follows:

void glutWireCube(GLdoublesize);

void glutSolidCube(GLdoublesize);

void glutWireSphere(GLdoubleradius, GLint slices,GLint stacks);

void glutSolidSphere(GLdoubleradius, GLint slices,GLint stacks);

All these models are drawn centered at the origin of the world coordinate system. (See
for information on the prototypes of all these drawing routines.)

Animation

One of the most exciting things you can do on a graphics computer is draw pictures that
move. Whether you’re an engineer trying to see all sides of a mechanical part you’re
designing, a pilot learning to fly an airplane using a simulation, or merely a
computer-game aficionado, it’s clear thatanimation is an important part of computer
graphics.

In a movie theater, motion is achieved by taking a sequence of pictures and projecting
them at 24 per second on the screen. Each frame is moved into position behind the lens,
the shutter is opened, and the frame is displayed. The shutter is momentarily closed
while the film is advanced to the next frame, then that frame is displayed, and so on.
Although you’re watching 24 different frames each second, your brain blends them all
into a smooth animation. (The old Charlie Chaplin movies were shot at 16 frames per
second and are noticeably jerky.) In fact, most modern projectors display each picture
twice at a rate of 48 per second to reduce flickering. Computer-graphics screens
typically refresh (redraw the picture) approximately 60 to 76 times per second, and some
even run at about 120 refreshes per second. Clearly, 60 per second is smoother than 30,
and 120 is marginally better than 60. Refresh rates faster than 120, however, are beyond
the point of diminishing returns, since the human eye is only so good.

The key reason that motion picture projection works is that each frame is complete when
it is displayed. Suppose you try to do computer animation of your million-frame movie
with a program like this:

open_window();
for (i = 0; i < 1000000; i++) {
   clear_the_window();
   draw_frame(i);
   wait_until_a_24th_of_a_second_is_over();
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}

If you add the time it takes for your system to clear the screen and to draw a typical
frame, this program gives more and more disturbing results depending on how close to
1/24 second it takes to clear and draw. Suppose the drawing takes nearly a full 1/24
second. Items drawn first are visible for the full 1/24 second and present a solid image
on the screen; items drawn toward the end are instantly cleared as the program starts on
the next frame. They present at best a ghostlike image, since for most of the 1/24 second
your eye is viewing the cleared background instead of the items that were unlucky
enough to be drawn last. The problem is that this program doesn’t display completely
drawn frames; instead, you watch the drawing as it happens.

Most OpenGL implementations providedouble-buffering—hardware or software that
supplies two complete color buffers. One is displayed while the other is being drawn.
When the drawing of a frame is complete, the two buffers are swapped, so the one that
was being viewed is now used for drawing, and vice versa. This is like a movie projector
with only two frames in a loop; while one is being projected on the screen, an artist is
desperately erasing and redrawing the frame that’s not visible. As long as the artist is
quick enough, the viewer notices no difference between this setup and one where all the
frames are already drawn and the projector is simply displaying them one after the other.
With double-buffering, every frame is shown only when the drawing is complete; the
viewer never sees a partially drawn frame.

A modified version of the preceding program that does display smoothly animated
graphics might look like this:

open_window_in_double_buffer_mode();
for (i = 0; i < 1000000; i++) {
   clear_the_window();
   draw_frame(i);
   swap_the_buffers();
}

The Refresh That Pauses

For some OpenGL implementations, in addition to simply swapping the viewable and
drawable buffers, the swap_the_buffers() routine waits until the current screen refresh
period is over so that the previous buffer is completely displayed. This routine also
allows the new buffer to be completely displayed, starting from the beginning.
Assuming that your system refreshes the display 60 times per second, this means that
the fastest frame rate you can achieve is 60 frames per second (fps), and if all your
frames can be cleared and drawn in under 1/60 second, your animation will run
smoothly at that rate.
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What often happens on such a system is that the frame is too complicated to draw in 1/60
second, so each frame is displayed more than once. If, for example, it takes 1/45 second
to draw a frame, you get 30 fps, and the graphics are idle for 1/30−1/45=1/90 second per
frame, or one-third of the time.

In addition, the video refresh rate is constant, which can have some unexpected
performance consequences. For example, with the 1/60 second per refresh monitor and
a constant frame rate, you can run at 60 fps, 30 fps, 20 fps, 15 fps, 12 fps, and so on (60/1,
60/2, 60/3, 60/4, 60/5, ...). That means that if you’re writing an application and gradually
adding features (say it’s a flight simulator, and you’re adding ground scenery), at first
each feature you add has no effect on the overall performance—you still get 60 fps.
Then, all of a sudden, you add one new feature, and the system can’t quite draw the
whole thing in 1/60 of a second, so the animation slows from 60 fps to 30 fps because it
misses the first possible buffer-swapping time. A similar thing happens when the
drawing time per frame is more than 1/30 second—the animation drops from 30 to 20
fps.

If the scene’s complexity is close to any of the magic times (1/60 second, 2/60 second,
3/60 second, and so on in this example), then because of random variation, some frames
go slightly over the time and some slightly under. Then the frame rate is irregular, which
can be visually disturbing. In this case, if you can’t simplify the scene so that all the
frames are fast enough, it might be better to add an intentional, tiny delay to make sure
they all miss, giving a constant, slower, frame rate. If your frames have drastically
different complexities, a more sophisticated approach might be necessary.

Motion = Redraw + Swap

The structure of real animation programs does not differ too much from this description.
Usually, it is easier to redraw the entire buffer from scratch for each frame than to figure
out which parts require redrawing. This is especially true with applications such as
three-dimensional flight simulators where a tiny change in the plane’s orientation
changes the position of everything outside the window.

In most animations, the objects in a scene are simply redrawn with different
transformations—theviewpoint of the viewer moves, or a car moves down the road a bit,
or an object is rotated slightly. If significant recomputation is required for non-drawing
operations, the attainable frame rate often slows down. Keep in mind, however, that the
idle time after the swap_the_buffers() routine can often be used for such calculations.

OpenGL doesn’t have a swap_the_buffers() command because the feature might not be
available on all hardware and, in any case, it’s highly dependent on the window system.
For example, if you are using the X Window System and accessing it directly, you might
use the following GLX routine:
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void glXSwapBuffers(Display * dpy, Window window);

(See Appendix C for equivalent routines for other window systems.)

If you are using the GLUT library, you’ll want to call this routine:

void glutSwapBuffers(void);

Example 1-3 illustrates the use of glutSwapBuffers() in an example that draws a
spinning square as shown in Figure 1-3. The following example also shows how to use
GLUT to control an input device and turn on and off an idle function. In this example,
the mouse buttons toggle the spinning on and off.

Figure 1-3 Double-Buffered Rotating Square

Example 1-3 Double-Buffered Program: double.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

static GLfloat spin = 0.0;

void init(void)
{
   glClearColor (0.0, 0.0, 0.0, 0.0);
   glShadeModel (GL_FLAT);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glPushMatrix();
   glRotatef(spin, 0.0, 0.0, 1.0);
   glColor3f(1.0, 1.0, 1.0);
   glRectf(-25.0, -25.0, 25.0, 25.0);
   glPopMatrix();

Frame 0 Frame 10 Frame 20 Frame 30 Frame 40
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   glutSwapBuffers();
}

void spinDisplay(void)
{
   spin = spin + 2.0;
   if (spin > 360.0)
      spin = spin - 360.0;
   glutPostRedisplay();
}

void reshape(int w, int h)
{
   glViewport (0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   glOrtho(-50.0, 50.0, -50.0, 50.0, -1.0, 1.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void mouse(int button, int state, int x, int y)
{
   switch (button) {
      case GLUT_LEFT_BUTTON:
         if (state == GLUT_DOWN)
            glutIdleFunc(spinDisplay);
         break;
      case GLUT_MIDDLE_BUTTON:
         if (state == GLUT_DOWN)
            glutIdleFunc(NULL);
         break;
      default:
         break;
   }
}

/*
 *  Request double buffer display mode.
 *  Register mouse input callback functions
 */
int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
   glutInitWindowSize (250, 250);
   glutInitWindowPosition (100, 100);



24 Chapter 1: Introduction to OpenGL

   glutCreateWindow (argv[0]);
   init ();
   glutDisplayFunc(display);
   glutReshapeFunc(reshape);
   glutMouseFunc(mouse);
   glutMainLoop();
   return 0;
}



Animation 25



26 Chapter 1: Introduction to OpenGL


