
601

Appendix G

G.Programming Tips

This appendix lists some tips and guidelines that you might find useful. Keep in mind
that these tips are based on the intentions of the designers of the OpenGL, not on any
experience with actual applications and implementations! This appendix has the
following major sections:

• “OpenGL Correctness Tips”

• “OpenGL Performance Tips”

• “GLX Tips”

602 Appendix G: Programming Tips

OpenGL Correctness Tips

• Perform error checking often. Call glGetError() at least once each time the scene is
rendered to make certain error conditions are noticed.

• Do not count on the error behavior of an OpenGL implementation—it might
change in a future release of OpenGL. For example, OpenGL 1.1 ignores matrix
operations invoked between glBegin() and glEnd() commands, but a future version
might not. Put another way, OpenGL error semantics may change between
upward-compatible revisions.

• If you need to collapse all geometry to a single plane, use the projection matrix. If
the modelview matrix is used, OpenGL features that operate in eye coordinates
(such as lighting and application-defined clipping planes) might fail.

• Do not make extensive changes to a single matrix. For example, do not animate a
rotation by continually calling glRotate*() with an incremental angle. Rather, use
glLoadIdentity() to initialize the given matrix for each frame, then call glRotate*()
with the desired complete angle for that frame.

• Count on multiple passes through a rendering database to generate the same pixel
fragments only if this behavior is guaranteed by the invariance rules established for
a compliant OpenGL implementation. (See Appendix H for details on the
invariance rules.) Otherwise, a different set of fragments might be generated.

• Do not expect errors to be reported while a display list is being defined. The
commands within a display list generate errors only when the list is executed.

• Place the near frustum plane as far from the viewpoint as possible to optimize the
operation of the depth buffer.

• Call glFlush() to force all previous OpenGL commands to be executed. Do not
count on glGet*() or glIs*() to flush the rendering stream. Query commands flush
as much of the stream as is required to return valid data but don’t guarantee
completing all pending rendering commands.

• Turn dithering off when rendering predithered images (for example, when
glCopyPixels() is called).

• Make use of the full range of the accumulation buffer. For example, if
accumulating four images, scale each by one-quarter as it’s accumulated.

• If exact two-dimensional rasterization is desired, you must carefully specify both
the orthographic projection and the vertices of primitives that are to be rasterized.
The orthographic projection should be specified with integer coordinates, as shown
in the following example:

gluOrtho2D(0, width, 0, height);

OpenGL Performance Tips 603

wherewidth andheight are the dimensions of the viewport. Given this projection
matrix, polygon vertices and pixel image positions should be placed at integer
coordinates to rasterize predictably. For example, glRecti(0, 0, 1, 1) reliably fills
the lower left pixel of the viewport, and glRasterPos2i(0, 0) reliably positions an
unzoomed image at the lower left of the viewport. Point vertices, line vertices, and
bitmap positions should be placed at half-integer locations, however. For example,
a line drawn from (x1, 0.5) to (x2, 0.5) will be reliably rendered along the bottom
row of pixels into the viewport, and a point drawn at (0.5, 0.5) will reliably fill the
same pixel as glRecti(0, 0, 1, 1).

An optimum compromise that allows all primitives to be specified at integer
positions, while still ensuring predictable rasterization, is to translatex andy by
0.375, as shown in the following code fragment. Such a translation keeps polygon
and pixel image edges safely away from the centers of pixels, while moving line
vertices close enough to the pixel centers.

glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, width, 0, height);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.375, 0.375, 0.0);
/* render all primitives at integer positions */

• Avoid using negativew vertex coordinates and negativeq texture coordinates.
OpenGL might not clip such coordinates correctly and might make interpolation
errors when shading primitives defined by such coordinates.

• Do not assume the precision of operations, based upon the data type of parameters
to OpenGL commands. For example, if you are using glRotated(), you should not
assume that geometric processing pipeline operates with double-precision floating
point. It is possible that the parameters to glRotated() are converted to a different
data type before processing.

OpenGL Performance Tips

• Use glColorMaterial() when only a single material property is being varied rapidly
(at each vertex, for example). Use glMaterial() for infrequent changes, or when
more than a single material property is being varied rapidly.

• Use glLoadIdentity() to initialize a matrix, rather than loading your own copy of
the identity matrix.

604 Appendix G: Programming Tips

• Use specific matrix calls such as glRotate*(), glTranslate*(), and glScale*() rather
than composing your own rotation, translation, or scale matrices and calling
glMultMatrix().

• Use query functions when your application requires just a few state values for its
own computations. If your application requires several state values from the same
attribute group, use glPushAttrib() and glPopAttrib() to save and restore them.

• Use display lists to encapsulate potentially expensive state changes.

• Use display lists to encapsulate the rendering calls of rigid objects that will be
drawn repeatedly.

• Use texture objects to encapsulate texture data. Place all the glTexImage*() calls
(including mipmaps) required to completely specify a texture and the associated
glTexParameter*() calls (which set texture properties) into a texture object. Bind
this texture object to select the texture.

• If the situation allows it, use gl*TexSubImage() to replace all or part of an existing
texture image rather than the more costly operations of deleting and creating an
entire new image.

• If your OpenGL implementation supports a high-performance working set of
resident textures, try to make all your textures resident; that is, make them fit into
the high-performance texture memory. If necessary, reduce the size or internal
format resolution of your textures until they all fit into memory. If such a reduction
creates intolerably fuzzy textured objects, you may give some textures lower
priority, which will, when push comes to shove, leave them out of the working set.

• Use evaluators even for simple surface tessellations to minimize network
bandwidth in client-server environments.

• Provide unit-length normals if it’s possible to do so, and avoid the overhead of
GL_NORMALIZE. Avoid using glScale*() when doing lighting because it almost
always requires that GL_NORMALIZE be enabled.

• Set glShadeModel() to GL_FLAT if smooth shading isn’t required.

• Use a single glClear() call per frame if possible. Do not use glClear() to clear small
subregions of the buffers; use it only for complete or near-complete clears.

• Use a single call to glBegin(GL_TRIANGLES) to draw multiple independent
triangles rather than calling glBegin(GL_TRIANGLES) multiple times, or calling
glBegin(GL_POLYGON). Even if only a single triangle is to be drawn, use
GL_TRIANGLES rather than GL_POLYGON. Use a single call to
glBegin(GL_QUADS) in the same manner rather than calling
glBegin(GL_POLYGON) repeatedly. Likewise, use a single call to
glBegin(GL_LINES) to draw multiple independent line segments rather than
calling glBegin(GL_LINES) multiple times.

GLX Tips 605

• Some OpenGL implementations benefit from storing vertex data in vertex arrays.
Use of vertex arrays reduces function call overhead. Some implementations can
improve performance by batch processing or reusing processed vertices.

• In general, use the vector forms of commands to pass precomputed data, and use
the scalar forms of commands to pass values that are computed near call time.

• Avoid making redundant mode changes, such as setting the color to the same value
between each vertex of a flat-shaded polygon.

• Be sure to disable expensive rasterization and per-fragment operations when
drawing or copying images. OpenGL will even apply textures to pixel images if
asked to!

• Unless absolutely needed, avoid having different front and back polygon modes.

GLX Tips

• Use glXWaitGL() rather than glFinish() to force X rendering commands to follow
GL rendering commands.

• Likewise, use glXWaitX() rather than XSync() to force GL rendering commands to
follow X rendering commands.

• Be careful when using glXChooseVisual(), because boolean selections are
matched exactly. Since some implementations won’t export visuals with all
combinations of boolean capabilities, you should call glXChooseVisual() several
times with different boolean values before you give up. For example, if no
single-buffered visual with the required characteristics is available, check for a
double-buffered visual with the same capabilities. It might be available, and it’s
easy to use.

606 Appendix G: Programming Tips

