
581

Appendix D
D.

Basics of GLUT: The OpenGL Utility Toolkit

This appendix describes a subset of Mark Kilgard’s OpenGL Utility Toolkit (GLUT),
which is fully documented in his book,OpenGL Programming for the X Window System
(Reading, MA: Addison-Wesley Developers Press, 1996). GLUT has become a popular
library for OpenGL programmers, because it standardizes and simplifies window and
event management. GLUT has been ported atop a variety of OpenGL implementations,
including both the X Window System and Microsoft Windows NT.

This appendix has the following major sections:

• “Initializing and Creating a Window”

• “Handling Window and Input Events”

• “Loading the Color Map”

• “Initializing and Drawing Three-Dimensional Objects”

• “Managing a Background Process”

• “Running the Program”

(See “How to Obtain the Sample Code” in the Preface for information about how to
obtain the source code for GLUT.)

582 Appendix D: Basics of GLUT: The OpenGL Utility Toolkit

With GLUT, your application structures its event handling to use callback functions.
(This method is similar to using the Xt Toolkit, also known as the X Intrinsics, with a
widget set.) For example, first you open a window and register callback routines for
specific events. Then, you create a main loop without an exit. In that loop, if an event
occurs, its registered callback functions are executed. Upon completion of the callback
functions, flow of control is returned to the main loop.

Initializing and Creating a Window

Before you can open a window, you must specify its characteristics: Should it be
single-buffered or double-buffered? Should it store colors as RGBA values or as color
indices? Where should it appear on your display? To specify the answers to these
questions, call glutInit(), glutInitDisplayMode(), glutInitWindowSize(), and
glutInitWindowPosition() before you call glutCreateWindow() to open the window.

void glutInit(int argc, char **argv);

glutInit() should be called before any other GLUT routine, because it initializes the
GLUT library. glutInit() will also process command line options, but the specific
options are window system dependent. For the X Window System, -iconic,
-geometry, and -display are examples of command line options, processed by
glutInit(). (The parameters to the glutInit() should be the same as those to main().)

void glutInitDisplayMode(unsigned intmode);

Specifies a display mode (such as RGBA or color-index, or single- or
double-buffered) for windows created when glutCreateWindow() is called. You can
also specify that the window have an associated depth, stencil, and/or accumulation
buffer. Themask argument is a bitwise ORed combination of GLUT_RGBA or
GLUT_INDEX, GLUT_SINGLE or GLUT_DOUBLE, and any of the
buffer-enabling flags: GLUT_DEPTH, GLUT_STENCIL, or GLUT_ACCUM. For
example, for a double-buffered, RGBA-mode window with a depth and stencil buffer,
use GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH | GLUT_STENCIL. The
default value is GLUT_RGBA | GLUT_SINGLE (an RGBA, single-buffered
window).

void glutInitWindowSize(intwidth, int height);
void glutInitWindowPosition(intx, int y);

Requests windows created by glutCreateWindow() to have an initial size and
position. The arguments (x, y) indicate the location of a corner of the window, relative

Handling Window and Input Events 583

to the entire display. Thewidth andheight indicate the window’s size (in pixels). The
initial window size and position are hints and may be overridden by other requests.

int glutCreateWindow(char *name);

Opens a window with previously set characteristics (display mode, width, height, and
so on). The stringname may appear in the title bar if your window system does that
sort of thing. The window is not initially displayed until glutMainLoop() is entered,
so do not render into the window until then.

The value returned is a unique integer identifier for the window. This identifier can be
used for controlling and rendering to multiple windows (each with an OpenGL
rendering context) from the same application.

Handling Window and Input Events

After the window is created, but before you enter the main loop, you should register
callback functions using the following routines.

void glutDisplayFunc(void (*func)(void));

Specifies the function that’s called whenever the contents of the window need to be
redrawn. The contents of the window may need to be redrawn when the window is
initially opened, when the window is popped and window damage is exposed, and
when glutPostRedisplay() is explicitly called.

void glutReshapeFunc(void (*func)(int width, int height));

Specifies the function that’s called whenever the window is resized or moved. The
argumentfunc is a pointer to a function that expects two arguments, the new width
and height of the window. Typically,func calls glViewport(), so that the display is
clipped to the new size, and it redefines the projection matrix so that the aspect ratio
of the projected image matches the viewport, avoiding aspect ratio distortion. If
glutReshapeFunc() isn’t called or is deregistered by passing NULL, a default reshape
function is called, which calls glViewport(0, 0, width, height).

void glutKeyboardFunc(void (*func)(unsigned intkey, int x, int y);

Specifies the function,func, that’s called when a key that generates an ASCII
character is pressed. Thekey callback parameter is the generated ASCII value. Thex
andy callback parameters indicate the location of the mouse (in window-relative
coordinates) when the key was pressed.

584 Appendix D: Basics of GLUT: The OpenGL Utility Toolkit

void glutMouseFunc(void (*func)(int button, int state, int x, int y));

Specifies the function,func, that’s called when a mouse button is pressed or released.
Thebutton callback parameter is one of GLUT_LEFT_BUTTON,
GLUT_MIDDLE_BUTTON, or GLUT_RIGHT_BUTTON. Thestate callback
parameter is either GLUT_UP or GLUT_DOWN, depending upon whether the
mouse has been released or pressed. Thex andy callback parameters indicate the
location (in window-relative coordinates) of the mouse when the event occurred.

void glutMotionFunc(void (*func)(int x, int y));

Specifies the function,func, that’s called when the mouse pointer moves within the
window while one or more mouse buttons is pressed. Thex andy callback parameters
indicate the location (in window-relative coordinates) of the mouse when the event
occurred.

void glutPostRedisplay(void);

Marks the current window as needing to be redrawn. At the next opportunity, the
callback function registered by glutDisplayFunc() will be called.

Loading the Color Map

If you’re using color-index mode, you might be surprised to discover there’s no OpenGL
routine to load a color into a color lookup table. This is because the process of loading
a color map depends entirely on the window system. GLUT provides a generalized
routine to load a single color index with an RGB value, glutSetColor().

void glutSetColor(GLintindex, GLfloatred, GLfloatgreen, GLfloatblue);

Loads the index in the color map,index, with the givenred, green, andblue values.
These values are normalized to lie in the range [0.0,1.0].

Initializing and Drawing Three-Dimensional Objects

Many sample programs in this guide use three-dimensional models to illustrate various
rendering properties. The following drawing routines are included in GLUT to avoid
having to reproduce the code to draw these models in each program. The routines render
all their graphics in immediate mode. Each three-dimensional model comes in two
flavors: wireframe without surface normals, and solid with shading and surface normals.

Initializing and Drawing Three-Dimensional Objects 585

Use the solid version when you’re applying lighting. Only the teapot generates texture
coordinates.

void glutWireSphere(GLdoubleradius,GLint slices, GLint stacks);
void glutSolidSphere(GLdoubleradius,GLint slices, GLint stacks);

void glutWireCube(GLdoublesize);
void glutSolidCube(GLdoublesize);

void glutWireTorus(GLdoubleinnerRadius, GLdoubleouterRadius,
GLint nsides,GLint rings);

void glutSolidTorus(GLdoubleinnerRadius, GLdoubleouterRadius,
GLint nsides,GLint rings);

void glutWireIcosahedron(void);
void glutSolidIcosahedron(void);

void glutWireOctahedron(void);
void glutSolidOctahedron(void);

void glutWireTetrahedron(void);
void glutSolidTetrahedron(void);

void glutWireDodecahedron(GLdoubleradius);
void glutSolidDodecahedron(GLdoubleradius);

void glutWireCone(GLdoubleradius, GLdoubleheight,GLint slices,
GLint stacks);

586 Appendix D: Basics of GLUT: The OpenGL Utility Toolkit

void glutSolidCone(GLdoubleradius, GLdoubleheight,GLint slices,
GLint stacks);

void glutWireTeapot(GLdoublesize);
void glutSolidTeapot(GLdoublesize);

Managing a Background Process

You can specify a function that’s to be executed if no other events are pending—for
example, when the event loop would otherwise be idle—with glutIdleFunc(). This is
particularly useful for continuous animation or other background processing.

void glutIdleFunc(void (*func)(void));

Specifies the function,func, to be executed if no other events are pending. If NULL
(zero) is passed in, execution offunc is disabled.

Running the Program 587

Running the Program

After all the setup is completed, GLUT programs enter an event processing loop,
glutMainLoop().

void glutMainLoop(void);

Enters the GLUT processing loop, never to return. Registered callback functions will
be called when the corresponding events instigate them.

