
531

 Appendix A

A.Order of Operations

This book describes all the operations performed between when vertices are initially
specified and fragments are finally written into the framebuffer. The chapters of this
book are arranged in an order that facilitates learning rather than in the exact order in
which these operations are actually performed. Sometimes the exact order of operations
doesn’t matter—for example, surfaces can be converted to polygons and then
transformed, or transformed first and then converted to polygons, with identical
results—and different implementations of OpenGL might do things differently.

This appendix describes a possible order; any implementation is required to give
equivalent results. If you want more details than are presented here, see theOpenGL
Reference Manual.

This appendix has the following major sections:

• “Overview”

• “Geometric Operations”

• “Pixel Operations”

• “Fragment Operations”

• “Odds and Ends”

532 Appendix A: Order of Operations

Overview

This section gives an overview of the order of operations, as shown in Figure A-1.
Geometric data (vertices, lines, and polygons) follows the path through the row of boxes
that include evaluators and per-vertex operations, while pixel data (pixels, images, and
bitmaps) is treated differently for part of the process. Both types of data undergo the
rasterization and per-fragment operations before the final pixel data is written into the
framebuffer.

Figure A-1 Order of Operations

All data, whether it describes geometry or pixels, can be saved in a display list or
processed immediately. When a display list is executed, the data is sent from the display
list just as if it were sent by the application.

All geometric primitives are eventually described by vertices. If evaluators are used, that
data is converted to vertices and treated as vertices from then on. Vertex data may also
be stored in and used from specialized vertex arrays. Per-vertex calculations are
performed on each vertex, followed by rasterization to fragments. For pixel data, pixel
operations are performed, and the results are either stored in the texture memory, used
for polygon stippling, or rasterized to fragments.

Finally, the fragments are subjected to a series of per-fragment operations, after which
the final pixel values are drawn into the framebuffer.

Vertex
data

Pixel
data

Pixel
operations

Texture
assembly

Per-fragment
operations

Display
list

Evaluators

Rasterization

Framebuffer

Per-vertex
operations
and primitive
assembly

Geometric Operations 533

Geometric Operations

Geometric data, whether it comes from a display list, an evaluator, the vertices of a
rectangle, or as raw data, consists of a set of vertices and the type of primitive it describes
(a vertex, line, or polygon). Vertex data includes not only the (x, y, z, w) coordinates, but
also a normal vector, texture coordinates, a RGBA color, a color index, material
properties, and edge-flag data. All these elements except the vertex’s coordinates can be
specified in any order, and default values exist as well. As soon as the vertex command
glVertex*() is issued, the components are padded, if necessary, to four dimensions
(usingz = 0 andw = 1), and the current values of all the elements are associated with the
vertex. The complete set of vertex data is then processed. (If vertex arrays are used,
vertex data may be batch processed and processed vertices may be reused.)

Per-Vertex Operations

In the per-vertex operations stage of processing, each vertex’s spatial coordinates are
transformed by the modelview matrix, while the normal vector is transformed by that
matrix’s inverse transpose and renormalized if specified. If automatic texture generation
is enabled, new texture coordinates are generated from the transformed vertex
coordinates, and they replace the vertex’s old texture coordinates. The texture
coordinates are then transformed by the current texture matrix and passed on to the
primitive assembly step.

Meanwhile, the lighting calculations, if enabled, are performed using the transformed
vertex and normal vector coordinates, and the current material, lights, and lighting
model. These calculations generate new colors or indices that are clamped or masked to
the appropriate range and passed on to the primitive assembly step.

Primitive Assembly

Primitive assembly differs, depending on whether the primitive is a point, a line, or a
polygon. If flat shading is enabled, the colors or indices of all the vertices in a line or
polygon are set to the same value. If special clipping planes are defined and enabled,
they’re used to clip primitives of all three types. (The clipping-plane equations are
transformed by the inverse transpose of the modelview matrix when they’re specified.)
Point clipping simply passes or rejects vertices; line or polygon clipping can add
additional vertices depending on how the line or polygon is clipped. After this clipping,
the spatial coordinates of each vertex are transformed by the projection matrix, and the
results are clipped against the standard viewing planesx = ±w, y = ±w, and z = ±w.

534 Appendix A: Order of Operations

If selection is enabled, any primitive not eliminated by clipping generates a selection-hit
report, and no further processing is performed. Without selection, perspective division
by w occurs and the viewport and depth-range operations are applied. Also, if the
primitive is a polygon, it’s then subjected to a culling test (if culling is enabled). A
polygon might convert to vertices or lines, depending on the polygon mode.

Finally, points, lines, and polygons are rasterized to fragments, taking into account
polygon or line stipples, line width, and point size. Rasterization involves determining
which squares of an integer grid in window coordinates are occupied by the primitive.
If antialiasing is enabled, coverage (the portion of the square that is occupied by the
primitive) is also computed. Color and depth values are also assigned to each such
square. If polygon offset is enabled, depth values are slightly modified by a calculated
offset value.

Pixel Operations

Pixels from host memory are first unpacked into the proper number of components. The
OpenGL unpacking facility handles a number of different formats. Next, the data is
scaled, biased, and processed using a pixel map. The results are clamped to an
appropriate range depending on the data type and then either written in the texture
memory for use in texture mapping or rasterized to fragments.

If pixel data is read from the framebuffer, pixel-transfer operations (scale, bias, mapping,
and clamping) are performed. The results are packed into an appropriate format and then
returned to processor memory.

The pixel copy operation is similar to a combination of the unpacking and transfer
operations, except that packing and unpacking is unnecessary, and only a single pass is
made through the transfer operations before the data is written back into the framebuffer.

Texture Memory

OpenGL Version 1.1 provides additional control over texture memory. Texture image
data can be specified from framebuffer memory, as well as processor memory. All or a
portion of a texture image may be replaced. Texture data may be stored in texture
objects, which can be loaded into texture memory. If there are too many texture objects
to fit into texture memory at the same time, the textures that have the highest priorities
remain in the texture memory.

Fragment Operations 535

Fragment Operations

If texturing is enabled, a texel is generated from texture memory for each fragment and
applied to the fragment. Then fog calculations are performed, if they’re enabled,
followed by the application of coverage (antialiasing) values, if antialiasing is enabled.

Next comes scissoring, followed by the alpha test (in RGBA mode only), the stencil test,
and the depth-buffer test. If in RGBA mode, blending is performed. Blending is
followed by dithering and logical operation. All these operations may be disabled.

The fragment is then masked by a color mask or an index mask, depending on the mode,
and drawn into the appropriate buffer. If fragments are being written into the stencil or
depth buffer, masking occurs after the stencil and depth tests, and the results are drawn
into the framebuffer without performing the blending, dithering, or logical operation.

Odds and Ends

Matrix operations deal with the current matrix stack, which can be the modelview, the
projection, or the texture matrix stack. The commands glMultMatrix*(),
glLoadMatrix*(), and glLoadIdentity() are applied to the top matrix on the stack, while
glTranslate*(), glRotate*(), glScale*(), glOrtho(), and glFrustum() are used to create a
matrix that’s multiplied by the top matrix. When the modelview matrix is modified, its
inverse transpose is also generated for normal vector transformation.

The commands that set the current raster position are treated exactly like a vertex
command up until when rasterization would occur. At this point, the value is saved and
is used in the rasterization of pixel data.

The various glClear() commands bypass all operations except scissoring, dithering, and
writemasking.

