
471

Chapter 13

13.Selection and Feedback

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• Create applications that allow the user to select a region of the screen or pick an
object drawn on the screen

• Use the OpenGL feedback mode to obtain the results of rendering calculations

472 Chapter 13: Selection and Feedback

Some graphics applications simply draw static images of two- and three-dimensional
objects. Other applications allow the user to identify objects on the screen and then to
move, modify, delete, or otherwise manipulate those objects. OpenGL is designed to
support exactly such interactive applications. Since objects drawn on the screen
typically undergo multiple rotations, translations, and perspective transformations, it
can be difficult for you to determine which object a user is selecting in a
three-dimensional scene. To help you, OpenGL provides a selection mechanism that
automatically tells you which objects are drawn inside a specified region of the window.
You can use this mechanism together with a special utility routine to determine which
object within the region the user is specifying, orpicking, with the cursor.

Selection is actually a mode of operation for OpenGL; feedback is another such mode.
In feedback mode, you use your graphics hardware and OpenGL to perform the usual
rendering calculations. Instead of using the calculated results to draw an image on the
screen, however, OpenGL returns (or feeds back) the drawing information to you. For
example, if you want to draw three-dimensional objects on a plotter rather than the
screen, you would draw the items in feedback mode, collect the drawing instructions,
and then convert them to commands the plotter can understand.

In both selection and feedback modes, drawing information is returned to the application
rather than being sent to the framebuffer, as it is in rendering mode. Thus, the screen
remains frozen—no drawing occurs—while OpenGL is in selection or feedback mode.
In these modes, the contents of the color, depth, stencil, and accumulation buffers are
not affected. This chapter explains each of these modes in its own section:

• “Selection” discusses how to use selection mode and related routines to allow a
user of your application to pick an object drawn on the screen.

• “Feedback” describes how to obtain information about what would be drawn on
the screen and how that information is formatted.

Selection

Typically, when you’re planning to use OpenGL’s selection mechanism, you first draw
your scene into the framebuffer, and then you enter selection mode and redraw the scene.
However, once you’re in selection mode, the contents of the framebuffer don’t change
until you exit selection mode. When you exit selection mode, OpenGL returns a list of
the primitives that intersect the viewing volume (remember that the viewing volume is
defined by the current modelview and projection matrices and any additional clipping
planes, as explained in Chapter 3.) Each primitive that intersects the viewing volume
causes a selectionhit. The list of primitives is actually returned as an array of
integer-valuednames and related data—thehit records—that correspond to the current
contents of thename stack. You construct the name stack by loading names onto it as

Selection 473

you issue primitive drawing commands while in selection mode. Thus, when the list of
names is returned, you can use it to determine which primitives might have been selected
on the screen by the user.

In addition to this selection mechanism, OpenGL provides a utility routine designed to
simplify selection in some cases by restricting drawing to a small region of the viewport.
Typically, you use this routine to determine which objects are drawn near the cursor, so
that you can identify which object the user is picking. (You can also delimit a selection
region by specifying additional clipping planes. Remember that these planes act in
world space, not in screen space.) Since picking is a special case of selection, selection
is described first in this chapter, and then picking.

The Basic Steps

To use the selection mechanism, you need to perform the following steps.

1. Specify the array to be used for the returned hit records with glSelectBuffer().

2. Enter selection mode by specifying GL_SELECT with glRenderMode().

3. Initialize the name stack using glInitNames() and glPushName().

4. Define the viewing volume you want to use for selection. Usually this is different
from the viewing volume you originally used to draw the scene, so you probably
want to save and then restore the current transformation state with glPushMatrix()
and glPopMatrix().

5. Alternately issue primitive drawing commands and commands to manipulate the
name stack so that each primitive of interest has an appropriate name assigned.

6. Exit selection mode and process the returned selection data (the hit records).

The following paragraphs describe glSelectBuffer() and glRenderMode(). In the next
section, the commands to manipulate the name stack are described.

void glSelectBuffer(GLsizeisize, GLuint *buffer);

Specifies the array to be used for the returned selection data. Thebuffer argument is a
pointer to an array of unsigned integers into which the data is put, andsize indicates
the maximum number of values that can be stored in the array. You need to call
glSelectBuffer() before entering selection mode.

474 Chapter 13: Selection and Feedback

GLint glRenderMode(GLenummode);

Controls whether the application is in rendering, selection, or feedback mode. The
mode argument can be one of GL_RENDER (the default), GL_SELECT, or
GL_FEEDBACK. The application remains in a given mode until glRenderMode() is
called again with a different argument. Before entering selection mode,
glSelectBuffer() must be called to specify the selection array. Similarly, before
entering feedback mode, glFeedbackBuffer() must be called to specify the feedback
array. The return value for glRenderMode() has meaning if the current render mode
(that is, not themode parameter) is either GL_SELECT or GL_FEEDBACK. The
return value is the number of selection hits or the number of values placed in the
feedback array when either mode is exited; a negative value means that the selection
or feedback array has overflowed. You can use GL_RENDER_MODE with
glGetIntegerv() to obtain the current mode.

Creating the Name Stack

As mentioned in the previous section, the name stack forms the basis for the selection
information that’s returned to you. To create the name stack, first initialize it with
glInitNames(), which simply clears the stack, and then add integer names to it while
issuing corresponding drawing commands. As you might expect, the commands to
manipulate the stack allow you to push a name onto it (glPushName()), pop a name off
of it (glPopName()), and replace the name on the top of the stack with a different one
(glLoadName()). Example 13-1 shows what your name-stack manipulation code might
look like with these commands.

Example 13-1 Creating a Name Stack

glInitNames();
glPushName(0);

glPushMatrix(); /* save the current transformation state */

 /* create your desired viewing volume here */

 glLoadName(1);
 drawSomeObject();
 glLoadName(2);
 drawAnotherObject();
 glLoadName(3);
 drawYetAnotherObject();
 drawJustOneMoreObject();

Selection 475

glPopMatrix (); /* restore the previous transformation state*/

In this example, the first two objects to be drawn have their own names, and the third
and fourth objects share a single name. With this setup, if either or both of the third and
fourth objects causes a selection hit, only one hit record is returned to you. You can have
multiple objects share the same name if you don’t need to differentiate between them
when processing the hit records.

void glInitNames(void);

Clears the name stack so that it’s empty.

void glPushName(GLuintname);

Pushesname onto the name stack. Pushing a name beyond the capacity of the stack
generates the error GL_STACK_OVERFLOW. The name stack’s depth can vary
among different OpenGL implementations, but it must be able to contain at least
sixty-four names. You can use the parameter GL_NAME_STACK_DEPTH with
glGetIntegerv() to obtain the depth of the name stack.

void glPopName(void);

Pops one name off the top of the name stack. Popping an empty stack generates the
error GL_STACK_UNDERFLOW.

void glLoadName(GLuintname);

Replaces the value on the top of the name stack withname. If the stack is empty,
which it is right after glInitNames() is called, glLoadName() generates the error
GL_INVALID_OPERATION. To avoid this, if the stack is initially empty, call
glPushName() at least once to put something on the name stack before calling
glLoadName().

Calls to glPushName(), glPopName(), and glLoadName() are ignored if you’re not in
selection mode. You might find that it simplifies your code to use these calls throughout
your drawing code, and then use the same drawing code for both selection and normal
rendering modes.

The Hit Record

In selection mode, a primitive that intersects the viewing volume causes a selection hit.
Whenever a name-stack manipulation command is executed or glRenderMode() is

476 Chapter 13: Selection and Feedback

called, OpenGL writes a hit record into the selection array if there’s been a hit since the
last time the stack was manipulated or glRenderMode() was called. With this process,
objects that share the same name—for example, an object that’s composed of more than
one primitive—don’t generate multiple hit records. Also, hit records aren’t guaranteed
to be written into the array until glRenderMode() is called.

Note: In addition to primitives, valid coordinates produced by glRasterPos() can cause
a selection hit. Also, in the case of polygons, no hit occurs if the polygon would
have been culled.

Each hit record consists of four items, in order.

• The number of names on the name stack when the hit occurred.

• Both the minimum and maximum window-coordinatez values of all vertices of the
primitives that intersected the viewing volume since the last recorded hit. These
two values, which lie in the range [0,1], are each multiplied by 232−1 and rounded
to the nearest unsigned integer.

• The contents of the name stack at the time of the hit, with the bottommost element
first.

When you enter selection mode, OpenGL initializes a pointer to the beginning of the
selection array. Each time a hit record is written into the array, the pointer is updated
accordingly. If writing a hit record would cause the number of values in the array to
exceed thesize argument specified with glSelectBuffer(), OpenGL writes as much of the
record as fits in the array and sets an overflow flag. When you exit selection mode with
glRenderMode(), this command returns the number of hit records that were written
(including a partial record if there was one), clears the name stack, resets the overflow
flag, and resets the stack pointer. If the overflow flag had been set, the return value is−1.

A Selection Example

In Example 13-2, four triangles (green, red, and two yellow triangles, created by calling
drawTriangle()) and a wireframe box representing the viewing volume
(drawViewVolume()) are drawn to the screen. Then the triangles are rendered again
(selectObjects()), but this time in selection mode. The corresponding hit records are
processed in processHits(), and the selection array is printed out. The first triangle
generates a hit, the second one doesn’t, and the third and fourth ones together generate
a single hit.

Example 13-2 Selection Example: select.c

#include <GL/gl.h>
#include <GL/glu.h>

Selection 477

#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

void drawTriangle (GLfloat x1, GLfloat y1, GLfloat x2,
 GLfloat y2, GLfloat x3, GLfloat y3, GLfloat z)
{
 glBegin (GL_TRIANGLES);
 glVertex3f (x1, y1, z);
 glVertex3f (x2, y2, z);
 glVertex3f (x3, y3, z);
 glEnd ();
}

void drawViewVolume (GLfloat x1, GLfloat x2, GLfloat y1,
 GLfloat y2, GLfloat z1, GLfloat z2)
{
 glColor3f (1.0, 1.0, 1.0);
 glBegin (GL_LINE_LOOP);
 glVertex3f (x1, y1, -z1);
 glVertex3f (x2, y1, -z1);
 glVertex3f (x2, y2, -z1);
 glVertex3f (x1, y2, -z1);
 glEnd ();

 glBegin (GL_LINE_LOOP);
 glVertex3f (x1, y1, -z2);
 glVertex3f (x2, y1, -z2);
 glVertex3f (x2, y2, -z2);
 glVertex3f (x1, y2, -z2);
 glEnd ();

 glBegin (GL_LINES); /* 4 lines */
 glVertex3f (x1, y1, -z1);
 glVertex3f (x1, y1, -z2);
 glVertex3f (x1, y2, -z1);
 glVertex3f (x1, y2, -z2);
 glVertex3f (x2, y1, -z1);
 glVertex3f (x2, y1, -z2);
 glVertex3f (x2, y2, -z1);
 glVertex3f (x2, y2, -z2);
 glEnd ();
}

void drawScene (void)
{
 glMatrixMode (GL_PROJECTION);

478 Chapter 13: Selection and Feedback

 glLoadIdentity ();
 gluPerspective (40.0, 4.0/3.0, 1.0, 100.0);

 glMatrixMode (GL_MODELVIEW);
 glLoadIdentity ();
 gluLookAt (7.5, 7.5, 12.5, 2.5, 2.5, -5.0, 0.0, 1.0, 0.0);
 glColor3f (0.0, 1.0, 0.0); /* green triangle */
 drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -5.0);
 glColor3f (1.0, 0.0, 0.0); /* red triangle */
 drawTriangle (2.0, 7.0, 3.0, 7.0, 2.5, 8.0, -5.0);
 glColor3f (1.0, 1.0, 0.0); /* yellow triangles */
 drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, 0.0);
 drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -10.0);
 drawViewVolume (0.0, 5.0, 0.0, 5.0, 0.0, 10.0);
}

void processHits (GLint hits, GLuint buffer[])
{
 unsigned int i, j;
 GLuint names, *ptr;

 printf (“hits = %d\n”, hits);
 ptr = (GLuint *) buffer;
 for (i = 0; i < hits; i++) { /* for each hit */
 names = *ptr;
 printf (“ number of names for hit = %d\n”, names); ptr++;
 printf(“ z1 is %g;”, (float) *ptr/0x7fffffff); ptr++;
 printf(“ z2 is %g\n”, (float) *ptr/0x7fffffff); ptr++;
 printf (“ the name is “);
 for (j = 0; j < names; j++) { /* for each name */
 printf (“%d “, *ptr); ptr++;
 }
 printf (“\n”);
 }
}

#define BUFSIZE 512

void selectObjects(void)
{
 GLuint selectBuf[BUFSIZE];
 GLint hits;

 glSelectBuffer (BUFSIZE, selectBuf);
 (void) glRenderMode (GL_SELECT);

 glInitNames();

Selection 479

 glPushName(0);

 glPushMatrix ();
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 glOrtho (0.0, 5.0, 0.0, 5.0, 0.0, 10.0);
 glMatrixMode (GL_MODELVIEW);
 glLoadIdentity ();
 glLoadName(1);
 drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -5.0);
 glLoadName(2);
 drawTriangle (2.0, 7.0, 3.0, 7.0, 2.5, 8.0, -5.0);
 glLoadName(3);
 drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, 0.0);
 drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -10.0);
 glPopMatrix ();
 glFlush ();

 hits = glRenderMode (GL_RENDER);
 processHits (hits, selectBuf);
}

void init (void)
{
 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_FLAT);
}

void display(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 drawScene ();
 selectObjects ();
 glFlush();
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize (200, 200);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init();
 glutDisplayFunc(display);
 glutMainLoop();

480 Chapter 13: Selection and Feedback

 return 0;
}

Picking

As an extension of the process described in the previous section, you can use selection
mode to determine if objects are picked. To do this, you use a special picking matrix in
conjunction with the projection matrix to restrict drawing to a small region of the
viewport, typically near the cursor. Then you allow some form of input, such as clicking
a mouse button, to initiate selection mode. With selection mode established and with the
special picking matrix used, objects that are drawn near the cursor cause selection hits.
Thus, during picking you’re typically determining which objects are drawn near the
cursor.

Picking is set up almost exactly like regular selection mode is, with the following major
differences.

• Picking is usually triggered by an input device. In the following code examples,
pressing the left mouse button invokes a function that performs picking.

• You use the utility routine gluPickMatrix() to multiply a special picking matrix
onto the current projection matrix. This routine should be called prior to
multiplying a standard projection matrix (such as gluPerspective() or glOrtho()).
You’ll probably want to save the contents of the projection matrix first, so the
sequence of operations may look like this:

glMatrixMode (GL_PROJECTION);
glPushMatrix ();
glLoadIdentity ();
gluPickMatrix (...);
gluPerspective, glOrtho, gluOrtho2D, or glFrustum
 /* ... draw scene for picking ; perform picking ... */
glPopMatrix();

Another completely different way to perform picking is described in “Object Selection
Using the Back Buffer” in Chapter 14. This technique uses color values to identify
different components of an object.

void gluPickMatrix(GLdoublex, GLdoubley, GLdoublewidth,
 GLdoubleheight, GLint viewport[4]);

Creates a projection matrix that restricts drawing to a small region of the viewport
and multiplies that matrix onto the current matrix stack. The center of the picking
region is (x, y) in window coordinates, typically the cursor location.width andheight

Selection 481

define the size of the picking region in screen coordinates. (You can think of the width
and height as the sensitivity of the picking device.)viewport[] indicates the current
viewport boundaries, which can be obtained by calling

glGetIntegerv(GL_VIEWPORT, GLint *viewport);

Advanced

The net result of the matrix created by gluPickMatrix() is to transform
the clipping region into the unit cube−1 ≤ (x, y, z) ≤ 1 (or−w ≤ (wx, wy, wz) ≤ w). The
picking matrix effectively performs an orthogonal transformation that maps a subregion
of this unit cube to the unit cube. Since the transformation is arbitrary, you can make
picking work for different sorts
of regions—for example, for rotated rectangular portions of the window. In certain
situations, you might find it easier to specify additional clipping planes to define the
picking region.

Example 13-3 illustrates simple picking. It also demonstrates how to use multiple names
to identify different components of a primitive, in this case the row and column of a
selected object. A 3×3 grid of squares is drawn, with each square a different color. The
board[3][3] array maintains the current amount of blue for each square. When the left
mouse button is pressed, the pickSquares() routine is called to identify which squares
were picked by the mouse. Two names identify each square in the grid—one identifies
the row, and the other the column. Also, when the left mouse button is pressed, the color
of all squares under the cursor position changes.

Example 13-3 Picking Example: picksquare.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <stdlib.h>
#include <stdio.h>
#include <GL/glut.h>

int board[3][3]; /* amount of color for each square */

/* Clear color value for every square on the board */
void init(void)
{
 int i, j;
 for (i = 0; i < 3; i++)
 for (j = 0; j < 3; j ++)
 board[i][j] = 0;
 glClearColor (0.0, 0.0, 0.0, 0.0);
}

482 Chapter 13: Selection and Feedback

void drawSquares(GLenum mode)
{
 GLuint i, j;
 for (i = 0; i < 3; i++) {
 if (mode == GL_SELECT)
 glLoadName (i);
 for (j = 0; j < 3; j ++) {
 if (mode == GL_SELECT)
 glPushName (j);
 glColor3f ((GLfloat) i/3.0, (GLfloat) j/3.0,
 (GLfloat) board[i][j]/3.0);
 glRecti (i, j, i+1, j+1);
 if (mode == GL_SELECT)
 glPopName ();
 }
 }
}

/* processHits prints out the contents of the
 * selection array.
 */
void processHits (GLint hits, GLuint buffer[])
{
 unsigned int i, j;
 GLuint ii, jj, names, *ptr;

 printf (“hits = %d\n”, hits);
 ptr = (GLuint *) buffer;
 for (i = 0; i < hits; i++) { /* for each hit */
 names = *ptr;
 printf (“ number of names for this hit = %d\n”, names);
 ptr++;
 printf(“ z1 is %g;”, (float) *ptr/0x7fffffff); ptr++;
 printf(“ z2 is %g\n”, (float) *ptr/0x7fffffff); ptr++;
 printf (“ names are “);
 for (j = 0; j < names; j++) { /* for each name */
 printf (“%d “, *ptr);
 if (j == 0) /* set row and column */
 ii = *ptr;
 else if (j == 1)
 jj = *ptr;
 ptr++;
 }
 printf (“\n”);
 board[ii][jj] = (board[ii][jj] + 1) % 3;
 }
}

Selection 483

#define BUFSIZE 512

void pickSquares(int button, int state, int x, int y)
{
 GLuint selectBuf[BUFSIZE];
 GLint hits;
 GLint viewport[4];

 if (button != GLUT_LEFT_BUTTON || state != GLUT_DOWN)
 return;

 glGetIntegerv (GL_VIEWPORT, viewport);

 glSelectBuffer (BUFSIZE, selectBuf);
 (void) glRenderMode (GL_SELECT);

 glInitNames();
 glPushName(0);

 glMatrixMode (GL_PROJECTION);
 glPushMatrix ();
 glLoadIdentity ();
/* create 5x5 pixel picking region near cursor location */
 gluPickMatrix ((GLdouble) x, (GLdouble) (viewport[3] - y),
 5.0, 5.0, viewport);
 gluOrtho2D (0.0, 3.0, 0.0, 3.0);
 drawSquares (GL_SELECT);

 glMatrixMode (GL_PROJECTION);
 glPopMatrix ();
 glFlush ();

 hits = glRenderMode (GL_RENDER);
 processHits (hits, selectBuf);
 glutPostRedisplay();
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 drawSquares (GL_RENDER);
 glFlush();
}

void reshape(int w, int h)
{

484 Chapter 13: Selection and Feedback

 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D (0.0, 3.0, 0.0, 3.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (100, 100);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutMouseFunc (pickSquares);
 glutReshapeFunc (reshape);
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

Picking with Multiple Names and a Hierarchical Model

Multiple names can also be used to choose parts of a hierarchical object in a scene. For
example, if you were rendering an assembly line of automobiles, you might want the
user to move the mouse to pick the third bolt on the left front tire of the third car in line.
A different name can be used to identify each level of hierarchy: which car, which tire,
and finally which bolt. As another example, one name can be used to describe a single
molecule among other molecules, and additional names can differentiate individual
atoms within that molecule.

Example 13-4 is a modification of Example 3-4, which draws an automobile with four
identical wheels, each of which has five identical bolts. Code has been added to
manipulate the name stack with the object hierarchy.

Example 13-4 Creating Multiple Names

draw_wheel_and_bolts()
{
 long i;

 draw_wheel_body();
 for (i = 0; i < 5; i++) {
 glPushMatrix();

Selection 485

 glRotate(72.0*i, 0.0, 0.0, 1.0);
 glTranslatef(3.0, 0.0, 0.0);
 glPushName(i);
 draw_bolt_body();
 glPopName();
 glPopMatrix();
 }
 }

draw_body_and_wheel_and_bolts()
{
 draw_car_body();
 glPushMatrix();
 glTranslate(40, 0, 20); /* first wheel position*/
 glPushName(1); /* name of wheel number 1 */
 draw_wheel_and_bolts();
 glPopName();
 glPopMatrix();
 glPushMatrix();
 glTranslate(40, 0, -20); /* second wheel position */
 glPushName(2); /* name of wheel number 2 */
 draw_wheel_and_bolts();
 glPopName();
 glPopMatrix();

 /* draw last two wheels similarly */
 }

Example 13-5 uses the routines in Example 13-4 to draw three different cars, numbered
1, 2, and 3.

Example 13-5 Using Multiple Names

draw_three_cars()
{
 glInitNames();
 glPushMatrix();
 translate_to_first_car_position();
 glPushName(1);
 draw_body_and_wheel_and_bolts();
 glPopName();
 glPopMatrix();

 glPushMatrix();
 translate_to_second_car_position();
 glPushName(2);
 draw_body_and_wheel_and_bolts();

486 Chapter 13: Selection and Feedback

 glPopName();
 glPopMatrix();

 glPushMatrix();
 translate_to_third_car_position();
 glPushName(3);
 draw_body_and_wheel_and_bolts();
 glPopName();
 glPopMatrix();
}

Assuming that picking is performed, the following are some possible name-stack return
values and their interpretations. In these examples, at most one hit record is returned;
also,d1 andd2 are depth values.

2 d1 d2 2 1 Car 2, wheel 1

1 d1 d2 3 Car 3 body

3 d1 d2 1 1 0 Bolt 0 on wheel 1 on car 1

empty The pick was outside all cars

The last interpretation assumes that the bolt and wheel don’t occupy the same picking
region. A user might well pick both the wheel and the bolt, yielding two hits. If you
receive multiple hits, you have to decide which hit to process, perhaps by using the depth
values to determine which picked object is closest to the viewpoint. The use of depth
values is explored further in the next section.

Picking and Depth Values

Example 13-6 demonstrates how to use depth values when picking to determine which
object is picked. This program draws three overlapping rectangles in normal rendering
mode. When the left mouse button is pressed, the pickRects() routine is called. This
routine returns the cursor position, enters selection mode, initializes the name stack, and
multiplies the picking matrix onto the stack before the orthographic projection matrix.
A selection hit occurs for each rectangle the cursor is over when the left mouse button
is clicked. Finally, the contents of the selection buffer are examined to identify which
named objects were within the picking region near the cursor.

The rectangles in this program are drawn at different depth, orz, values. Since only one
name is used to identify all three rectangles, only one hit can be recorded. However, if
more than one rectangle is picked, that single hit has different minimum and maximum
z values.

Selection 487

Example 13-6 Picking with Depth Values: pickdepth.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

void init(void)
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_FLAT);
 glDepthRange(0.0, 1.0); /* The default z mapping */
}

void drawRects(GLenum mode)
{
 if (mode == GL_SELECT)
 glLoadName(1);
 glBegin(GL_QUADS);
 glColor3f(1.0, 1.0, 0.0);
 glVertex3i(2, 0, 0);
 glVertex3i(2, 6, 0);
 glVertex3i(6, 6, 0);
 glVertex3i(6, 0, 0);
 glEnd();
 if (mode == GL_SELECT)
 glLoadName(2);
 glBegin(GL_QUADS);
 glColor3f(0.0, 1.0, 1.0);
 glVertex3i(3, 2, -1);
 glVertex3i(3, 8, -1);
 glVertex3i(8, 8, -1);
 glVertex3i(8, 2, -1);
 glEnd();
 if (mode == GL_SELECT)
 glLoadName(3);
 glBegin(GL_QUADS);
 glColor3f(1.0, 0.0, 1.0);
 glVertex3i(0, 2, -2);
 glVertex3i(0, 7, -2);
 glVertex3i(5, 7, -2);
 glVertex3i(5, 2, -2);
 glEnd();
}

488 Chapter 13: Selection and Feedback

void processHits(GLint hits, GLuint buffer[])
{
 unsigned int i, j;
 GLuint names, *ptr;

 printf(“hits = %d\n”, hits);
 ptr = (GLuint *) buffer;
 for (i = 0; i < hits; i++) { /* for each hit */
 names = *ptr;
 printf(“ number of names for hit = %d\n”, names); ptr++;
 printf(“ z1 is %g;”, (float) *ptr/0x7fffffff); ptr++;
 printf(“ z2 is %g\n”, (float) *ptr/0x7fffffff); ptr++;
 printf(“ the name is “);
 for (j = 0; j < names; j++) { /* for each name */
 printf(“%d “, *ptr); ptr++;
 }
 printf(“\n”);
 }
}

#define BUFSIZE 512

void pickRects(int button, int state, int x, int y)
{
 GLuint selectBuf[BUFSIZE];
 GLint hits;
 GLint viewport[4];

 if (button != GLUT_LEFT_BUTTON || state != GLUT_DOWN)
 return;
 glGetIntegerv(GL_VIEWPORT, viewport);

 glSelectBuffer(BUFSIZE, selectBuf);
 (void) glRenderMode(GL_SELECT);

 glInitNames();
 glPushName(0);

 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
/* create 5x5 pixel picking region near cursor location */
 gluPickMatrix((GLdouble) x, (GLdouble) (viewport[3] - y),
 5.0, 5.0, viewport);
 glOrtho(0.0, 8.0, 0.0, 8.0, -0.5, 2.5);
 drawRects(GL_SELECT);
 glPopMatrix();

Selection 489

 glFlush();

 hits = glRenderMode(GL_RENDER);
 processHits(hits, selectBuf);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 drawRects(GL_RENDER);
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(0.0, 8.0, 0.0, 8.0, -0.5, 2.5);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

int main(int argc, char **argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize (200, 200);
 glutInitWindowPosition (100, 100);
 glutCreateWindow(argv[0]);
 init();
 glutMouseFunc(pickRects);
 glutReshapeFunc(reshape);
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

Try This

• Modify Example 13-6 to add additional calls to glPushName() so that multiple
names are on the stack when the selection hit occurs. What will the contents of the
selection buffer be?

• By default, glDepthRange() sets the mapping of thez values to [0.0,1.0]. Try
modifying the glDepthRange() values and see how it affects thez values that are
returned in the selection array.

490 Chapter 13: Selection and Feedback

Hints for Writing a Program That Uses Selection

Most programs that allow a user to interactively edit some geometry provide a
mechanism for the user to pick items or groups of items for editing. For two-dimensional
drawing programs (for example, text editors, page-layout programs, and circuit-design
programs), it might be easier to do your own picking calculations instead of using the
OpenGL picking mechanism. Often, it’s easy to find bounding boxes for
two-dimensional objects and to organize them in some hierarchical data structure to
speed up searches. For example, picking that uses the OpenGL style in a VLSI layout
program containing millions of rectangles can be relatively slow. However, using simple
bounding-box information when rectangles are typically aligned with the screen could
make picking in such a program extremely fast. The code is probably simpler to write,
too.

As another example, since only geometric objects cause hits, you might want to create
your own method for picking text. Setting the current raster position is a geometric
operation, but it effectively creates only a single pickable point at the current raster
position, which is typically at the lower-left corner of the text. If your editor needs to
manipulate individual characters within a text string, some other picking mechanism
must be used. You could draw little rectangles around each character during picking
mode, but it’s almost certainly easier to handle text as a special case.

If you decide to use OpenGL picking, organize your program and its data structures so
that it’s easy to draw appropriate lists of objects in either selection or normal drawing
mode. This way, when the user picks something, you can use the same data structures
for the pick operation that you use to display the items on the screen. Also, consider
whether you want to allow the user to select multiple objects. One way to do this is to
store a bit for each item indicating whether it’s selected (however, this method requires
traversing your entire list of items to find the selected items). You might find it useful to
maintain a list of pointers to selected items to speed up this search. It’s probably a good
idea to keep the selection bit for each item as well, since when you’re drawing the entire
picture, you might want to draw selected items differently (for example, in a different
color or with a selection box around them). Finally, consider the selection user interface.
You might want to allow the user to do the following:

• Select an item

• Sweep-select a group of items (see the next paragraphs for a description of this
behavior)

• Add an item to the selection

• Add a sweep selection to the current selections

• Delete an item from a selection

Selection 491

• Choose a single item from a group of overlapping items

A typical solution for a two-dimensional drawing program might work as follows.

1. All selection is done by pointing with the mouse cursor and using the left mouse
button. In what follows,cursor means the cursor tied to the mouse, andbutton
means the left mouse button.

2. Clicking on an item selects it and deselects all other currently selected items. If the
cursor is on top of multiple items, the smallest is selected. (In three dimensions,
many other strategies work to disambiguate a selection.)

3. Clicking down where there is no item, holding the button down while dragging the
cursor, and then releasing the button selects all the items in a screen-aligned
rectangle whose corners are determined by the cursor positions when the button
went down and where it came up. This is called asweep selection. All items not in
the swept-out region are deselected. (You must decide whether an item is selected
only if it’s completely within the sweep region, or if any part of it falls within the
region. The completely within strategy usually works best.)

4. If the Shift key is held down and the user clicks on an item that isn’t currently
selected, that item is added to the selected list. If the clicked-upon item is selected,
it’s deleted from the selection list.

5. If a sweep selection is performed with the Shift key pressed, the items swept out
are added to the current selection.

6. In an extremely cluttered region, it’s often hard to do a sweep selection. When the
button goes down, the cursor might lie on top of some item, and normally that item
would be selected. You can make any operation a sweep selection, but a typical
user interface interprets a button-down on an item plus a mouse motion as a
select-plus-drag operation. To solve this problem, you can have an enforced sweep
selection by holding down, say, the Alt key. With this, the following set of
operations constitutes a sweep selection: Alt-button down, sweep, button up. Items
under the cursor when the button goes down are ignored.

7. If the Shift key is held during this sweep selection, the items enclosed in the sweep
region are added to the current selection.

8. Finally, if the user clicks on multiple items, select just one of them. If the cursor
isn’t moved (or maybe not moved more than a pixel), and the user clicks again in
the same place, deselect the item originally selected, and select a different item
under the cursor. Use repeated clicks at the same point to cycle through all the
possibilities.

Different rules can apply in particular situations. In a text editor, you probably don’t
have to worry about characters on top of each other, and selections of multiple characters

492 Chapter 13: Selection and Feedback

are always contiguous characters in the document. Thus, you need to mark only the first
and last selected characters to identify the complete selection. With text, often the best
way to handle selection is to identify the positions between characters rather than the
characters themselves. This allows you to have an empty selection when the beginning
and end of the selection are between the same pair of characters; it also allows you to
put the cursor before the first character in the document or after the final one with no
special-case code.

In three-dimensional editors, you might provide ways to rotate and zoom between
selections, so sophisticated schemes for cycling through the possible selections might be
unnecessary. On the other hand, selection in three dimensions is difficult because the
cursor’s position on the screen usually gives no indication of its depth.

Feedback

Feedback is similar to selection in that once you’re in either mode, no pixels are
produced and the screen is frozen. Drawing does not occur; instead, information about
primitives that would have been rendered is sent back to the application. The key
difference between selection and feedback modes is what information is sent back. In
selection mode, assigned names are returned to an array of integer values. In feedback
mode, information about transformed primitives is sent back to an array of floating-point
values. The values sent back to the feedback array consist of tokens that specify what
type of primitive (point, line, polygon, image, or bitmap) has been processed and
transformed, followed by vertex, color, or other data for that primitive. The values
returned are fully transformed by lighting and viewing operations. Feedback mode is
initiated by calling glRenderMode() with GL_FEEDBACK as the argument.

Here’s how you enter and exit feedback mode.

1. Call glFeedbackBuffer() to specify the array to hold the feedback information. The
arguments to this command describe what type of data and how much of it gets
written into the array.

2. Call glRenderMode() with GL_FEEDBACK as the argument to enter feedback
mode. (For this step, you can ignore the value returned by glRenderMode().) After
this point, primitives aren’t rasterized to produce pixels until you exit feedback
mode, and the contents of the framebuffer don’t change.

3. Draw your primitives. While issuing drawing commands, you can make several
calls to glPassThrough() to insert markers into the returned feedback data and thus
facilitate parsing.

Feedback 493

4. Exit feedback mode by calling glRenderMode() with GL_RENDER as the
argument if you want to return to normal drawing mode. The integer value
returned by glRenderMode() is the number of values stored in the feedback array.

5. Parse the data in the feedback array.

void glFeedbackBuffer(GLsizeisize, GLenumtype, GLfloat *buffer);

Establishes a buffer for the feedback data:buffer is a pointer to an array where the
data is stored. Thesize argument indicates the maximum number of values that can be
stored in the array. Thetype argument describes the information fed back for each
vertex in the feedback array; its possible values and their meaning are shown in
Table 13-1. glFeedbackBuffer() must be called before feedback mode is entered. In
the table,k is 1 in color-index mode and 4 in RGBA mode.

The Feedback Array

In feedback mode, each primitive that would be rasterized (or each call to glBitmap(),
glDrawPixels(), or glCopyPixels(), if the raster position is valid) generates a block of
values that’s copied into the feedback array. The number of values is determined by the
type argument to glFeedbackBuffer(), as listed in Table 13-1. Use the appropriate value
for the type of primitives you’re drawing: GL_2D or GL_3D for unlit two- or
three-dimensional primitives, GL_3D_COLOR for lit, three-dimensional primitives,
and GL_3D_COLOR_TEXTURE or GL_4D_COLOR_TEXTURE for lit, textured,
three- or four-dimensional primitives.

Each block of feedback values begins with a code indicating the primitive type, followed
by values that describe the primitive’s vertices and associated data. Entries are also
written for pixel rectangles. In addition, pass-through markers that you’ve explicitly
created can be returned in the array; the next section explains these markers in more

type Argument Coordinates Color Texture Total Values

GL_2D x, y - - 2

GL_3D x, y, z - - 3

GL_3D_COLOR x, y, z k - 3 +k

GL_3D_COLOR_TEXTURE x, y, z k 4 7 +k

GL_4D_COLOR_TEXTURE x, y, z, w k 4 8 +k

Table 13-1 glFeedbackBuffer()type Values

494 Chapter 13: Selection and Feedback

detail. Table 13-2 shows the syntax for the feedback array; remember that the data
associated with each returned vertex is as described in Table 13-1. Note that a polygon
can haven vertices returned. Also, thex, y, z coordinates returned by feedback are
window coordinates; ifw is returned, it’s in clip coordinates. For bitmaps and pixel
rectangles, the coordinates returned are those of the current raster position. In the table,
note that GL_LINE_RESET_TOKEN is returned only when the line stipple is reset for
that line segment.

Using Markers in Feedback Mode

Feedback occurs after transformations, lighting, polygon culling, and interpretation of
polygons by glPolygonMode(). It might also occur after polygons with more than three
edges are broken up into triangles (if your particular OpenGL implementation renders
polygons by performing this decomposition). Thus, it might be hard for you to recognize
the primitives you drew in the feedback data you receive. To help parse the feedback
data, call glPassThrough() as needed in your sequence of drawing commands to insert a
marker. You might use the markers to separate the feedback values returned from
different primitives, for example. This command causes
GL_PASS_THROUGH_TOKEN to be written into the feedback array, followed by the
floating-point value you pass in as an argument.

void glPassThrough(GLfloattoken);

Inserts a marker into the stream of values written into the feedback array, if called in
feedback mode. The marker consists of the code GL_PASS_THROUGH_TOKEN
followed by a single floating-point value,token. This command has no effect when

Primitive Type Code Associated Data

Point GL_POINT_TOKEN vertex

Line GL_LINE_TOKEN or
GL_LINE_RESET_TOKEN

vertex vertex

Polygon GL_POLYGON_TOKEN n vertex vertex ... vertex

Bitmap GL_BITMAP_TOKEN vertex

Pixel Rectangle GL_DRAW_PIXEL_TOKEN or
GL_COPY_PIXEL_TOKEN

vertex

Pass-through GL_PASS_THROUGH_TOKEN a floating-point number

Table 13-2 Feedback Array Syntax

Feedback 495

called outside of feedback mode. Calling glPassThrough() between glBegin() and
glEnd() generates a GL_INVALID_OPERATION error.

A Feedback Example

Example 13-7 demonstrates the use of feedback mode. This program draws a lit,
three-dimensional scene in normal rendering mode. Then, feedback mode is entered,
and the scene is redrawn. Since the program draws lit, untextured, three-dimensional
objects, the type of feedback data is GL_3D_COLOR. Since RGBA mode is used, each
unclipped vertex generates seven values for the feedback buffer:x, y, z, r, g, b, anda.

In feedback mode, the program draws two lines as part of a line strip and then inserts a
pass-through marker. Next, a point is drawn at (−100.0,−100.0,−100.0), which falls
outside the orthographic viewing volume and thus doesn’t put any values into the
feedback array. Finally, another pass-through marker is inserted, and another point is
drawn.

Example 13-7 Feedback Mode: feedback.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

void init(void)
{
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
}

void drawGeometry (GLenum mode)
{
 glBegin (GL_LINE_STRIP);
 glNormal3f (0.0, 0.0, 1.0);
 glVertex3f (30.0, 30.0, 0.0);
 glVertex3f (50.0, 60.0, 0.0);
 glVertex3f (70.0, 40.0, 0.0);
 glEnd ();
 if (mode == GL_FEEDBACK)
 glPassThrough (1.0);
 glBegin (GL_POINTS);
 glVertex3f (-100.0, -100.0, -100.0); /* will be clipped */
 glEnd ();
 if (mode == GL_FEEDBACK)

496 Chapter 13: Selection and Feedback

 glPassThrough (2.0);
 glBegin (GL_POINTS);
 glNormal3f (0.0, 0.0, 1.0);
 glVertex3f (50.0, 50.0, 0.0);
 glEnd ();
}

void print3DcolorVertex (GLint size, GLint *count,
 GLfloat *buffer)
{
 int i;

 printf (“ “);
 for (i = 0; i < 7; i++) {
 printf (“%4.2f “, buffer[size-(*count)]);
 *count = *count - 1;
 }
 printf (“\n”);
}

void printBuffer(GLint size, GLfloat *buffer)
{
 GLint count;
 GLfloat token;

 count = size;
 while (count) {
 token = buffer[size-count]; count--;
 if (token == GL_PASS_THROUGH_TOKEN) {
 printf (“GL_PASS_THROUGH_TOKEN\n”);
 printf (“ %4.2f\n”, buffer[size-count]);
 count--;
 }
 else if (token == GL_POINT_TOKEN) {
 printf (“GL_POINT_TOKEN\n”);
 print3DcolorVertex (size, &count, buffer);
 }
 else if (token == GL_LINE_TOKEN) {
 printf (“GL_LINE_TOKEN\n”);
 print3DcolorVertex (size, &count, buffer);
 print3DcolorVertex (size, &count, buffer);
 }
 else if (token == GL_LINE_RESET_TOKEN) {
 printf (“GL_LINE_RESET_TOKEN\n”);
 print3DcolorVertex (size, &count, buffer);
 print3DcolorVertex (size, &count, buffer);
 }

Feedback 497

 }
}

void display(void)
{
 GLfloat feedBuffer[1024];
 GLint size;

 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 glOrtho (0.0, 100.0, 0.0, 100.0, 0.0, 1.0);

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT);
 drawGeometry (GL_RENDER);

 glFeedbackBuffer (1024, GL_3D_COLOR, feedBuffer);
 (void) glRenderMode (GL_FEEDBACK);
 drawGeometry (GL_FEEDBACK);

 size = glRenderMode (GL_RENDER);
 printBuffer (size, feedBuffer);
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (100, 100);
 glutInitWindowPosition (100, 100);
 glutCreateWindow(argv[0]);
 init();
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

Running this program generates the following output:

GL_LINE_RESET_TOKEN
 30.00 30.00 0.00 0.84 0.84 0.84 1.00
 50.00 60.00 0.00 0.84 0.84 0.84 1.00
GL_LINE_TOKEN
 50.00 60.00 0.00 0.84 0.84 0.84 1.00
 70.00 40.00 0.00 0.84 0.84 0.84 1.00
GL_PASS_THROUGH_TOKEN
 1.00

498 Chapter 13: Selection and Feedback

GL_PASS_THROUGH_TOKEN
 2.00
GL_POINT_TOKEN
 50.00 50.00 0.00 0.84 0.84 0.84 1.00

Thus, the line strip drawn with these commands results in two primitives:

glBegin(GL_LINE_STRIP);
 glNormal3f (0.0, 0.0, 1.0);
 glVertex3f (30.0, 30.0, 0.0);
 glVertex3f (50.0, 60.0, 0.0);
 glVertex3f (70.0, 40.0, 0.0);
glEnd();

The first primitive begins with GL_LINE_RESET_TOKEN, which indicates that the
primitive is a line segment and that the line stipple is reset. The second primitive begins
with GL_LINE_TOKEN, so it’s also a line segment, but the line stipple isn’t reset and
hence continues from where the previous line segment left off. Each of the two vertices
for these lines generates seven values for the feedback array. Note that the RGBA values
for all four vertices in these two lines are (0.84, 0.84, 0.84, 1.0), which is a very light
gray color with the maximum alpha value. These color values are a result of the
interaction of the surface normal and lighting parameters.

Since no feedback data is generated between the first and second pass-through markers,
you can deduce that any primitives drawn between the first two calls to glPassThrough()
were clipped out of the viewing volume. Finally, the point at (50.0, 50.0, 0.0) is drawn,
and its associated data is copied into the feedback array.

Note: In both feedback and selection modes, information on objects is returned prior to
any fragment tests. Thus, objects that would not be drawn due to failure of the
scissor, alpha, depth, or stencil tests may still have their data processed and
returned in both feedback and selection modes.

Try This

Make changes to Example 13-7 and see how they affect the feedback values that are
returned. For example, change the coordinate values of glOrtho(). Change the lighting
variables, or eliminate lighting altogether and change the feedback type to GL_3D. Or
add more primitives to see what other geometry (such as filled polygons) contributes to
the feedback array.

