
607

Appendix H

H.OpenGL Invariance

OpenGL is not a pixel-exact specification. It therefore doesn’t guarantee an exact match
between images produced by different OpenGL implementations. However, OpenGL
does specify exact matches, in some cases, for images produced by the same
implementation. This appendix describes the invariance rules that define these cases.

608 Appendix H: OpenGL Invariance

The obvious and most fundamental case is repeatability. A conforming OpenGL
implementation generates the same results each time a specific sequence of commands
is issued from the same initial conditions. Although such repeatability is useful for
testing and verification, it’s often not useful to application programmers, because it’s
difficult to arrange for equivalent initial conditions. For example, rendering a scene
twice, the second time after swapping the front and back buffers, doesn’t meet this
requirement. So repeatability can’t be used to guarantee a stable, double-buffered image.

A simple and useful algorithm that counts on invariant execution is erasing a line by
redrawing it in the background color. This algorithm works only if rasterizing the line
results in the same fragmentx,y pairs being generated in both the foreground and
background color cases. OpenGL requires that the coordinates of the fragments
generated by rasterization be invariant with respect to framebuffer contents, which color
buffers are enabled for drawing, the values of matrices other than those on the top of the
matrix stacks, the scissor parameters, all writemasks, all clear values, the current color,
index, normal, texture coordinates, and edge-flag values, the current raster color, raster
index, and raster texture coordinates, and the material properties. It is further required
that exactly the same fragments be generated, including the fragment color values, when
framebuffer contents, color buffer enables, matrices other than those on the top of the
matrix stacks, the scissor parameters, writemasks, or clear values differ.

OpenGL further suggests, but doesn’t require, that fragment generation be invariant with
respect to the matrix mode, the depths of the matrix stacks, the alpha test parameters
(other than alpha test enable), the stencil parameters (other than stencil enable), the
depth test parameters (other than depth test enable), the blending parameters (other than
enable), the logical operation (but not logical operation enable), and the pixel-storage
and pixel-transfer parameters. Because invariance with respect to several enables isn’t
recommended, you should use other parameters to disable functions when invariant
rendering is required. For example, to render invariantly with blending enabled and
disabled, set the blending parameters to GL_ONE and GL_ZERO to disable blending
rather than calling glDisable(GL_BLEND). Alpha testing, stencil testing, depth testing,
and the logical operation all can be disabled in this manner.

Finally, OpenGL requires that per-fragment arithmetic, such as blending and the depth
test, is invariant to all OpenGL state except the state that directly defines it. For example,
the only OpenGL parameters that affect how the arithmetic of blending is performed are
the source and destination blend parameters and the blend enable parameter. Blending
is invariant to all other state changes. This invariance holds for the scissor test, the alpha
test, the stencil test, the depth test, blending, dithering, logical operations, and buffer
writemasking.

As a result of all these invariance requirements, OpenGL can guarantee that images
rendered into different color buffers, either simultaneously or separately using the same
command sequence, are pixel identical. This holds for all the color buffers in the

609

framebuffer or all the color buffers in an off-screen buffer, but it isn’t guaranteed
between the framebuffer and off-screen buffers.

