

[Microsoft Passport Account Hijack Attack]

last major update: 08/10/2001
last minor updates: 23/07/2002

Hacking hotmail and more

Obscure [obscure@eyeonsecurity.net]

EyeonSecurity
http://eyeonsecurity.net/

Copyright © 2001,2002 EyeonSecurity,
Redistribution of this document is permitted as long as the contents
are not changed and this copyright notice is included.

mailto:obscure@eyeonsecurity.net
http://eyeonsecurity.net/

[AUTHENTICATION] 3

[MICROSOFT PASSPORT] 3

Implementation 4

Flaws in the design 4

[FOOLING THE SYSTEM] 4

Cross Site Scripting 5

How is this achieved? 5

[CONCLUSIONS] 7

[Web Applications]

Web Applications are made to extend the usability of the HTTP protocol, along with the
efficiency of HTML, JavaScript and so on. The big advantage of Web Applications is that
they are immediately accessible, relatively easy to use and can be centrally customized
by the developer, at the expense of security issues.

Security issues in Web Applications rise because the HTTP protocol was not designed
for Web Applications, and therefore many security measures and extended
authentication methods have to be implemented into the Web Application.

[Authentication]

In Web Applications, users have to be authenticated, and will usually be assigned a
profile, limited hard disk space, the ability to send data and communicate with other
users on the same Web Application, and maybe other Applications and protocols. Many
Web Mail Applications, such as Hotmail, make use of cookies to store authentication.
For each session at Hotmail, once a user is authenticated, he is assigned a random
cookie, which identifies him from other authenticated users. This way the password does
not have to be sent each time he accesses a different page while authenticated. This
also means that once the session has ended, the session authentication should expire
and therefore a new cookie has to be assigned when the user authenticates himself with
Hotmail and starts a new session. All this is described well on the MS Passport site1.

From now on I will be focusing on Hotmail only, rather than just about any Web
Application. However one must understand that the same attacks described here, can
be easily adapted for other Web Applications and Web Mail packages, which make use
of html, JavaScript and Cookie technology.

[Microsoft Passport]

Microsoft Passport: "A single name, password and wallet for the web". This means that
using the same credentials you can access your e-mail (Hotmail), instant messenger
service (MSN messenger), calendar (task manager, reminders and so on), and loads of
other useful services. All these services are centralized and authenticate with a central
system called MS passport. Of course as much as any authorized user can browse
without supplying a password from a service which makes use of the Passport
technology to another, a cracker (malicious hacker) can do the same without much
problems once he gets to look like the authorized user. This kind of service is intended
for personal use, so people certainly wouldn’t like others to read their e-mail, or view
their daily schedule.

1 Microsoft .NET Passport - http://www.microsoft.com/netservices/passport/

http://www.microsoft.com/netservices/passport/

Implementation

Microsoft is trying to build everything around their Network, using Passport
authentication. This is complaint with the .NET framework, which allows everything to be
seamlessly integrated so that users can jump from one service to another without any
problems.

As currently implemented, users can authenticate to Passport via a number of ways:

• Hotmail and Passport sites
• MSN messenger
• MSN Explorer
• Outlook Express
• Other MS applications.

Outlook Express and MSN Explorer make use of Integrated authentication. Hotmail and
Passport sites use SSL (HTTPS) to authenticate, and MSN messenger makes use of
“MD5” security package.

Once a malicious user gets hold of the session cookie, the above-mentioned
authentication methods are useless for services, which rely on the HTTP protocol (such
as Hotmail).

Flaws in the design

Previously many exploits inhibited the various Web Browsers, which enabled users to
steal cookies from other websites. However this aspect of security in the Passport
authentication scheme is supposed to be taken care of by the client user.

To steal the session cookie, the malicious user must either:

• Take hold of the target machine
• Fool the user into sending the session cookie
• Fool the system into sending the session cookie

In this paper I will discuss the 3rd option.

[Fooling the system]

JavaScript allows users to set and retrieve cookies. This is very useful for normal HTTP
sites as well as Web Applications. However Web Applications need a lot more control
over normal websites. This control is normally achieved through filtering of possibly
malicious code in the HTML.

Users do not need permission to send e-mails to authenticated users, giving them the
possibility to post data to an authenticated user’s mailbox. This is obvious to some
extent, since we are talking about e-mail. No one needs authentication to send an e-mail

to a Hotmail account. Therefore the e-mail sent to the Hotmail user has to be treated as
non-trusted content.

Hotmail takes very good care to filter out JavaScript, ActiveX and Java applets. Lately it
also started checking for images which link to outside the Hotmail account. Having
images linking to non-trusted sites means that those sites can easily track the status of
the e-mail (if it was read or not). So that a tag in an html mail such as:

would get filtered by the Hotmail Filtering System. To get around this filtering, one has to
just encode the http:// part like &x68;ttp://. 68 is the hex value h, and therefore the Web
Browser converts back the encoded value to its original signifier. Of course, the Hotmail
filtering system is not working exactly like the Web Browser, and this is where the flaw
stands out. However this is not the major issue I am writing about in this document.

Cross Site Scripting

When a logged in user follows an non-trusted link, the Hotmail credentials do not get
sent to the non-trusted website. The Hotmail filtering system also takes care to hide the
URL of the user’s Hotmail account to ensure the user’s privacy and maybe to prevent
other attacks.

On the other hand, when a user follows an MSN site from a non-trusted e-mail message
received through Hotmail web interface, the credentials get sent to the Passport site,
and no precautions are taken. This way users following links from a Passport site to
another remain authenticated therefore the different services provided by MS Passport
operate seamlessly as described earlier.

This also means that if an ASP script, which resides on any MS Passport enabled site
allows the user to customize the page (even if not intended) problems will arise.

In my exploit, a user only needs to click on a trusted link and he (or she) will be sending
his (or her) credentials to a remote server.

How is this achieved?

To further explain the issue, I will provide an example of a flawed ASP script on an MS
Passport site: ErrorMsg.asp, which resides on http://auctions.msn.com/Scripts/

This ASP script can be passed 2 (or possibly more) arguments:

• Source
• ErrMsg

Here we are concerned with ErrMsg argument. This argument allows different scripts to
generate different errors and display them to the user in some nice html.

ErrMsg will usually be filled in with something like “User is not authenticated”. Now what
if it is filled with This should be bold. To my astonishment (at the time of
writing this is not fixed yet), I got the HTML tag to work, with no filtering from the ASP
script.

To further illustrate this, the url which is passed is actually:

http://auctions.msn.com/Scripts/ErrorMsg.asp?Source=O&ErrMsg=This%20should%2
0be%20bold.

If no filtering is done for JavaScript, we can very easily inject our own JavaScript code to
retrieve the session cookie stored in the Hotmail user’s browser. Sadly, lately (during the
writing of this document), Microsoft seemed to try to fix this by filtering JavaScript (and
embedded scripts) tags and entities. This means when the ASP script is passed the
following:

• <Script
• Alert
• JavaScript:
• And other commonly used javascript methods

The ASP script simply ignores the input, successfully filtering common Cross Site
Scripting attacks.

However Microsoft did not fully patch the issue, so that if HTML encoding were used, the
filtering system would not detect the embedded script code, and the code would still be
executed.

Without any filtering we would just pass the following url and expect a message box to
apprear with the MSN cookies:

http://auctions.msn.com/Scripts/ErrorMsg.asp?Source=O&ErrMsg=<IMG%20SRC='javasc
ript:alert(document.cookie)'>

However to get this to work with the actual ErrorMsg.asp script – we have to encode the
URL such as the following:

http://auctions.msn.com/Scripts/ErrorMsg.asp?Source=O&ErrMsg=<IMG%20SRC='%26%23
x6a;avasc%26%23000010ript:a%26%23x6c;ert(document.%26%23x63;ookie)'>

To complete the exploit the malicious user has to send a URL, which actually passes the
Cookie to a 3rd party CGI script (probably made by the cracker exploiting this issue)
instead of displaying them to the Hotmail user in a Message box. The exploiting e-mail
page could look very similar to the one below.

Once the target Hotmail user clicks on the “mypic.jpg” link, he would have sent his
credentials to the attacker without asking, any alert or sign that this has actually
happened.

[Conclusions]

This paper is based upon trial and error, which means that I do not have access to any
source code, and therefore cannot know the actual underlying code that contains the
flaw. By the time you read this, Hotmail and MS Passport sites, should have hopefully
fixed the described issues.

	[Authentication]
	[Microsoft Passport]
	Implementation
	Flaws in the design

	[Fooling the system]
	Cross Site Scripting
	How is this achieved?

	[Conclusions]

