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Chapter 4

4.Color

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• Decide between using RGBA or color-index mode for your application

• Specify desired colors for drawing objects

• Use smooth shading to draw a single polygon with more than one color
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The goal of almost all OpenGL applications is to draw color pictures in a window on the
screen. The window is a rectangular array of pixels, each of which contains and displays
its own color. Thus, in a sense, the point of all the calculations performed by an OpenGL
implementation—calculations that take into account OpenGL commands, state
information, and values of parameters—is to determine the final color of every pixel
that’s to be drawn in the window. This chapter explains the commands for specifying
colors and how OpenGL interprets them in the following major sections:

• “Color Perception” discusses how the eye perceives color.

• “Computer Color” describes the relationship between pixels on a computer
monitor and their colors; it also defines the two display modes, RGBA and color
index.

• “RGBA versus Color-Index Mode” explains how the two display modes use
graphics hardware and how to decide which mode to use.

• “Specifying a Color and a Shading Model” describes the OpenGL commands you
use to specify the desired color or shading model.

Color Perception

Physically, light is composed of photons—tiny particles of light, each traveling along its
own path, and each vibrating at its own frequency (or wavelength, or energy—any one
of frequency, wavelength, or energy determines the others). A photon is completely
characterized by its position, direction, and frequency/wavelength/energy. Photons with
wavelengths ranging from about 390 nanometers (nm) (violet) and 720 nm (red) cover
the colors of the visible spectrum, forming the colors of a rainbow (violet, indigo, blue,
green, yellow, orange, red). However, your eyes perceive lots of colors that aren’t in the
rainbow—white, black, brown, and pink, for example. How does this happen?

What your eye actually sees is a mixture of photons of different frequencies. Real light
sources are characterized by the distribution of photon frequencies they emit. Ideal white
light consists of an equal amount of light of all frequencies. Laser light is usually very
pure, and all photons have almost identical frequencies (and direction and phase, as
well). Light from a sodium-vapor lamp has more light in the yellow frequency. Light
from most stars in space has a distribution that depends heavily on their temperatures
(black-body radiation). The frequency distribution of light from most sources in your
immediate environment is more complicated.

The human eye perceives color when certain cells in the retina (calledcone cells, or just
cones) become excited after being struck by photons. The three different kinds of cone
cells respond best to three different wavelengths of light: one type of cone cell responds
best to red light, one type to green, and the other to blue. (A person who is color-blind
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is usually missing one or more types of cone cells.) When a given mixture of photons
enters the eye, the cone cells in the retina register different degrees of excitation
depending on their types, and if a different mixture of photons comes in that happens to
excite the three types of cone cells to the same degrees, its color is indistinguishable
from that of the first mixture.

Since each color is recorded by the eye as the levels of excitation of the cone cells by the
incoming photons, the eye can perceive colors that aren’t in the spectrum produced by a
prism or rainbow. For example, if you send a mixture of red and blue photons so that
both the red and blue cones in the retina are excited, your eye sees it as magenta, which
isn’t in the spectrum. Other combinations give browns, turquoises, and mauves, none of
which appear in the color spectrum.

A computer-graphics monitor emulates visible colors by lighting pixels with a
combination of red, green, and blue light in proportions that excite the red-, green-, and
blue-sensitive cones in the retina in such a way that it matches the excitation levels
generated by the photon mix it’s trying to emulate. If humans had more types of cone
cells, some that were yellow-sensitive for example, color monitors would probably have
a yellow gun as well, and we’d use RGBY (red, green, blue, yellow) quadruples to
specify colors. And if everyone were color-blind in the same way, this chapter would be
simpler.

To display a particular color, the monitor sends the right amounts of red, green, and blue
light to appropriately stimulate the different types of cone cells in your eye. A color
monitor can send different proportions of red, green, and blue to each of the pixels, and
the eye sees a million or so pinpoints of light, each with its own color.

This section considers only how the eye perceives combinations of photons that enter it.
The situation for light bouncing off materials and entering the eye is even more
complex—white light bouncing off a red ball will appear red, or yellow light shining
through blue glass appears almost black, for example. (See “Real-World and OpenGL
Lighting” in Chapter 5 for a discussion of these effects.)

Computer Color

On a color computer screen, the hardware causes each pixel on the screen to emit
different amounts of red, green, and blue light. These are called the R, G, and B values.
They’re often packed together (sometimes with a fourth value, called alpha, or A), and
the packed value is called the RGB (or RGBA) value. (See “Blending” in Chapter 6 for
an explanation of the alpha values.) The color information at each pixel can be stored
either inRGBA mode, in which the R, G, B, and possibly A values are kept for each
pixel, or incolor-index mode, in which a single number (called the color index) is stored
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for each pixel. Each color index indicates an entry in a table that defines a particular set
of R, G, and B values. Such a table is called acolor map.

In color-index mode, you might want to alter the values in the color map. Since color
maps are controlled by the window system, there are no OpenGL commands to do this.
All the examples in this book initialize the color-display mode at the time the window is
opened by using routines from the GLUT library. (See Appendix D for details.)

There is a great deal of variation among the different graphics hardware platforms in
both the size of the pixel array and the number of colors that can be displayed at each
pixel. On any graphics system, each pixel has the same amount of memory for storing
its color, and all the memory for all the pixels is called thecolor buffer. The size of a
buffer is usually measured in bits, so an 8-bit buffer could store 8 bits of data (256
possible different colors) for each pixel. The size of the possible buffers varies from
machine to machine. (See Chapter 10 for more information.)

The R, G, and B values can range from 0.0 (none) to 1.0 (full intensity). For example, R
= 0.0, G = 0.0, and B = 1.0 represents the brightest possible blue. If R, G, and B are all
0.0, the pixel is black; if all are 1.0, the pixel is drawn in the brightest white that can be
displayed on the screen.Blending green and blue creates shades of cyan. Blue and red
combine for magenta. Red and green create yellow. To help you create the colors you
want from the R, G, and B components, look at the color cube shown in Plate 12. The
axes of this cube represent intensities of red, blue, and green. A black-and-white version
of the cube is shown in Figure 4-1.

Figure 4-1 The Color Cube in Black and White

The commands to specify a color for an object (in this case, a point) can be as simple as
this:

glColor3f (1.0, 0.0, 0.0);  /* the current RGB color is red: */

Green

Red

Blue

Cyan

Yellow

Magenta

Black

White



RGBA versus Color-Index Mode 155

                            /* full red, no green, no blue. */
glBegin (GL_POINTS);
    glVertex3fv (point_array);
glEnd ();

In certain modes (for example, if lighting or texturing calculations are performed), the
assigned color might go through other operations before arriving in the framebuffer as a
value representing a color for a pixel. In fact, the color of a pixel is determined by a
lengthy sequence of operations.

Early in a program’s execution, the color-display mode is set to either RGBA mode or
color-index mode. Once the color-display mode is initialized, it can’t be changed. As the
program executes, a color (either a color index or an RGBA value) is determined on a
per-vertex basis for each geometric primitive. This color is either a color you’ve
explicitly specified for a vertex or, if lighting is enabled, is determined from the
interaction of the transformation matrices with the surface normals and other material
properties. In other words, a red ball with a blue light shining on it looks different from
the same ball with no light on it. (See Chapter 5 for details.) After the relevant lighting
calculations are performed, the chosen shading model is applied. As explained in
“Specifying a Color and a Shading Model,” you can choose flat or smooth shading, each
of which has different effects on the eventual color of a pixel.

Next, the primitives arerasterized, or converted to a two-dimensional image.
Rasterizing involves determining which squares of an integer grid in window
coordinates are occupied by the primitive and then assigning color and other values to
each such square. A grid square along with its associated values of color,z (depth), and
texture coordinates is called afragment. Pixels are elements of the framebuffer; a
fragment comes from a primitive and is combined with its corresponding pixel to yield
a new pixel. Once a fragment is constructed, texturing, fog, and antialiasing are
applied—if they’re enabled—to the fragments. After that, any specified alpha blending,
dithering, and bitwise logical operations are carried out using the fragment and the pixel
already stored in the framebuffer. Finally, the fragment’s color value (either color index
or RGBA) is written into the pixel and displayed in the window using the window’s
color-display mode.

RGBA versus Color-Index Mode

In either color-index or RGBA mode, a certain amount of color data is stored at each
pixel. This amount is determined by the number of bitplanes in the framebuffer. A
bitplane contains 1 bit of data for each pixel. If there are 8color bitplanes, there are 8
color bits per pixel, and hence 28 = 256 different values or colors that can be stored at
the pixel.
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Bitplanes are often divided evenly into storage for R, G, and B components (that is, a
24-bitplane system devotes 8 bits each to red, green, and blue), but this isn’t always true.
To find out the number of bitplanes available on your system for red, green, blue, alpha,
or color-index values, use glGetIntegerv() with GL_RED_BITS, GL_GREEN_BITS,
GL_BLUE_BITS, GL_ALPHA_BITS, and GL_INDEX_BITS.

Note: Color intensities on most computer screens aren’t perceived as linear by the
human eye. Consider colors consisting of just a red component, with green and
blue set to zero. As the intensity varies from 0.0 (off) to 1.0 (full on), the number
of electrons striking the pixels increases, but the question is, does 0.5 look like
halfway between 0.0 and 1.0? To test this, write a program that draws alternate
pixels in a checkerboard pattern to intensities 0.0 and 1.0, and compare it with a
region drawn solidly in color 0.5. From a reasonable distance from the screen,
the two regions should appear to have the same intensity. If they look noticeably
different, you need to use whatever correction mechanism is provided on your
particular system. For example, many systems have a table to adjust intensities
so that 0.5 appears to be halfway between 0.0 and 1.0. The mapping generally
used is an exponential one, with the exponent referred to as gamma (hence the
termgamma correction). Using the same gamma for the red, green, and blue
components gives pretty good results, but three different gamma values might
give slightly better results. (For more details on this topic, see Foley, van Dam,
et al.Computer Graphics: Principles and Practice. Reading, MA:
Addison-Wesley Developers Press, 1990.)

RGBA Display Mode

In RGBA mode, the hardware sets aside a certain number of bitplanes for each of the R,
G, B, and A components (not necessarily the same number for each component) as
shown in Figure 4-2. The R, G, and B values are typically stored as integers rather than
floating-point numbers, and they’re scaled to the number of available bits for storage and
retrieval. For example, if a system has 8 bits available for the R component, integers
between 0 and 255 can be stored; thus, 0, 1, 2, ..., 255 in the bitplanes would correspond
to R values of 0/255 = 0.0, 1/255, 2/255, ..., 255/255 = 1.0. Regardless of the number of
bitplanes, 0.0 specifies the minimum intensity, and 1.0 specifies the maximum intensity.
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Figure 4-2 RGB Values from the Bitplanes

Note: The alpha value (the A in RGBA) has no direct effect on the color displayed on
the screen. It can be used for many things, including blending and transparency,
and it can have an effect on the values of R, G, and B that are written. (See
“Blending” in Chapter 6 for more information about alpha values.)

The number of distinct colors that can be displayed at a single pixel depends on the
number of bitplanes and the capacity of the hardware to interpret those bitplanes. The
number of distinct colors can’t exceed 2n, wheren is the number of bitplanes. Thus, a
machine with 24 bitplanes for RGB can display up to 16.77 million distinct colors.

Dithering

Advanced

Some graphics hardware uses dithering to increase the number of apparent colors.
Dithering is the technique of using combinations of some colors to create the effect of
other colors. To illustrate how dithering works, suppose your system has only 1 bit each
for R, G, and B and thus can display only eight colors: black, white, red, blue, green,
yellow, cyan, and magenta. To display a pink region, the hardware can fill the region in
a checkerboard manner, alternating red and white pixels. If your eye is far enough away
from the screen that it can’t distinguish individual pixels, the region appears pink—the
average of red and white. Redder pinks can be achieved by filling a higher proportion of
the pixels with red, whiter pinks would use more white pixels, and so on.

With this technique, there are no pink pixels. The only way to achieve the effect of
“pinkness” is to cover a region consisting of multiple pixels—you can’t dither a single
pixel. If you specify an RGB value for an unavailable color and fill a polygon, the
hardware fills the pixels in the interior of the polygon with a mixture of nearby colors
whose average appears to your eye to be the color you want. (Remember, though, that if

Red

Green

Blue
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you’re reading pixel information out of the framebuffer, you get the actual red and white
pixel values, since there aren’t any pink ones. See Chapter 8 for more information about
reading pixel values.)

Figure 4-3 illustrates some simple dithering of black and white pixels to make shades of
gray. From left to right, the 4×4 patterns at the top represent dithering patterns for 50
percent, 19 percent, and 69 percent gray. Under each pattern, you can see repeated
reduced copies of each pattern, but these black and white squares are still bigger than
most pixels. If you look at them from across the room, you can see that they blur together
and appear as three levels of gray.

Figure 4-3 Dithering Black and White to Create Gray

With about 8 bits each of R, G, and B, you can get a fairly high-quality image without
dithering. Just because your machine has 24 color bitplanes, however, doesn’t mean that
dithering won’t be desirable. For example, if you are running in double-buffer mode, the
bitplanes might be divided into two sets of twelve, so there are really only 4 bits each
per R, G, and B component. Without dithering, 4-bit-per-component color can give less
than satisfactory results in many situations.

You enable or disable dithering by passing GL_DITHER to glEnable() or glDisable().
Note that dithering, unlike many other features, is enabled by default.
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Color-Index Display Mode

With color-index mode, OpenGL uses a color map (orlookup table), which is similar to
using a palette to mix paints to prepare for a paint-by-number scene. A painter’s palette
provides spaces to mix paints together; similarly, a computer’s color map provides
indices where the primary red, green, and blue values can be mixed, as shown in
Figure 4-4.

Figure 4-4 A Color Map

A painter filling in a paint-by-number scene chooses a color from the color palette and
fills the corresponding numbered regions with that color. A computer stores the color
index in the bitplanes for each pixel. Then those bitplane values reference the color map,
and the screen is painted with the corresponding red, green, and blue values from the
color map, as shown in Figure 4-5.

Figure 4-5 Using a Color Map to Paint a Picture
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In color-index mode, the number of simultaneously available colors is limited by the size
of the color map and the number of bitplanes available. The size of the color map is
determined by the amount of hardware dedicated to it. The size of the color map is
always a power of 2, and typical sizes range from 256 (28) to 4096 (212), where the
exponent is the number of bitplanes being used. If there are 2n indices in the color map
andm available bitplanes, the number of usable entries is the smaller of 2n and 2m.

With RGBA mode, each pixel’s color is independent of other pixels. However, in
color-index mode, each pixel with the same index stored in its bitplanes shares the same
color-map location. If the contents of an entry in the color map change, then all pixels
of that color index change their color.

Choosing between RGBA and Color-Index Mode

You should base your decision to use RGBA or color-index mode on what hardware is
available and on what your application needs. For most systems, more colors can be
simultaneously represented with RGBA mode than with color-index mode. Also, for
several effects, such as shading, lighting, texture mapping, and fog, RGBA provides
more flexibility than color-index mode.

You might prefer to use color-index mode in the following cases:

• If you’re porting an existing application that makes significant use of color-index
mode, it might be easier to not change to RGBA mode.

• If you have a small number of bitplanes available, RGBA mode may produce
noticeably coarse shades of colors. For example, if you have only 8 bitplanes, in
RGBA mode, you may have only 3 bits for red, 3 bits for green, and 2 bits for blue.
You’d only have 8 (23) shades of red and green, and only 4 shades of blue. The
gradients between color shades are likely to be very obvious.

In this situation, if you have limited shading requirements, you can use the color
lookup table to load more shades of colors. For example, if you need only shades
of blue, you can use color-index mode and store up to 256 (28) shades of blue in
the color-lookup table, which is much better than the 4 shades you would have in
RGBA mode. Of course, this example would use up your entire color-lookup table,
so you would have no shades of red, green, or other combined colors.

• Color-index mode can be useful for various tricks, such as color-map animation
and drawing in layers. (See Chapter 14 for more information.)

In general, use RGBA mode wherever possible. It works with texture mapping and
works better with lighting, shading, fog, antialiasing, and blending.
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Changing between Display Modes

In the best of all possible worlds, you might want to avoid making a choice between
RGBA and color-index display mode. For example, you may want to use color-index
mode for a color-map animation effect and then, when needed, immediately change the
scene to RGBA mode for texture mapping.

Or similarly, you may desire to switch between single and double buffering. For
example, you may have very few bitplanes; let’s say 8 bitplanes. In single-buffer mode,
you’ll have 256 (28) colors, but if you are using double-buffer mode to eliminate
flickering from your animated program, you may only have 16 (24) colors. Perhaps you
want to draw a moving object without flicker and are willing to sacrifice colors for using
double-buffer mode (maybe the object is moving so fast that the viewer won’t notice the
details). But when the object comes to rest, you will want to draw it in single-buffer
mode so that you can use more colors.

Unfortunately, most window systems won’t allow an easy switch. For example, with the
X Window System, the color-display mode is an attribute of the X Visual. An X Visual
must be specified before the window is created. Once it is specified, it cannot be changed
for the life of the window. After you create a window with a double-buffered, RGBA
display mode, you’re stuck with it.

A tricky solution to this problem is to create more than one window, each with a different
display mode. Then you must control the visibility of the windows (for example,
mapping or unmapping an X Window, or managing or unmanaging a Motif or Athena
widget) and draw the object into the appropriate, visible window.

Specifying a Color and a Shading Model

OpenGL maintains a current color (in RGBA mode) and a current color index (in
color-index mode). Unless you’re using a more complicated coloring model such as
lighting or texture mapping, each object is drawn using the current color (or color index).
Look at the following pseudocode sequence:

set_color(RED);
draw_item(A);
draw_item(B);
set_color(GREEN);
set_color(BLUE);
draw_item(C);

Items A and B are drawn in red, and item C is drawn in blue. The fourth line, which sets
the current color to green, has no effect (except to waste a bit of time). With no lighting
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or texturing, when the current color is set, all items drawn afterward are drawn in that
color until the current color is changed to something else.

Specifying a Color in RGBA Mode

In RGBA mode, use the glColor*() command to select a current color.

void glColor3{b s i f d ub us ui} (TYPE r, TYPE g, TYPE b);
void glColor4{b s i f d ub us ui} (TYPE r, TYPE g, TYPE b, TYPE a);
void glColor3{b s i f d ub us ui}v (constTYPE *v);
void glColor4{b s i f d ub us ui}v (constTYPE *v);

Sets the current red, green, blue, and alpha values. This command can have up to
three suffixes, which differentiate variations of the parameters accepted. The first
suffix is either 3 or 4, to indicate whether you supply an alpha value in addition to the
red, green, and blue values. If you don’t supply an alpha value, it’s automatically set
to 1.0. The second suffix indicates the data type for parameters: byte, short, integer,
float, double, unsigned byte, unsigned short, or unsigned integer. The third suffix is an
optional v, which indicates that the argument is a pointer to an array of values of the
given data type.

For the versions of glColor*() that accept floating-point data types, the values should
typically range between 0.0 and 1.0, the minimum and maximum values that can be
stored in the framebuffer. Unsigned-integer color components, when specified, are
linearly mapped to floating-point values such that the largest representable value maps
to 1.0 (full intensity), and zero maps to 0.0 (zero intensity). Signed-integer color
components, when specified, are linearly mapped to floating-point values such that the
most positive representable value maps to 1.0, and the most negative representable value
maps to−1.0 (see Table 4-1).

Neither floating-point nor signed-integer values are clamped to the range [0,1] before
updating the current color or current lighting material parameters. After lighting
calculations, resulting color values outside the range [0,1] are clamped to the range [0,1]
before they are interpolated or written into a color buffer. Even if lighting is disabled,
the color components are clamped before rasterization.

Suffix Data Type Minimum Value Min Value
Maps to

Maximum Value Max Value
Maps to

b 1-byte integer −128 −1.0 127 1.0

Table 4-1 Converting Color Values to Floating-Point Numbers
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Specifying a Color in Color-Index Mode

In color-index mode, use the glIndex*() command to select a single-valued color index
as the current color index.

void glIndex{sifd ub}(TYPEc);
void glIndex{sifd ub}v(const TYPE*c);

Sets the current color index toc. The first suffix for this command indicates the data
type for parameters: short, integer, float, double, or unsigned byte. The second,
optional suffix is v, which indicates that the argument is an array of values of the
given data type (the array contains only one value).

In “Clearing the Window” in Chapter 2, you saw the specification of glClearColor(). For
color-index mode, there is a corresponding glClearIndex().

void glClearIndex(GLfloatcindex);

Sets the current clearing color in color-index mode. In a color-index mode window, a
call to glClear(GL_COLOR_BUFFER_BIT) will usecindex to clear the buffer. The
default clearing index is 0.0.

Note: OpenGL does not have any routines to load values into the color-lookup table.
Window systems typically already have such operations. GLUT has the routine
glutSetColor() to call the window-system specific commands.

s 2-byte integer −32,768 −1.0 32,767 1.0

i 4-byte integer −2,147,483,648 −1.0 2,147,483,647 1.0

ub unsigned 1-byte
integer

0 0.0 255 1.0

us unsigned 2-byte
integer

0 0.0 65,535 1.0

ui unsigned 4-byte
integer

0 0.0 4,294,967,295 1.0

Suffix Data Type Minimum Value Min Value
Maps to

Maximum Value Max Value
Maps to

Table 4-1 Converting Color Values to Floating-Point Numbers
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Advanced

The current index is stored as a floating-point value. Integer values are converted directly
to floating-point values, with no special mapping. Index values outside the representable
range of the color-index buffer aren’t clamped. However, before an index is dithered (if
enabled) and written to the framebuffer, it’s converted to fixed-point format. Any bits in
the integer portion of the resulting fixed-point value that don’t correspond to bits in the
framebuffer are masked out.

Specifying a Shading Model

A line or a filled polygon primitive can be drawn with a single color (flat shading) or
with many different colors (smooth shading, also calledGouraud shading). You specify
the desired shading technique with glShadeModel().

void glShadeModel (GLenummode);

Sets the shading model. The mode parameter can be either GL_SMOOTH (the
default) or GL_FLAT.

With flat shading, the color of one particular vertex of an independent primitive is
duplicated across all the primitive’s vertices to render that primitive. With smooth
shading, the color at each vertex is treated individually. For a line primitive, the colors
along the line segment are interpolated between the vertex colors. For a polygon
primitive, the colors for the interior of the polygon are interpolated between the vertex
colors. Example 4-1 draws a smooth-shaded triangle, as shown in “Plate 11” in
Appendix I.

Example 4-1 Drawing a Smooth-Shaded Triangle: smooth.c

#include <GL/gl.h>
#include <GL/glut.h>

void init(void)
{
   glClearColor (0.0, 0.0, 0.0, 0.0);
   glShadeModel (GL_SMOOTH);
}

void triangle(void)
{
   glBegin (GL_TRIANGLES);
   glColor3f (1.0, 0.0, 0.0);
   glVertex2f (5.0, 5.0);
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   glColor3f (0.0, 1.0, 0.0);
   glVertex2f (25.0, 5.0);
   glColor3f (0.0, 0.0, 1.0);
   glVertex2f (5.0, 25.0);
   glEnd();
}

void display(void)
{
   glClear (GL_COLOR_BUFFER_BIT);
   triangle ();
   glFlush ();
}

void reshape (int w, int h)
{
   glViewport (0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode (GL_PROJECTION);
   glLoadIdentity ();
   if (w <= h)
      gluOrtho2D (0.0, 30.0, 0.0, 30.0*(GLfloat) h/(GLfloat) w);
   else
      gluOrtho2D (0.0, 30.0*(GLfloat) w/(GLfloat) h, 0.0, 30.0);
   glMatrixMode(GL_MODELVIEW);
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize (500, 500);
   glutInitWindowPosition (100, 100);
   glutCreateWindow (argv[0]);
   init ();
   glutDisplayFunc(display);
   glutReshapeFunc(reshape);
   glutMainLoop();
   return 0;
}

With smooth shading, neighboring pixels have slightly different color values. In RGBA
mode, adjacent pixels with slightly different values look similar, so the color changes
across a polygon appear gradual. In color-index mode, adjacent pixels may reference
different locations in the color-index table, which may not have similar colors at all.
Adjacent color-index entries may contain wildly different colors, so a smooth-shaded
polygon in color-index mode can look psychedelic.
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To avoid this problem, you have to create a color ramp of smoothly changing colors
among a contiguous set of indices in the color map. Remember that loading colors into
a color map is performed through your window system rather than OpenGL. If you use
GLUT, you can use glutSetColor() to load a single index in the color map with specified
red, green, and blue values. The first argument for glutSetColor() is the index, and the
others are the red, green, and blue values. To load thirty-two contiguous color indices
(from color index 16 to 47) with slightly differing shades of yellow, you might call

for (i = 0; i < 32; i++) {
   glutSetColor (16+i, 1.0*(i/32.0), 1.0*(i/32.0), 0.0);
}

Now, if you render smooth-shaded polygons that use only the colors from index 16 to
47, those polygons have gradually differing shades of yellow.

With flat shading, the color of a single vertex defines the color of an entire primitive. For
a line segment, the color of the line is the current color when the second (ending) vertex
is specified. For a polygon, the color used is the one that’s in effect when a particular
vertex is specified, as shown in Table 4-2. The table counts vertices and polygons
starting from 1. OpenGL follows these rules consistently, but the best way to avoid
uncertainty about how a flat-shaded primitive will be drawn is to specify only one color
for the primitive.

Type of Polygon Vertex Used to Select the Color for the ith Polygon

single polygon 1

triangle strip i+2

triangle fan i+2

independent triangle 3i

quad strip 2i+2

independent quad 4i

Table 4-2 How OpenGL Selects a Color for the ith Flat-Shaded Polygon


