Alfred Lois currently | ooking for job opportunities aroundthe worl d
ininformati on security. Hsinterests arein techniquesin cracking,
hacki ng and howto prevent them He graduated fromThe University of
Hong Kong in Conputer Engineering (1% class) and is finishing his
mast er degree in The University of Birm nghamin Sep 2002. | f anyone
wants to hire himor offers hi mopportunities (e.g. PhD, short tern
contracts, etc), please contact himat alfredkm o@ot mail.com

Software Protection and itsAnnihilation

Alfred K.M. Lo

alfredk mlo@hotmail.com

"Thereisa crack, a crack in everything, that’s how the light getsin."

May 2002

Software Protection and itsAnnihilation — Alfred K M Lo May 2002

Abstract

This project identifies commonly used software protection techniques and their
vulnerabilities. By working from the worldviews of crackers, software industry, and
researchers, this paper gives analysis on the principles behind the attacks, the
investigating psychology, how exploits are constructed, and what can be done to prevent
the problems.

Three commercial software programs are studied in depth as case studies. The resultsring
the alarms of the software industry. It shows that our daily-used commercial software,
even being protected by commercial protection solutions, is too easily to be defeated.

Keywords
encryption; packing; unpacking; reverse engineering; cracking; obfuscation;

watermarking; software protection; anti piracy

\ersion History

Publication Date ‘ Changes

May 30, 2002 Add Version History, numerous wording fixes
April 22,2002 Report first rel eased

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 2

mailto:alfredkmlo@hotmail.com
mailto:alfredkmlo@hotmail.com

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Legal Disclaimer

All the materials discussed in this report are served for educational purposes only. You
should not reverse engineer, debug or crack gpplications or programs you haven’t
legitimately bought, or not for your own personal use:

- Thereisno intention to encourage cracking.
- Itismerely astudy of state-of-art software protection systems.
1. TextPad isavery good program that isdeserved to buy.
2. Dreamweaver is avery good program that is deserved to buy and its trial should
be deleted after 30 days anyway.
3. SmartSaver Pro 3 is a very good program that is deserved to buy and its trial
should be deleted after 15 days anyway.
- Any legal issues arising from the misuse of the information presented here ARE NOT
the writer’s responsibilities.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 3

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Table of Contents

AADSTIACT ...t eeses e 2
LEQAIDISCIAUMET ...ttt 3
IO oo [0 ox 1T o IOV 8
2. SIMple Threat MO ... e et s 9
3. CraCking TOOIS ...t bbb st e 1
3.1 Reverse ENgiNEEring TOOIScccvvveiiiineeeit et se s ss e sre e 11
3.1.1 Disassembler/DeCOMPIIETccvireeeieieeeeeiste e 11

3.1.2 DEDUGQEN ..ottt e st e

3.2 System Monitoring Tools

3.3 Others TOOIS.....cceuiviiireirirericre et

3.4 DISCUSSIONScuevveecerieriees e tstssesasesesstses e se st ssse b esesesas e se st e e s ssese st b esasnsnsessnsesanns
4. Basic protection tECHNIQUEScccc.ccevicieiiece ettt se s ss s eneaes

4.1 SOftWAre TOKENS ..ot

4.2 Hardware Tokens

4.3 Manual Look-ups

=T B T o] (== o TR
A5 LIMIS ©oeiveireieiee ettt er et e
4.6 CrIPPIEBWATE ...ttt e bt et et s sttt
A7 DISCUSSIONS ...ncvieneeeueeieeesesereseaeseseessseesseesese st st e s sessbss st st etseseseseee b bassbnesesssensneses
5. Basic protection COUNEMMEASUIEScceeuirirerireresriesesssssessssssesssesessssssesessssssssssenns 21
5.1 The SIMPIE SCENANIOcueveeeiiieririree st et e e 21
5.2 The SIMple ChalleNge ... s 21
5.2.1 BY DEDUGET ..ottt ettt en et st ee s 22
5.2.2 By DiS@SSEMDBIETc.cveiieiieercsteteses et 22
5.3 USEfUl BreaKpOiNtSccoieeiererrineeeeeseiiees et sss e se st s sssssnsnns 23
5.4 USEFUI OP COUEBS .ottt ettt ettt st sb e st s 24
5.5 Case Study 1 - TEXIPAU VA.5.......coiiriri e s 24
5.6 DISCUSSIONSoueeriieeeeecee ettt sttt sb et sttt s s et s es bbb 27
6. Advanced protection tEChNIQUEScccuveriieersei st 29
6.1 COAE ENCIYPLION ..ottt ettt st sttt sre s 29
6.2 EXecutable PacCKing.........cov i sesiere s s sne s 29
6.3 ODFUSCALIONeoeieeeeeee ettt s e 30
LN a1 B T=Y o 18 o o {1 T U U SN 31
6.5 DISCUSSIONS ...ouvviteeieeser ettt er et e e 31

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 4

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

6.6 A more robust protection MOdelccccovveeiiireeeieii e s 32
7. Advanced protection COUNLEIMEASUIES.........cuuuerririieineest s stese s s sessesesesesesnns 34
7.1 Manual UNPacCKiNg.......coc.uiiireeiinesieie s sbses s sses s s se s 34
7.2 Process PatChinNgccccuiiirirciriceseistesste et sre st s ssse s sne s 34
7.3 Case Study 2 — Process Patching TextPadccccccvviveevesiinseeccsseneenns 35
7.4 DISCUSSIONS ...ovriieesies st ses et es s e as e e es et snn et nr e 41
7.5 Defeating Dynamic Decryption Of COUEccevicervereeiece s 42
8. Case StUdY 3 — DIEAMWEAVETcccueererrrereirreeenereseesaseensesesssesssssssesssssssessssesssssees 44

8.1 Preliminary Investigation
8.2 REICASENOW.COM.....ocoiieiireiceieree ettt
8.3 1MAgiNed SCENAIIOcveviiririieee ettt
8.4 Cracking Approaches
8.5 First Attempt

R IS T=ToTo] o [0 AN 1 (=0 o] o] PP 51
8.7 FINAI AEIMPL.....vceitiie ettt st b sttt 54
8.7.1 Dreamweaver.exe as a l0aderc.coooveerincieneen e 54

8.7.2 Dreamweaver.exe as a PAtCHETcoveceviviericeseiese s 56

8.7.3 Annihilating DreamWEAVETcceueeriieieiee s eeessiseese s sessseseenns 56
8.8 DISCUSSIONScvriteeies st te et st es et ser e nr e 65

8.9 SUJOESTIONS ...ttt sttt sttt et eb e bbb e er s 66

9. Case Study 4 — SMart SAVEN PrO.......ccouiieiiiciece sttt s ese s ssne s s 68
9.1 Preliminary INVEStgatioNcccoeieieeniisecssecce s eae s ee s 68

9.2 PreViEW SYSIEIMS ..ottt sttt sere st st s en e sae s 69
9.2.1 Understanding VDhOX ..ot e 69

9.2.2 Cracking Strat@gycovveeveeesireeerieresnenseiessesssseesesssssessesssesssessssssssesees 70

9.3 ManUal UNPaCKING.......cccuiiiririreeiinesietsseesaesestssese s sssssssssese s se s s ssssssesanns 71
9.3.1 Locate the Original Program Entry POiNt........ccccceeiveieneiesseeecseneenn, 71

9.3.2 Dumping the memory into diSK ... 74

9.3.3 Fixing the Section INformationoceveeenniniencnes s 75

9.3.4 Regenerate missing informationccocccvivensinisesescn s e 76

9.3.5 FiNAI fiX UPS 1.vvveeeriiierisiee et se st se e sae e se s s ssss s st esenas 89

9.4 DISCUSSIONS ...uvriieesies st ses e st es s et se e as e s es e ee et snr et nr e 89

9.5 SUQGQESTIONS ...ttt ettt sttt eb e bbb bbb er s 20

10. Future of SOftware ProteCtioNSccccoueeviiierese s s 91
10.1 Code Partitioningc.ccvveeeeieeesiersiseeetessissesessisessesere s sssssesessssssssssesnssssssenns 91
10.1.2 Relegating through NEtWOIKScccoueeieiinnieerec s 91

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 5

Software Protection and itsAnnihilation— Alfred K M Lo May 2002
10.1.3 Relegating t0 @ CO-PrOCESSONcouuvverurireeiererestrisresesere s ssssesesesesesees 92
10.2 WALEIMAIKINGcveiiieesiieinesiiete et sve s s ese sttt s sre s 92
10.3 Secure Software ENQINEEINGccocuiinirieereiiiresinie e s ere s sieseens 93
10.4 AAVErsary ECONOMICScovvuerueriiviereiresesiesseesesisesessssssesesssssnsssesssssesessssssesesenes 94
11, CONCIUSIONSciieeeceerieee ettt e ee s bbbttt eb ettt 95
RETEIENCES ...ttt er e e en e er s 98
Appendix A — Selected WIN32 AP ...t ere s 100
WaitForDebugEvent
ContinueDebugEvent ...
DEBUG_EVENT ..ottt sttt sn st e
CREATE_PROCESS_DEBUG_INFOccooiinnireeriereeerssee s sesenes
EXCEPTION_DEBUG _INFO......coiiiitenrenineseseere e e sesensnnnenas
EXCEPTION_RECORD.......coitittieieesiriee et seises e ee s sesss s sess s ssses s
WIEEPTOCESSMEIMONYveieisec ettt et tese st et ea s se s ee s sase s sesane s
Appendix B — Partial Dreamweaver Disassembly
Appendix C — USSPRO.EXE IMport Details ...

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 6

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Tableof Figures
Figure 1 Simple thread model of a computer program...........ccceevvereonneenns 9
Figure 2 Debugging in SOMICEccooveveiiinere e s 14
Figure 3 Microsoft Visual Studio DebUQQET.......cccovvevevreirreeeeire e 15
Figure 4 NAG screen of TEXIPAd..........ccvrirreiiininie s 25
Figure 5 HOW PACKEr WOTKScoovuirieiniiine st s 36
Figure 6 Memory at OXO04ASBEccccouvirenieeieseseeesssese s sssesneees 37
Figure 7 Procedures for Process Patchingcccccvevviiveecceiesensccsisnen, 37
Figure 8 File Offset at OXD2100.........ccoovureiiiiinieneseeesesiese e s seens 38
FIQUIE 9 PE FOIMAL ..ottt sttt sve st s 39
Figure 10 PE Header INformation..........coveeoeinnnenene s 39
Figure 11 Section INfOrmMationcccceeeevsniieneie e 40
Figure 12 Executable Mapping in RUNLIMEccccoueeiveniirieeecese e 40

Figure 13 Running Dreamweaver
Figure 14 Tamper WarNiNg ... ssseesssssesessssesessseses

Figure 15 User REQISIIatioNccccuvveiieeneiie st s sisssreseeesse e sesnssesnns 45
Figure 16 Ordering Dreamweaver by Phone...........ccccovvneivcesesceseenene, 46
Figure 17 Files in Dreamweaver 4 DIr€CtOrYccoovveenirnrinieeneneereseieens 50
Figure 18 Tamper WarmiNG ... siene s sesenenes 53
Figure 19 WINdOWS ProCess LiStcccveiimeeiiiiiniessisis s sse s eessees 55
Figure 20 EXECULION EXCEPLION ..c.cucuveviiivieeeiie vt se s sers s sseseseens 55
Figure 21 Debug EVENt COUE........ccvvirireie et 59
Figure 22 Section information of dreamweaver.ttyceeoieerineeene 65
Figure 23 RUNNINg SMartSaVver Pro.........ccvriiiineisisesessees s e sessesnes 68
FIQUIE 24 VDOX ettt eae st st sa et ee st snsssns 69
Figure 25 Vbox Tampering Warningccccoueeevvieneerenesinsseesesssesessssesesseees 73
Figure 26 PE header Of USSPrO.EXEccoovuvrriiinrinie e ere s 75
Figure 27 Dump File with wrong section informationccocvveiiinenne 75
FIQUIE 28 CALL O TAT ...ttt sasse s s sre s anna s 77
Figure 29 Structure of IMport Table.........cccuveeeiiinreiereese e 79
Figure 30 Unpacked SmartSaver inside the old PE header..................... 81
Figure 31 Import Table Of USSPrO.EXE.......ccvvreririienrires e 82
Figure 32 ReVirgin in OPErationcceeveiiieneneseeeese s s ssresessssesssssesenens 88

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 7

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

1.Introduction

University researches on security can sometimes be too academic. They will tell you
when the program is encrypted, the way to defeat it is to wait until it is decrypted in
memory and then extracts the contents, and that’s all. But, the fact is that this dump
executable won’t run correctly unless some necessary conditions are met, and practica
protection schemes are designed so that these necessary conditions are difficult to be
achieved.

On the other hands, people in the underground community may lack of formal trainings
and knowledge. However, they can possess very sophisticated and practical skillsthat are
not commonly known by academic researchers. The combination of these twos can be
very powerful and very interesting, and thisis the objective of this project.

Software protections appear in many forms, from those be seen by end-users such as
textbox asking for serial key, to those invisible watermarks embedded in software. For
whatever they are, they serve only one goal — to protect the intellectual property rights of
the owner.

On the other sides, there are always some people who want to bypass those protections.
These people are called crackers. In their parlance, they called themselves "software
hackers', those people who "destroy" the CODE of the application that they are
examining. Their acts to breach software protections are called ‘cracking’.

Cracking started as long as protection schemes appeared. The first cracking document |
have come across dated back 1987. It should be stressed that these twos help evolving
each other. Whenever there is a new protection scheme, there must be someone who
works out the crack of it and anew scheme will appear which isstronger...

This project contains case studies. Three programs have been selected. They are TextPad,
SmartSaver Pro and Dreamweaver. They represent different market segments in the
industry: TextPad (US $27:chesp), SmartSaver Pro (US $59.95:medium) and
Dreamweaver (US $299:expensive).

In some senses, cracking is good because it “helps” software to be better protected.
Needless to say, the race between software protectors and crackers is endless.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 8

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

2. Simple Threat Model

Possible attacks to software can be best understood with a simple threat model of a
computer program [1].

Data

Program Logic

Figure 1 Simplethread model of acomputer program

Data

The data area may store confidential information like user passwords, seria numbers,
private/decryption keys, etc. Through monitoring the contents in these areas,
confidentiality can be breached.

Program Logic

On receiving the input and the state of data, the program acts according to the logic
defined in its codes. By reverse engineering, valuable pieces of code flow - “the brain of
the program” can be extracted. This alows someone to extract a module from the
program and use it in his own. If someone modifies the program logic, a process known
as patching/tampering, the execution flow will be modified, e.g. bypassing a security
check.

IN/OUT

The input and output of a program can be monitored. By capturing this information,
replay attack is made possible.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 9

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Whole Program

Because the program isakind of digital information, any copy of it is exactly the same as
original. It is possible for someone to make illegal copies of the program and resell
them — an act known as software piracy.

Therefore, any programs under this model are subjected these attacks:
1. Monitoring

2. Reverse Engineering

3. SoftwarePiracy

4. Tampering

To cope with these potential threats, measures have been taken to protect the software.

Here | classify the techniques into basic and advance levels, according to their
complexities and eases of implementation.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 10

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

3. Cracking Tools

Most protections cannot be bypassed without the use of tools. So let’s first take alook at
them. These tools fal into two main categories, reverse engineering tools and
system-monitoring tools.

3.1 Rever s Engineering Tools

It helps us to know the logics of the underlying program. By using these tools properly,

we are able to study the interna of a process, understand its weaknesses and carry out

exploitations. They can be further subdivided into 2 categories:

1. Disassembler/Decompiler — alows us to study the static logic of the program. E.g.
W32Dasm

2. Debugger — alows us to study the runtime behaviors and status during program
execution. E.g. SoftICE and the Debugger in Visud Studio

3.1.1 Disassembler/Decompil er

The Disassembler is used to disassemble the compiled code and generates its assembly
equivalents, while the decompiler generates its high-level source codes. Decompliers
work very well in Java (almost 1-1 mapping) but don’t perform well in C/C++. Since our
targets in this project are not Java programs, we will not use decompiler and thus is not
discussed further.

A very good disassembler for x86 environment is W32DASM. This allows studying of

the internal program structure and useful information to be extracted. By the way, itisa
debugger aswell.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 11

Software Protection and itsAnnihilation — Alfred K M Lo May 2002

E URSoft W32Dasm Yer 8.93 Program Dizassembler/Debugger

Dizazzembler Project Debug Search Goto Execute Test Function: HewxData Hefs Help

s

U Dadm
S2lie]

| Select a File for Disaszembly

Figure 2.1 W32Dasm

W32dasm is a Windows Program Disassembler/Debugger featuring:

Disassembles both 16 and 32 bit Windows programs

Disassemblesfor MM X instructions

Displays for Exports, Imports, Menu, Dialog, and Text References
Integrated Debugger for 32 bit Programs (16 bit Debug NOT available)

A wbdPE

3.1.2 Debugger

Debuggers work by emulating the processor. Therefore, programs are executed in the
debugger container as if it is interacting directly to the processor. By acting as the
middleman, the debugger is able to trace the runtime execution, memory/register contents,
and setting break points, etc.

There are two kinds of debuggers, application-level debugger and system-level debugger.

Application-level debugger, sits itself between the OS and the debugging program, while
system-level debugger sits itself between the processor and the OS. Therefore,

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 12

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

system-level debuggers are more “powerful” because it can debug the OS at the
driver/kernel level.

Here are the functions that are often provided by the debugger:

1. Execute each source statement, one at atime, with as much time between statements
aswe would like. This procedure is known as single step, or stepping for short

2. Stepinto, out of, and over function calls

3. Havethe program execute normally until a specified source statement is reached and
then stop execution. This procedure is known as breakpoints

4. Display the values in variables, either while the program is running normally, or

during single steps and breakpoints. This procedure is known as watch

Change the valuesin variables and then have the program continue operation

Monitor and modify the run-time memory and register contents

Disassembling

Monitoring the Stack Context

© N o v

In this project, these debuggers are used — SoftICE and Visua Studio.

Softl CE — The System-L evel Debugger

According to Compuware [5], “SoftICE is a powerful kernel mode debugger that
supports device driver debugging on either a single or dual machine configuration...
SoftICE reduces debugging downtime by providing powerful features that extend beyond
the limitations of the traditional Windows SDK/DDK tools. SoftiCE has unique
system-wide views and controls that make it easy to understand and diagnose the widest
variety of Windows software problems.”

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 13

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

W o T T i 2]
i i

St
l'-mu$| L] r.—-"'.ih i

o
s o o o e ST

© Bsianly

L méoesmslion el

o St pr [ncldet kst and A
St ard snsin oot

Figure 2 Debugging in SoftICE

Here are the most commonly used commandsin SoftICE:

Step Into [press F8] — step into the call

Step Over [press F10] — step over the call

Step Out [press F12] — step out of the current call

Register Modifying [R] — e.g. R EAX FFFFFFFF (modify EAX to FFFFFFFF)

Memory Dump [D] — e.g. D 400000 (dump the memory content at 0x400000)

Memory Search [S] — e.g. SO L FFFFFFFF “str’ (search the memory from 0x0 over

FFFFFFFF bytes for the string “str’

7. Breakpoint of execution [bpx] — e.g. bpx 401000 (Softl CE breaks when instructions
at 0x401000 is executed)

8. Breakpoint of memory read/write [bpm] — e.g. bpmb 401000 RW (SoftICE breaks
when the byte at memory location 0x401000 is access by read/write operations)

© 0k~ wNPE

Please refer to SoftlCE command references for details[14].

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 14

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Microsoft Visual Studio — The Application-Level Debugger

Visual Studio contains this nice debugger that allows you to control the operation of your
program, to display and change the valuesin variables.

“' mnlwan? - Wicinealt Ycusl |- oon] - [Iicacusship]

L T ER tws b Fuod Dide. Twr Wiees e -l =
[=T R = =l

[=i =i = [
e SFRIRE S .. A]

TE=

e e Y SR
drn o | AR ETheE

i e)
I S = -2 [0

Ear LoULJuZd kX Ju_Ju_ v -

ECE IZadeid TX Faddalil
ESI £.764FEE II J0IM0I0C
= FFFIigEe TF O NIAFTEC
FI= . £ PESLST TE_-_WMTWINE S - 0E7

[R I IR I
DV

L= MF 5 = “157 °C & 076 [5 om 20T T T I =
I om ACTR Mt Tt R7wc DLal CRei 370 nronraEs e e
1 oimil Crmll SJuromoere & &
S LU UL UL U e L B T T R
N S T 1Y T T T T T i
e T 1Y T T T Ell
e — Bl
i] *
A - N B Ve -
B] ST
Hama |vaka j —————————————— —_—
=l i

A g w B *I FI\ Wl 1 0 WadE B S KL L

IEE 1]

Figure 3 Microsoft Visual Studio Debugger

3.2 System Monitoring Tools

There are two system-monitoring tools that are proved to be very useful throughout the
project. They are FileMon and RegMon.

FileMon — The File Monitor

According to Sysinternal [6], “Filemon monitors and displays file system activity on a
system in real-time. Its advanced capabilities make it a powerful tool for exploring the
way Windows works, seeing how applications use the files and DLLSs, or tracking down
problems in system or application file configurations. Filemon's time stamping feature
will show you precisely when every open, read, write or delete, happens, and its status

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 15

Software Protection and itsAnnihilation — Alfred K M Lo May 2002

column tells you the outcome.”

RegMon — The Registry Monitor

According to Sysinternal [7], "Regmon is a Registry monitoring utility that will show you
which applications are accessing your Registry, which keys they are accessing, and the
Registry data that they are reading and writing - al inreal-time.”

3.3 OthersTools

If we want to tamper the software, binary editing is unavoidable. A hexadecimal text
editor is nevertheless necessary. It should alow editing binary files, showing in binary
and ASCII view, and is better to be equipped with:

1. HEX Cut, Copy and Paste support

2. HEX Insert and Déelete of characters

3. HEX Find, Replace and ReplaceAll

4. HEX Files comparisons

An example of good hex text editor is “Hex Workshop” from Breakpoint Software.

3.4 Discussions

Different tools are available depending on different platforms. The tools listed here are
for Microsoft Windows, but the same principles can be applied to other platforms. This
list is in any way not comprehensive. More sophisticated and dedicated tools will be
introduced | ater in the report.

It should be noted that debugger, although be put in the category of reverse engineering
tools, is aso aruntime monitoring and tampering tool as well.

For system-level debugging, the SoftICE provides many robust and powerful functions
and can be invoked at any time, even before Windows starts. Thus, it allows debugging of
any programs at any time. Besides, application-level debugger reguires explicit creating
or attaching to the process of the debugging target.

Because of the powerfulness of system-level debuggers, most people may think that it is
the only one they need. In fact, this may not true. Asit sits between OS and the processor,

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 16

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

itisnot possible for it to use the OS API, and can be expected, the user interface provided
by these system-level debuggers are very native (DOS like) and hence non-user-friendly.
USB mouse support had only been added into SoftICE since last year.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 17

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

4. Basic protection techniques

4.1 Softwar e Tokens

It is the most commonly used techniques for software protection. It can have the

followingforms:

1. Registration Key — one single serial key hard-coded in the program code. Our input
is compared with it.

2. Multiple Serials — the serial number is broken into parts (e.g. [XxX]-[Xxxxx]-[xxx]).
A seria validating algorithm exists to check against these sub-parts. Using the
algorithm, the program can accept many different serials without hard-coding them.

3. Serid/Name — the software token here is a serial/name pair. Checking is based on
algorithm like multiple serids (e.g. check if f(name)=serial)

4. Key File - the software token exists as a license file stored inside the hard disk or
system registry. In many cases, this key file, apart from storing user profile, may
also contain usage information (e.g. how many days it has been used).

4.2 Hardware Tokens

Because software is a kind of digital information that is so easy to be duplicated, people
invented hardware tokens, and make the operation of their programs dependant on the
presence of these physical keys. The root assumption to this protection method is that
hardware tokens are difficult to be copied. The art of making them difficult to be copied
is called “Copy Protection”.

Physical keys can also be in many forms;

1. Key disk — specially produced diskette. E.g. By boring a hole in the magnetic media
at a specific location. The program then checks for bad sectors at that location for
validation.

2. Dongle - small hardware attached at the I/O (seria/paralel/USB) port of the
computer. The checking routine queries those ports for values. If the hardware token
isthere, it will detect the electric pulses and then generate appropriate responses.

3. Smart Cards - a plastic card about the size of a credit card, with an embedded
microchip that can be loaded with data. Some smart cards contain both code and
data and therefore it can execute routines using the built-in microchip. Smart Card is
tamper-resistant, whenever it detectsintrusion, it will destroy the datainsideit.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 18

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

4, CD - Most CDs in the past doesn’t have any copy-protection at all. The CD in itself
is aready a very good token because in the old days, most people don’t have CD
copying equipment (e.g. CDR/CDRW) and the capacity of CD was even larger than
that of the hard drive. It was impossible to copy the entire CD into the hard disk.
However, with the advance of CD copying technology, measures have been taken to
protect the CD from copying. Some tricks used by manufacturers are discussed in
[43].

4.3 Manual L ook-ups

This was the protection method used in early days. It is a scheme in between hardware
and software tokens. The protection is like this: when you enter a game, the game asks
you: “What is the color of the pattern at the left hand corner of page 32?” The protection
assumption is based on — it was more difficult to copy the manual at that time (especially
for color one) than diskettes. It is “hard” because it is amanual but is also “soft” because
one can ask others to lookup the manual for the answers.

4.4 Nag Screens

They are those annoying screens that prompt up usualy at the start of the program,
claiming the rights of the owner, prompt the user for registration or so. It isavery smple
technique used to prove ownership.

45 Limits

There are many forms of limits. The most common ones are time limits imposed by
shareware. The program will disable itself after the limit exists.

4.6 Crippleware

Some functions are deliberately disabled, e.g. save. Those functions may be unlocked if
the user registers the software — commonly used in shareware.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 19

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

4.7 Discussions

In view of the protected program, hardware and software token protections are essentially
the same. The formula includes invoking some protection checking routines inside the
program to see if required tokens are present and correct. (Note: this is not true until
hardware tokens possessing code execution abilities gppeared in the market, e.g. Smart
Card. The implication of this will be discussed in the section “Code Partitioning” later in
the report.) Therefore, in terms of cracking, bypassing these checking in the program are
also the same.

Hardware token schemes and manual-lookups are controversial measures to discourage
piracy, the act of unauthorized copying of software. These strategies are “effective but
failed”. It is effective because they are really difficult to be duplicated, but it is also
inconvenient for legitimate users as they are not able to make backup (in case of
copy-protected hardware tokens) and annoying (asking for manual lookup every time the
game starts). More importantly, they fail because many cracks that patch the program to
bypass protections can be found on the shared media. Therefore, piracy can be achieved
without duplication difficulties.

On the other hands, shareware uses an entirely different approach to combat piracy.
Shareware, instead of being copy-protected, actually encourages copying and spreading
of itself. Nag screens, limits, crippleware are measures often used by shareware to claim
ownership, reminding registering, and enforcing its freedom of use isnot being abused.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 20

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

5. Basic protection counter measur es

5.1 The Simple Scenario

Simple protection schemes discussed above can be easily defeated if they are not further
protected by encryption/obfuscation. This is because many of them can fal into this
simple model:

result=security_check(conditionl, condition2)
if (result = = TRUE)

then <authorize and goto proper program execution>
€else <prompt up error and penalty>

Condition 1 may be the user input serial humber, and condition 2 may be the required
number. They may also be detected hardware response and the required response, etc.
The security check can range from simple string comparisons to system I/O queries (like
file checking, port checking, etc). The penaty may be disabled function, program
termination, etc. Using your imagination, many simple protection schemes can be fitted
into this simple model.

5.2 The Simple Challenge

My previous work [13] on Windows Media Player hacking describes in very details what
happens when Win32 functions are translated into assembly, that | won’t repeat here. The
above simple model will probably be translated into assembly like this:

push condition2

push conditionl

call security_check

test eax, eax

jnz addressl (authorized)
<prompt up error and penalty>

Just a brief to the assembly code — the last parameter to the function is always pushed

first, then the second last one... thefirst one. The result of the called function is stored in
register EAX. The test operation performs a logical AND operation without modifying

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 21

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

input parameters. Therefore, if the result is FALSE (0x0 in most cases), the AND
operation of two zero parameters will flag up the “Z flag” in the flag register. Therefore
the conditiona jump (jnz = jump if not zero) will not be carried out and penalty is
executed.

To keep my report brief and precise, | will not explain assembly instructions any more.
Please reference to some 80x86 Intel instruction references, such as [11,12].

5.2.1 By Debugger

Therefore, crackers, by setting appropriate breakpoints (e.g. break if system executes

StrCmp), and upon the debugger breaks, they can do:

1. “Serid fishing” — by looking at the contents a condition 1 or 2, the required
parameter to pass the security check is leaked.

2. Tampering — by modifying the instruction from conditional jump (jnz) to
unconditional one (jmp), the penalty will never be executed. If the call to security
check is disabled (replaced by nop), the security checking will never be invoked.
Cracker may note down this instruction address and patch it permanently into the
executablefile.

3. Reault modifying — if tampering instructions is not possible, e.g. because of CRC
checking, etc, crackers can invert the flag after the call (e.g. changing EAX from 0
to 1 or modify the Z bit of the flag register so asto affect the jump).

4. Key Generator — if the required key is not hard-coded, crackers can reverse engineer
the key generating algorithm inside the program, and release a key generator to the
public. Some commercial key generating schemes are discussed in [8].

5.2.2 By Disassembler

Sometimes crackers don’t need to use debugger at al. By noting down the error message
after the security check, say “Wrong serial key! Program exits”, crackers can just
disassemble the file and look through the “String Data References” in the file. Most
disassembler (like W32Dasm) supports the extraction of static string data in the
initialized data section of the executéble. Therefore, by locating where in the program
references to these strings, they are able to locate the security checking routine and
bypassit, e.g. through patching.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 22

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

5.3 Useful Breakpoints

As demonstrated, we can break software protections if we can locate the security
checking routines. The most convenient way to do thisis by setting breakpoints. Below is
alist of commonly used breakpoints for operations related to:

1. Windows - bpx CreateWindow, bpx CreateWindowEx(A/W), bpx ShowWindow,
bpx Updatewindow, bpx GetWindowText(A/W)

2. Message box - bpx MessageBox(A/W)

3. Alarm beep - bpx MessageBeep

4. Dialogbox - bpx DialogBox, bpx DialogBoxParam(A/W), bpx
GetDIgltemText(A/W)

5. Registry operations - bpx RegOpenKey(A/W), bpx RegOpenKeyEXx, bpx
RegQueryKeyVa ue(A/W), bpy RegQueryKeyVal ueEx, bpx RegSetValueg(A/W),
bpx RegSetVa ueEx(A/W)

6. Crippledfunctions - bpx EnagbleMenultem, bpx EnableWindow

7. Timing - bpx GetLoca Time, bpx GetSystemTime, bpx GetFileTime, bpx
GetTickCount, bpx GetCurrentTime, bpx SetTimer

8. Filel/O —bpx CreateFile(A/W), bpx OpenFile, bpx ReadFile, bpx WriteFile, bpx
_lcreat, bpx _lopen, bpx _Iread, bpx _lwrite, bpx _hread, bpx _hwrite

9. Driveoperations— GetDriveType(A/W), bpx GetLogicalDrives, bpx
GetLogicaDriveString(A/W)

10. Port /O, useful for “dongles” — bpio 378 (378, 278, 3BC are the usua port address
for paralel port), bpio 3F8 (3F8, 2F8, 3E8, 2E8 are the usua port address for serial
port)

11. Stringmanipulations — bpx CompareString(A/W), bpx Istrcmp, bpx Istrempi

12. Visual Basic String manipulations — bpx __ vbaStrCmp, bpx vbaStrComp, bpx
__vbaStrCopy, bpx __vbaStrMove

For functions come with (A/W), its name is appended with either ‘A’ or ‘W’. They are the
result of ANSI or Unicode support:

- 8hitANSI — String ‘ABCD’ is stored as41 42 43 44

- 16 bit Unicode— stored as 00 41 00 42 00 43 00 44

Many of Microsoft Win32 functions and structures have wrappers to provide Unicode
support. The functions or structures that have both ANSI and Unicode support have a

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 23

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

note in the information section of their reference pages. When the application is compiled,
the function (or structure) will be substituted with the gppropriate version ("A" version
for ANSI or "W" version for Unicode). Therefore, if in our program, our call is CreateFile,
the compiled code will call CreateFileA (if ANSI) in Windows. Obviously, if we set
breakpoints, we need to gppend ‘A’ for ANSI functions but ‘W’ for Unicode.

There are many more functions in Win32 API that can be useful to be breakpoints. For
details of these operations, please refer to the Microsoft Win32 API reference [15].

5.4 Useful Op Codes

Typical op codes that can interest crackers are:

- JE(umpif equa)/74

- JINE (jump if not equal) / 75

- JMP (unconditiona jump) / EB

- NOP (no operation) / 90

Tampering can be done by changing these op codes, e.g. from 74 to EB.

5.5 Case Study 1 - TextPad v4.5

The first case study in this project is TextPad, a popular editor. The interesting thing of
Textpad isthat it is not free, but allows for unlimited trial. Therefore, it reliestotally on
the users’ honesty on buying the software. The user, can “technically evaluate” the
product “forever” without paying.

Version: 4.5, by Helios Software Solutions
Price: US $27.00 per single user license
Website: http://www.textpad.com/index.html
FreeEvaluation:

- Unlimited time

- Flename: txpeng450.exe

- Filesize: 252 MB

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 24

http://www.textpad.com/index.html

Software Protection and itsAnnihilation— Alfred K M Lo May 2002
AITETTTE———— L=
Flev EM zamn o ws dew wenae gola po 131 =
T = A s = R e s

== =

[ET |

F Teda.” o I warewr™ "1
TR P T PRI T

-2 RNl Y

k:

L e T W a1
2lad Inasan. b ras d,unla
uranl-sh =kl @l

owan =

B =1 |1nl L
1 - e Fra e [Far e oam

Figure4 NAG screen of TextPad

The protection used by Textpad isa NAG screen — It holds for several seconds, asking for
registration.

The gpproaches to get around the NAG should be:

1. Use SoftICE to set breakpoints before/during NAG

2. Step through instructions

3. Disables suspicious CALLs, modifying CALL results, etc

So which breakpointsto set?
Because we want to break before the NAG appears, therefore any possible points NOT
AFTER NAG is okay. To minimize the number of times stepping through irrelevant

instructions, we need to choose one breakpoint closest to NAG.

Notice the NAG displays for several seconds. Therefore, it is intuitive to try breakpoints
on functions about time. First we disassemble TextPad.exe, read through the import table

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 25

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

for functions related to time. We found it imports three time-related functions in

KERNEL32.

1. GetTickCount - retrieves the number of milliseconds that have elgpsed since
Windows was started.

2. GetSystemTime - retrieves the current system date and time. The system time is
expressed in Coordinated Universal Time (UTC).

3. GetlLocaTime- retrieves the current local date and time.

Then we set breakpoint on these functions in SoftICE. Here is the result:

- GetSystemTime doesn’t break before NAG

- GetLocal Timedoesn’t bresk before NAG

- GetTickCount first breaks before NAG. Then we disabled the breakpoint by “bd *”,
press “F12” 20 times to step out of the program stack and back into the TextPad.

:0045F500 85C0 test eax, eax

:0045F502 7535 jne 0045F539

:0045F504 8D4508 leaeax, dword ptr [ebp+08]
:0045F507 50 push eax

:0045F508 FF7508 push [ebp+08]

:0045F50B 56 push es

:0045F50C FF156C965800 call dword ptr [0058966C]
:0045F512 85C0O test eax, eax 3 wearehere
:0045F514 750E jne 0045F524

:0045F516 FF750C push [ebp+0C]

:0045F519 FF7508 push [ebp+08]

:0045F51C FF1594965800 call dword ptr [00589694]
:0045F522 8BFO mov esi, eax

Then press “F10” to step over instructions, notice the screen changes on displaying the
NAG. Sometimes SoftICE may block the screen, in this case, press “F4” to get a clear
view. After stepping over around 440 times, we reach:

:00404EC5 FF75EC push [ebp-14]
:00404EC8 FF90D0000000 call dword pir [eax-+000000D0]

:00404ECE 85C0 test eax, eax
:00404EDO 7424 je 00404EF6 3 weland here
© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 26

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

:00404ED2 8BSED0000000 mov ecx, dword ptr [esi+000000D0]
:00404ED8 6A05 push 00000005

:00404EDA E809CO0F00 call 00500EE8 (3 thiscreates NAG
:00404EDF 8B86D0000000 mov eax, dword ptr [esi+000000D0]
:00404EE5 FF701C push [eax+1C]

:00404EE8 FFD7 call edi

If we step over the call at 00404EDA, the NAG appears. Natice the jump highlighted at
00404EDO and the call, this pattern falls in our simple scenario - “if result is good then
proceed else penalty”.

So, we changed the statement from

:00404EDOQ 7424 je 00404EF6 to
:00404EDO EB24 jmp 00404EF6

This modification would force the program to bypass the penalty anyway.

Done. A search of the code statement in W32DASM revealed that the statement
corresponds to offset 4EDOh in .exe. Finaly, we modified the .exe file to patch it
permanently.

TextPad was cracked by changing 1 byte only.

5.6 Discussions

The implication of the results in our first case study is that, simple software protections,
under our threat model, can be cracked easily by changing 1 byte only! Textpad, although
is an unlimited trial software, which is expected to be easy to crack, many other
commercia programs, can be defeated similarly. Even if the program is protected by
hardware tokens that we cannot duplicate, if the protection can be bypassed in this way,
the use of hardware is meaningless. Security is as weak as the weakest link.

So what is wrong? The problem lies in the routine providing security to the software

(called the guard module in [04]) isitself not secure. Therefore, under our threat model,
it is possible to see and mimic what the guard module does, and fool it to let us pass

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 27

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

without the valid key.

As aresult, a new protection model is needed, and this cannot be done without advanced
protection mechanisms such as encryptions, obfuscation, etc.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 28

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

6. Advanced protection techniques

Securing “data” has been for long. Securing important data such as keys, database, and
password files are very well known and aware by the people. However, the executable
code is aso a valuable intellectual asset that should be protected. As discussed before,
basic software protections can be easily bypassed if the code itself is not secure. The art
of securing the code is called “code security”.

Here we will look at four different ways to achieve code security — encryption, packing,
obfuscation and anti-debugging.

6.1 Code Encryption

The most common way to protect data from eavesdropping isto encrypt it. It is already a
prerequisite in electronic commerce today. From the point of view of the encryption
algorithm, code and data are essentially the same, therefore code encryption and data
encryption can be done in the same way. After encryption, the code will then be immune
to normal disassembling and decompiling.

There are many kinds of encryption. In early days, when the computer was very slow,
encryption is simply XOR tricks — encrypting and decrypting using the same XOR value.
With the increase in processing power, we have more advanced encryption algorithms
like DES or RSA. In any cases, the key length remains the most important measurements
for how easy the encryption can be defeated.

6.2 Executable Packing

Executable packing is originally designed for compressing executable and yet still let it
be runnable, with reduced disk spaces without runtime or memory penalty. Because the
original datais scrambled during the “zip” process, it also protects the packed code from
normal disassembly/decompiling process.

Packing is commonly used in the software industry because it protects the code with
reduced image size. More importantly, making a packed executable can be as easy as
making an executable zipped file. Everything is automatic. Some packer programs also
have the ability to add anti-cracking measures such as anti-debugging routines in the

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 29

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

packed executable.

Here is a list of commonly used packers. UPX, ASPACK, PECOMPACT, PETTITE,
PEPACK, NEOLITE, WWPACK32, PKLITE32, SHRINKER.

6.3 Obfuscation

Obfuscation is the process of transforming the software to unintelligible but still
functional code. The aim of obfuscation is to make examine of disassembled or
decompiled code yields no useful information; thereby dramatically increases the time
required to reverse engineer the code.

There are several ways to add obfuscation to the code [2]:

1. Lexica transformations — e.g. scramble identifiers to replace name of classes,
methods and variables by meaningless strings.

2. Control transformations — by inserting opaque predicates, e.g. changing the
sequential instruction executions “a followed by b” <a;b> to:
a
if (p=="true)

This gives an illusion to the reverse engineer that b may not aways follow the
execution of a, and a may be followed by b’. The predicate p here should always be
evaluated to true but very difficult to be deduced by crackers.

3. Datatransformations — e.g. through splitting variables to turn the representation of a
boolean into two integers. The program is modified to use these two integers to be
interpreted as boolean values, such as0, 0 asTRUE and 0, 1 as FALSE.

Since reverse engineering Java byte code almost yields 1-1 mapping to the source,
obfuscation is commonly used in securing java byte code, e.g. SourceGuard. For x86
programs, some packers claim they provide obfuscation to the binaries as well, e.g.
PECompact.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 30

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

6.4 Anti-Debugging

It is a roundabout way to code security. It works by confusing the debugger so that the
debugger cannot investigate the internal of the program.

The tricks to confuse debugger are divided into two main categories:

1. Preventive actions — actions that are taken by the program to make the user unable to
trace it during program running (e.g. playing with the interrupt)

2. Sdf-modifying code

These tricks are described in details in [42]. However, to combat with these
anti-debugging tricks, crackers also have tricks to do anti-anti-debugging.

6.5 Discussions

Encryption and packing of the code are in principles the same: they transform the code
and restore them back to original during execution.

For the encrypted/packed program to be executed, the executable must be equipped with

a small decryption/unpacking routine, which must be itself unencrypted/unpacked. When

it is executed, the encrypted/packed program will then either be:

1. Fully decrypted/unpacked in memory at runtime before itsfirst instruction starts, or

2. Dynamically decrypted/unpacked thereby remaining most parts of the program
encrypted/packed in runtime, partial decryption/unpacking ison-demand.

The first approach is commonly used because the program’s performance is unaffected
during runtime after it is full unpacked/decrypted. The second one will incur heavy
performance penalty and thusisnot typical in the market.

Because of similar principles in packing/encryption, from now on, unless otherwise
specified, ‘packing’, ‘unpacking’, ‘packed’, ‘unpacked’, also include the meanings of
their encryption counterparts.

So what is the challenge of encryption and packing to crackers? Apart from have
immunity to disassembling/decompiling, it also adds anti-tampering functionality. Just an

analogy with zipping, changing a sentence in a plain text is easy, but changing the plain

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 31

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

text directly in the zipped text is difficult! Unlike zip, some packers doesn’t include the
unzip function so even if the cracker knows which packer the program is using, he cannot
unpack with ease.

Since changing only 1 byte can crack many programs, crackers can easily disseminate
small crack files that is programmed to locate a particular file offset and modify that byte.
But if the file is “zipped”, the entire “zipped” executeble will be different - the 1-byte
change becomes many byte changes. This makes the crack much larger to be effectively
disseminated.

Encryption and packing make the protected code impossible to be read, as the encrypted
content is no more valid instructions, in contrast, obfuscation protects the code by making
it moredifficult to be read, but the obfuscated codes are still valid instructions.

Practically speaking, obfuscated codes do not show structures, usually overwhelm with a
large amount of conditional jumps and calls, and include loops that are heavily nested,
inter-referencing each other.

With these advanced techniques, a more robust protection model can be made possible,
which is described next.

6.6 A morerobust protection model

First, we need to modify our program to work with the dependency of the guard module.
This may be as simple as containing calls to the guard module, however, to prevent others
to disable these calls easily, the program should be encrypted/packed. The guard module
initializes the program by decrypting/unpacking it. In this way, the program won’t work
without the guard module. Before encryption, the codes can be further obfuscated to
better protect from reverse engineering.

The guard module checks the presence of the key (either hardware or software) and if itis
satisfied, it initializes the program. As described in [04], “the guard module must do its
job in complete secrecy. It must be impossible to see what it does, impossible to imitate
what it does and impossible to trick it into dosing its job when the key is not really
present”. Therefore, the guard module should also be obfuscated, encrypted and also
protected by anti-debugging measures.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 32

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

The copy protection measures used by the key should be effective, and hence, we can
assume that the key (either software or hardware tokens) here is secured and cannot be
duplicated.

This model will make the program significantly more difficult to be cracked and is
adopted by professional commercial protection schemes.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 33

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

7.Advanced protection counter measures

The techniques discussed above also have their weaknesses, by noting the following:

1. For the code to be executed, it should be decrypted/unpacked in memory — thereby
reverse engineering is possible.

2. Obfuscation can only increase the difficulty in code reverse engineering, but not
impossible.

Reversing obfuscated codes is just a matter of time, and moreover, whenever crackers
encounter these codes, they will probably find another way to get around the protection,
instead of spending time into this prepared trap. Our focus here is how to get around the
encryption.

7.1 Manual Unpacking

As many programs are not protected by dynamic encryption/decryption of code, therefore,
in most cases, when the first instruction of the protected program is to be executed, it
must be fully unpacked. By dumping the unpacked content, we will get the “naked”
executable. In cracker’s parlance, the act to extract these fully unpacked codes is called
“manual unpacking”. It is an advanced stuff. We will deal with this later in case studies 4.

7.2 Process Patching

If unpacking is impossible and it is difficult to get rid of the encryption, and given the
crackers can find the run-time locations of code to be tamper-with, the challenge to them
is. how to effectively create a crack file to patch the executable permanently and
effectively disseminateit.

The ‘solution’ is “process patching’.

After the packer’s routine unpacks the program and before transferring control to it, we
somehow, seize the control and run our code to patch the unpacked process in run-time
memory, after that, we transfer the control back to the program as if nothing happens. In
this way, we are patching at the time when the program is decrypted/unpacked in memory.
Packed program is NEVER changed on disk.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 34

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

7.3 Case Sudy 2 - Process Patching TextPad

This case study will give us hand-on experiences with packed programs, therefore, better
reinforcing our knowledge and prepare us to do advanced unpacking.

We first use a packer to pack up Textpad. To make it ssimple, the packer should not
provide other protective measures other than code scrambling, here we choose UPX
(http://upx.sourceforge.net/). We choose to pack Textpad because it is simple and we are
familiar with it aswell asits crack.

Use UPX (The Ultimate Packer for eXecutables) to pack Textpad to simulate protection:

C:\Program Files\TextPad 4>\upx120w\upx TextPad.exe
Ultimate Packer for eXecutables
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001
UPX 1.20w Markus F.X.J. Oberhumer & Laszlo Molnar May 23rd 2001

Filesze Ratio Format Name

1900544 -> 756224 39.79% win32/pe TextPad.exe

Packed 1 file.

Rename Textpad.exe to topatch.exe. We treat this as the protected target.

For crackers, it isnot difficult to identify afile that has been packed. Some good signs are:

disassembler cannot disassemble the program, generating exceptions, or if it can, it shows
only the packer’s routine. We will discuss some more methods to detect packing in case
study 4.

The principle of how packers work is depicted in Figure 5. First, the instruction of the
packer’s routine is executed (labeled as packed program entry point). At this moment, the
program is not yet unpacked into memory (depicted as a block of zero). After the packer
finishes unpacking the program into the memory, it will transfer the control to the
unpacked program through ajump or call.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 35

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

unpacked program

A

entry point -> 00 - 05
00 FF
00 EE
00 FB

Packed program
entry point ->

jmp unpacked p.e.p. jmp unpacked p.e.p.

Before program After packer stub
execution finishes unpacking

Figure 5 How packer works

Using Visua Studio Debugger, we verify our theory by looking at the end of the
topatch.exe. The end of the packer’s routine is a jump to 004A038E, which is an
uninitialized location before the packer’s routine is executed.

005D8CB5 89 03 mov dword ptr [ebx],eax
005D8CB7 83 C3 04 add ebx,4

005D8CBA EB E1 jmp 005D8C9D

005D8CBC FF96 88 E6 1D 00 call dword ptr [esi+1DE688h]

005D8CC2 61 popad

005D8CC3 E9C6 76 EC FF jmp 004A038E

005D8CC8 00 00 add byte ptr [eax],d

005D8CCA 00 00 add byte ptr [eax],d

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 36

http://upx.sourceforge.net/

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Memory A
Address: |0x004A038E
004AO38E OO0 00 00 60 06 60 80 ﬂ

904A0395 OO0 60 00 90 66 @9 68
904AB39C 60 60 OO OO 66 B0 B8
A84AB3AZ OO G0 OO OO A6 BB B8
004A03ARA OO0 00 OO 90 OO0 89 68
904AB3B1 ©00 00 00 90 66 @9 68
004AB3BE 00 6O OO OO 66 80 B8 j

Figure 6 Memory at 0x004A 38E

Running topatch.exe, setting breakpoint at GetTickCount, we found that everything is
exactly the same as Textpad.exe during runtime. The one-byte patch is till at 00404EDO.
In fact, thisis intuitive as the operation of the packer should be transparent to the runtime
program.

We need to patch topatch.exe so that the program will jump to our code after unpacking.
Our code should modify the run-time memory (1 byte patch) and then performs another
jump to normal unpacked program execution. See Figure 7.

unpacked program
entry point -> 00 - 05 - 05 -
00 FF FF
00 EE <-to be|patchefd 0A <- patched
00 FB FB
Packed program Our Code - Our Code - Our Code ==
entry point -> 4‘ 4‘ 4‘
jmpour code — jmpour code — jmpour code —j
Before program After packer stub After Process
execution finishes unpacking Patching

Figure 7 Procedures for Process Patching

We need to find space in topatch.exe to insert to our code. File offset at 0xb2100 contains
some spaces (lots of zeros) for our code.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 37

Software Protection and itsAnnihilation— Alfred K M Lo May 2002
I Ui - - [By e Fles Tewtad 4 tonstch.ene] =IOl
[Cpe e dewth Projct Yew Fomest Con Mero Adwrwed e e -l =
O aF o bd ([5 A W H Ll e GoE80% a8 Ty
Fas | Eisktnzh | ODChECEOhs 0L F3 B0 B9 0T 06 FF 96 B0 E6 LD 00 25 EL 07 47 ¢ 3% EFV] TI
T OOOhIOeh: OB 0 79 D B9 FB 57 48 F2 AE 55 FF 56 B4 EE 1D ; .ﬂ_.‘ﬁnﬁu) bi
| D Pz Zh nootzocaks ob0s 60 T4 0T BB 0F &3 £ 04 EB EL FF S¢ 05 Be ¢ .07 G 02
b Flan O0ChZICcOh: 1000 1 ES C& 74 EC FF OO0 00 OO O0 OO OO 0O OO ¢ ..lr.-v:‘...
OO0 EDM0RE 00 00 O 00 00 00 00 OF 00 00 00 00 03 00 00 00 § weasees
11 Progeen Fbes ToatPed Hhopstch
=\ Prograas Phan] TazkPad 4 hf‘ QOCEI0a0h: 00 00 00 00 00 00 Q0 00 D7 00 00 00 ©0 OO 00 00 ¢ ...
- J OO ECTOhe 00 OO0 00 00 00 00 00 00 D0 00 00 O0 O OO0 00 00 § seareerieeiinni,
ooobzdoan: [0 o0 o0 Do 00 o a0 o0 00 0o om o0 o0 o0 00 00 W es e
O0ohEd10h: OO O0 03 00 00 00 00 OO0 D0 00 00 00 03 00 00 00 § cveevenvrnninnn,
000hZ120n OO 00 00 00 00 00 00 00 DO 00 00 00 0 00 00 00 ¢
OOoEZid0h: 00 00 00 OO 00 O 00 00 D3 00 00 00 OO OO 00 00§ .
OOCREI40hs 00 00 00 00 00 00 00 00 D3 00 00 00 00 00 00 00 ¢ ...,
| | *lid |
For Helps, pmesss F1) P BILOOH, 7250, CW D06 Mol ZHTIZ00 5002 Fis Sireq THAZH il £

Figure 8 File Offset at 0xb2100

The assembly below is our run-time memory patching code. Remember in case 1, we
need to patch TextPad at memory location 00404EDO with EB.

push eax

mov eax, 00404EDO

mov byte ptr [eax], EB 31 byte patch
pop eax

jmp 004AQ038E 3 unpack program entry point

We then need to modify the original jmp 004A038E (E9 C6 76 EC FF) at file-offset
0xb20c3 to jump to our code at offset 0xb2100.

But what is the relation between memory address and file offset? We need to know about
Win32 PE file format and its memory organization.

PE (Portable Executable) is the native file format for Win32. There are very good
references on PE file format [17,22,23]. PE files, as depicted in Figure 9, first come with
a header, containing important information for thefile.

Most file contents are stored into blocks called ‘sections’. A section is a block of data

with common attributes. The whole executable will be mapped into memory, during
runtime.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 38

Software Protection and itsAnnihilation— Alfred K M Lo

Figure 9 PE Format

DOS MZ header

DOS stub

PE header

Section table

Section 1

Section ...

Section n

Here are some important facts that we should be aware of:

May 2002

1. Codesin the executable reference each other using relative addressing. The addressis
called ‘Relative Virtual Offset’ or ‘RVO’ for short.
2. Every process hasits own 4GB address space.
3. When mapping the whole executeble into memory, mapping start at address “Image
Base”, thus during run-time, code’s address = Image Base + RVO.
4. Each program starts execution on its first statement at an address called “Program

Entry Point”.

5. During the mapping process, the size of sections in file MAY NOT BE EQUAL to
that in memory. Thisis determined by “Raw Size” and “Virtual Size”.

Figure 10 and 11 shows the information of topatch.exe displayed by PE Editor bundled
with ProcDump, a widely used unpacking tool.

PE Structure Editor

Header Infos

IDD‘IDBEED
Size of image IUD‘]EDDDD
Image Base : IUD4DDDDD

Entry Paint :

— Structures Editor

Sections

Directomy

" To PE file

—&pply changes method : ———
¢ Only to PE header

Cancel

Figure 10 PE Header Information

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

39

Software Protection and itsAnnihilation — Alfred K M Lo

Sections Editor

— Sections Informations ;

May 2002

Marmne | Virtual Size | YWirtual Offzet | Raw Size | Raw Dffget | Characteristics | ok
UF=0 00126000 00001000 Q0000000 Q0000400 E00000s0
LF=1 000B 2000 00127000 QooB1EOO Qoooo400 E 0000040
RE: 00007000 00103000 Q000E800 Q0oBZ200 Cooo0040

Caticel |

Figure 11 Section Information

Notice the important statistics of sectionsin Figure 11. Figure 12 shows the mapping of
sectionsin file during runtime.

UPX0
400] UPX0
UPX1 UPXI
B2200!
JISIC
JISIC
File
Run time
memory

127000

1D9000

Figure 12 Executable Mapping in Runtime

Therefore offset 0xb2100 in UPX 1 in the file corresponds to this address in memory

= Image Base + 0x127000 - 0x400 + 0xb2100

= 0x400000 + 0x1d8d00

= 0x5d8d00

Recalled that in the packer’s routine:

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

40

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

005D8CC2 61 popad
00SD8CC3 E9C6 76 ECFF jmp 004A038E
005DSCCS 00 00 add byte ptr [eax],d

The jump at 005D8CC3 can be changed in this way:
E9 cd JMPrel32

E9 is a near relative jump. The parameter cd is the displacement of the destination
relative to next instruction at current position. Displacement calculation is always
dictated by “Destination address — Source address”, therefore our parameter cd is:

0x5d8d00-0x5d8cc8=0x38

Because Intel uses little-endian notation, i.e. lower byte to lower memory location.
Therefore our final code = E9 38 00 00 00 at file offset 0xb20c3.

For our code’s jump statement, the calcul ation for the cd parameter is similar:
0x4a038e — 0x5d8d10 = Oxffec767e. Therefore the op code for our jump statement is:
E9Q7TE76 EC FF

005D8D00 50 push eax
005D8D01 B8 DO4E 4000 mov eax,404EDCh
005D8D06 66 C6 00 EB mov byte ptr [eax],0EBh

005D8DO0A 58 pop eax
005D8D0B E9 7E 76 EC FF jmp 004A038E
005D8D10 00 00 add byte ptr [eax],d

Add our run-time memory patch code at 0xb2100 and modify the file offset at Oxb20c3 to
jump to our patch code. We have finished patching the packer ’sroutine to do run-time
tampering for us.

7.4 Discussions
I have illustrated how to patch and thus crack the packed program during runtime in

memory. This is called ‘process patching’, which allows us to do run-time tampering.
With this method, we can get around most of the issues arising from encryption/packing

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 41

Software Protection and itsAnnihilation — Alfred K M Lo May 2002

because the program must be fully unpacked during execution time.

Our patch code should be in a section, which is executable in memory, and this must be
truein UPX1, as this is the section where the packer’s routine is located. This may not be
the case in other sections such as “.rsrc’.

Since code and data can be in the same section [17], our patch code may fall on data (e.g.
global variable) initially at zero. In this case, our code may be overwritten at runtime. We
may need relocation (not at this time).

The 1-byte patch memory location should also be writable because we are doing
tampering. This must be always true because it is in where the program is unpacked
(written) at run-time.

7.5 Defeating Dynamic Decryption of Code

For programs that are protected by always maintaining most of its code encrypted in
memory, with continuoudy encryption and decryption, they can be defeated in a similar
way. These programs look like this:

Packer’sroutine: For (every encrypted routine segment i)
decrypt i
jump i 3 execute segment i

encrypti
Since there must be a segment of code unencrypted, we can dump this segment from
memory. By exercising all the different functions of the software, we can gather al the

unencrypted contents. What crackers need to do is to patch the jump statement:

Packer’sroutine: For (every encrypted routine segment i)

decrypt i
jump cracker’scode (3 cracker patch thisto jump todo dumping/patching
encrypt i

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 42

Software Protection and itsAnnihilation— Alfred K M Lo

Cracker’s code of dumping:

Cracker’scode of patching:

Dump all unencrypted bytesini Check for signaturesin the segment

jump | If (signature is in this segment) then patch it

jumpi

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

May 2002

43

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

8. Case Study 3 — Dreamweaver

Version: 4.0, by Macromedia

Price: US$299.00

Website:

Trial:

- 30days

- Filename: dreamweaverdtbyb.exe
- Flesize:24.1MB

8.1 Preliminary I nvestigation

Below is the screen shown on running Dreamweaver.

Dreamweaver 4 Trial

[kt £ A vmsavn. rnacromedia, com],

3
S,

macromedia’
DREAMWEAVER®

macromedia’

what the web can be.”

Copyright @1997-2000 Macromedia, Inc. All rights reserved.

Dreamweaver(i] 4 iz everything you need to create a profeszional web site whether you

prefer ta wark. with familiar visual layout tools or demand the contral of a robust test- E
editing enviranment. Far more infarmation and the latest on Dreamweaver 4 updates, go

ta hittp: /v macromedia. com//dreamweaver,

INREENRENN -
i |
0 22 days |eft 30 days -

Figure 13 Running Dreamweaver

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 44

http://www.macromedia.com/software/dreamweaver/

Software Protection and itsAnnihilation— Alfred K M Lo May 2002 Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Changing system date results in security tampering and the trial is disabled. When we go through the registration process and reach “Select Payment Method”, we
choose “Go Offline”. This alows us to do transaction without typing in credit card
WARNING! Security Resources Tampered information. We continue through the process. Then we reach “Select Communication

Method”. Let’s choose to do it by phone.

Ciue to security problems, vour free trial of
thiz software has ended. If vou have any
questions, please contact technical support

by e-mail &t suppart@releasenow. com ar cal Finally, a screen pops up and asks us to enter the unlock code. The unlock code will be
[B00] 210-5517 toll-free in Marth America . . .

and [E50) £22-1439 from other intemational given if we have completed the transaction on phone.

|ocations.

Have vour Yiza, MasterCard or American Express ready. Then dial
[800) 210-5517 in North America, or [E50] 522-1439.

Figure 14 Tamper warning

— Ordering Information

. . . . 1] 'w'hen the operatar asks for pour ‘caller code', sap 357 -408-966-00 1"
Click “Buy Now”. We see a screen prompting up for user registration. Note the logo of

“releasenow.com”. 2] Tell the operator which products you want to purchase:
Aty Product Code Description and Price
% TR Dot 500

Thank. wou for registering this product. Mow, please tell us about yourself. By
filling out thiz form you are entitled to receive information about updates and
upgrades. Be sure to use the biling address of the credit card you will be
using.

3 ety wour tatal price of $299.00

4] Give payment info: Viza Mo

Exp: Mame
First Mame I.&Ifred Last Name |Lo
5] Enter the unlock code ||

To continue, press Mest'

Company IEU
Address [Hello Flat Address &
I (]9 LCancel |
Cauntry IUnited States LI Clity W
State I I j it s W Figure 16 Ordering Dreamweaver by Phone
Phone[3456777777 Fas[s4sErrrrre
E-mail Iu&erid@isp.com At this moment, we have the following clues:
1. What is ReleaseNow.com?
2. We have atextbox entering the unlock code. This means there must be a verification
releasenow q mechanism inside Dreamweaver to verify our code. The program will be “unlocked”
~oom < Back IWI Cancel Help
if the codeis correct.
Figure 15 User Registration

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 45 © Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 46

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

8.2 ReleaseNow.com

The result below is extracted from the address:

Company: ReleaseNow

URL: http://www.releasesoft.com

Description: ReleaseNow is the leading commerce service provider (CSP) for vendors of
digital goods...ReleaseNow offers the essential building blocks of e-commerce, including
online store creation, transaction processing and customer support, as well as functions
specific to the e-commerce of digital goods, such as electronic packaging, digital
delivery and real-time fraud detection...

The link to is DEAD. Later, | was confirmed that another security
company caled “Aladdin Alliance” acquired it.

Information extracted from the Macromedia Dreamweaver Trial FAQ
http://www.macromedia.com/software/dreamweaver/trial/trial_fag.html:
The copyright protection scheme cr eated by ReleaseNow.com for Macromedia ESD trial
software is highly sensitive to changes and to attempts to change the system clock. The
copyright protection scheme is aso highly sensitive to modification or deletion of its
"secret" security files...ReleaseNow.com builds Macromedia's ESD technology with

high security and places security information in the registry aswell as other places.

8.3 Imagined Scenario

Based on the above information, below is the imagined scenario for Dreamweaver:

- Macromedia design and final code Dreamweaver. Then it 'outsources electronic
distribution, protection and commerce stuffs to ReleaseNow.

- Asthe “time left counting and warning” appears in the screen with “Buy now” option
as well as with the ReleaseNow logo, it is good to assume that Dreamweaver itself
originally does NOT have any protection at al. ReleaseNow, acts as the SECURITY
ENVEL OPE, provides all the protections for Dreamweaver.

- ReleaseSoft protects Dreamweaver by storing security information (e.g. installation
time) into places including “secret files” aswell as “registry”.

- Every time ReleaseSoft runs, it checks against information stored in these places. If

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 47

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

they appear invalid or contradicting, program will expire itself immediately.

- ReleaseSoft also provides electronic transaction, allowing software-buying offline on
phone through the use of “unlock code”. Possibly, after transaction confirmation, user
gets the unlocking code from the sales agent.

- The unlocked trial Dreamweaver will probably treat itself as “FULL” version, as all
thefunctions are included in the trial.

- ReleaseSoft security envelope may be stripped out after unlocking (just guessing).

8.4 Cracking Approaches

At this stage, these are the possible approaches:

1. By tracing through instructions for processing “unlock code”, the correct “unlock
code” can be dumped or we can modify the checking routines/results & Thus we
can unlock the program and convert it to FULL.

2. We can aso trace through the security information checking routines, by monitoring
APIs such as GetSystemTime & we can get virtudly UNLIMITED TRIAL.

3. By trashing all the information stored in these secure places, we can trick
Dreamweaver into thinking that it isa FRESH FIRST TIME INSTALLATION.

8.5 First Attempt

Input arbitrary unlock code and hope it says “Invalid Number” by calling MessageBox
API, then we can trace using “String Data References’ or setting a breakpoint at
“MessageBoxA”.

Nothing hgppens after you input the unlock code and press “OK”. ReleaseSoft
deliberately eliminates ACKsto avoid tracing.

Then we use a must-use API. Type “bpx GetDIgltemTextA” in SoftICE. SoftICE results
in two different breaks. There are two GetDIgltemTextA calls in the program to get the
unlock code. Obviously, it is used to trick crackers, as GetDlgltemTextA one time is
enough.

We first break at rsagnt32!.text+9e99. Rsagnt32 suggests that we are in another module,
other than dreamweaver.exe.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 48

http://www.ealaddin.com/partners/software_valueadd.asp?cf=tl
http://www.releasesoft.com
http://www.releasesoft.com
http://www.macromedia.com/software/dreamweaver/trial/trial_faq.html:

Software Protection and itsAnnihilation— Alfred K M Lo

* Reference To: USER32.GetDlgltemTextA, Ord:0104h

:1000AE99 FF1564420210
:1000AE9F ESEC67FFFF
:1000AEA4 6824630410
:1000AEA9 6828730410

I
Call dword ptr [10024264]
call 10001690 3 PressF12 and weare here
push 10046324
push 10047328

* Reference To: KERNEL32.IstrempiA, Ord:02FFh

:1000AEAE FF1550410210
:1000AEB4 C3

|
Call dword ptr [10024150]
ret

Second break is at rsagnt32!.text+99cc.

* Reference To: USER32.GetDlgltemTextA, Ord:0104h

:1000A9CC FF1564420210
:1000A9D2 8D8D 7CDEFFFF
:1000A9D8 51

:1000A9D9 8D9574DEFFFF
:1000A9DF 52

:1000A9E0 E82BC80000
:1000A 9E5 83C408
:1000A9E8 8D8574DEFFFF
:1000A9EE 50

:1000A 9EF 8D8D68DEFFFF
:1000A9F5 51

:1000A9F6 BO9D00B0410
:1000A9FB E840CD0000

Initial attempt was made to reverse engineer the unlock code checking routine. However
after ten days of reverse engineering, twenty pages of hand-written routines were drafted

I
Call dword ptr [10024264]
lea ecx, dword ptr [ebp+FFFFDET7C] (3 PressF12 and weare here
push ecx
leaedx, dword ptr [ebp+FFFFDE74]
push edx
call 10017210
add esp, 00000008
leaeax, dword ptr [ebp+FFFFDE74]
push eax
leaecx, dword ptr [ebp+FFFFDEGS]
push ecx
mov ecx, 10040BDO
call 10017740

but still no useful conclusion was deduced because:

1. Thereisno acknowledgement to user saying “input valid” so we can’t trace from the
back to the final comparison statement. It is difficult to determine the end of routine.
2. The two GetDIgltemTextA are followed by deeply nested CALLSs, unconditional

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

May 2002

49

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

jumps (JMP) and conditiona jumps (JA/JB/IBE/JE/IG/IGE/IL/ILE/INE/INS/JS).
Jump and Call sections are inter-referencing each other without structure -
deliberately scrambled and obfuscated to trick crackers.

3. The inputted unlock code, instead of being checked by high-level routines like
Istrcmp, is treated in bits unit and checked through low level instructions like
cmpl/test/xor/and, etc.

Clearly, It is atrap to crackers. Although reversing the scrambled codes is just a matter of
time, | decided to give up and use other possibly smarter approaches.

Here are the files in the Dreamweaver directory:

& C:"Program Files',Macromedia’Dreamwe | i |EI|5I
File Edit Wiew Favorites Tools Help |ﬁ
$sBack - = - 3] | @search hFolders % | Y I8 % w5y | EF
Address Itxl C:\Program FilesiMacromedia\Dreamweaver 4 j e

B o | [Configuration
i | . [Downloaded Extensions
i 3 Help
Dreamweaver 4 Cam
CI Lessans
rsagnt3z.tty I;:I ReadmeContent
TTY File L1 Tutorial
i E] Dreampop. tby
Modified: 892000 17:24 I
orfied: &/3f @Dreamtky.tty
Size: 260 kKB %Dreamweaver.exe
" | @ Dreamweaver.tty
BisRcsonnal EtserizlizeDll. dl
@ language. tky
&]License.htm
PSAPL.DLL
&]Readme.htm
@Resourcesoﬂnterest.htm
@Rsagent.hlp
C by
e I
Type: TTY File Size: 280 KB [za0kE [\ my computer 7

Figure 17 Filesin Dreamweaver 4 Directory

Because we break on Rsagnt32 in SoftICE, it suggests that we are in another module

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 50

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

(either aDLL or EXE file). Rsagnt32.tty should be amodule in PE format, but was made
to have file extension .tty — atrick.

Use Procdump’s PE Editor, | have checked every .tty files against PE specification. All of
them (except dreamtky.tty) are in valid PE format. This means they can be run (for EXE)
or be linked (for DLL).

8.6 Second Attempt

At first | want to try approach 2 by setting breakpoints on file and registry operation APIs,
but | may get overwhelmed with results because the Dreamweaver, apart from checking
security information, aso opens many files and registry entriesfor uses. It is better to find
out where the security information is first. Let’s try Approach 3. This can be greatly
facilitated by the two monitoring tools:

1. FileMon
2. RegMon
The gpproach:

1. First set our system time to make Dreamweaver expired.

2. Then start filemon and regmon to LOG every file/registry read operations and filter
out suspect entries.

3. Try deleting those suspect entriesto see if Dreamweaver “refreshes”.

You may want to limit the results to dreamweaver process by entering “dream” in the
monitoring filter criteria.

These are the results of successful file reading operations from FileMon:

C:\5d0jawja.sys I3 suspicious
C:\PROGRA~1\Logitech\MOUSEW~1\SY STEM\ccmsghk.dll
C:\Program Files\M acromedia\Dreamweaver 4\Dreampop.tty
C:\Program Files\Macromedia\Dresmweaver 4\Dreamtky.tty
C:\Program FilessM acromedia\Dreamweaver 4\Dreamweaver.exe
C:\Program Files\M acromedia\Dreamweaver 4\language.tty
C:\Program Files\M acromedia\Dreamweaver 4\rsagnt32.tty

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 51

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

C:\WINNT\system32\config\software. LOG
C:\WINNT\System32\IMM 32.DL L
C:\WINNT\System32\INDICDLL.dlIl
C:\WINNT\System32\NVDESK32.DL L
C:\WINNT\Systen32\RICHED20.dll
C:\WINNT\System32\RICHED32.DLL
C:\WINNT\win.ini

Security information would not save under Dreamweaver directory because deleting it
will refresh its ‘memory’. The DLLs accessed are well known system DLLs. This can be
verified on the Internet. The win.ini haven’t been modified.

These are the results of successful registry reading operations from RegMon:

HK CR\ultxfil&Format\M SHOOTOO\Wwr ite 3 suspicious

HK CR\ultxfil&Format\M SHOOTOO\open (3 suspicious

HK CR\ultxfil&dFormat\M SHOOTOOWIate 3 suspicious

HKCU\CLSID

HKCU\Control Panel\Desktop

HKCU\Control Panel\Desktop\SmoothScroll

HK CU\Software\Microsoft\Windows NT\CurrentVersion\Windows
HKLM\SoftwaréMicrosoft\Windows NT\CurrentVersion\Compatibility2
HKLM\SoftwaréMicrosoft\Windows NT\CurrentVersion\Compatibility32
HKLM\SoftwaréMicrosoft\Windows NT\CurrentVersion\l ME Compatibility
HKLM\SoftwareéMicrosoft\Windows NT\CurrentVersion\Windows
HKLM\SoftwareMicrosoft\Windows NT\CurrentVersion\Windows\Applnit_DLLs
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon
HKLM\SoftwaréMicrosoft\Windows\CurrentVersion\App Paths\Dreamweaver.exe
HKLM\SoftwaréMicrosoft\Windows\CurrentVersion\App Paths\Dreamweaver.exe\PATH
HKLM\SoftwareMi crosoft\Windows\CurrentVersion\Explorer
HKLM\SOFTWARE\RS_NT5

HKLM\System\CurrentControl Set\Control\Session Manager

Let’s delete the registry entry “HKCR\ltxfile\” and the file “C:\5d0jawja.sys” and re-run
Dreamweaver again. We get awarning:

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 52

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

WARNING! Security Resources Tamper

Ciue to security problems, vour free trial of
thiz software has ended. If vou have any
questions, please contact technical support
by e-mail at support@releazenow. com or call
[B00] 210-5517 toll-free in Marth America
and [EB0] B22-1433 from other intemational
|ocations.

Figure 18 Tamper Warning

Re-run FileMon. This time, we find one more suspicious file—
C:\WINNT\System32\e81htwwt.dll

Delete it and Dreamweaver is now “refreshed”.

Why there is e81htwwt.dll? This may due to how ReleaseNow handle lockout. Obviously,
if information in the .sys and registry expires, the system doesn’t need to check
e81lhtwwt.dll and can disable thetrial to the user. That’s why we don’t see e81htwwt.dll in

the first file monitoring process.

To conclude, ReleaseNow in Dreamweaver uses the followings to store secure
information:

1. HKCRuItxfilé\ (registry)
2. C:\bdOjawja.sys(file)
3. C:\WINNT\System32\e81htwwt.dll (file)

We are done — somehow, athough not ‘user friendly’: the user is required to manually
delete these entries when system expires. But at |east, our approach 3 works.

Is there any other smarter method, which for example, patch the program checking
permanently or “unlock it” into FULL version?

YES! See next attempt for a new approach to the problem.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 53

Software Protection and itsAnnihilation — Alfred K M Lo May 2002

8.7 Final Attempt

In case study 2, we have already come across programs protected by packing. They come
with a small loader, which decrypts the packed content (may be stored with the loader
executable or external) in real time and jump to it.

Observations:

1. Dreamweaver.exeis 244KB in size (too small for such a program).

2. Recdll that all the .tty file (except dreamtky.tty) isavalid PE.

3. Dreamweaver.tty is 6332KB in size (reasonably large to be the actual Dreamweaver
executable, may beit iseven packed!).

So is Dreamweaver.exe aloader?

8.7.1 Dreamweaver .exe as a loader

Yes. Run Dreamweaver.exe and stop at the “Buy, Try, Exit” screen. Press Ctrl-Alt-Del,
we see that there is only one dreamweaver.exe process in memory.

Now, press “Try” and get into Dreamweaver editor. When we look at the process list
again, there are two: Dreamweaver.exe and Dreamw~1.tty.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 54

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

H windows Task Manager o] B4

File Options Yiew Help

Applications Processes |Peanrmance|

Image Hame | pio| crul cpuTime | Mera

AcraTray.exe 1154 ao 0:00:00

ZMDLEXE 1552 ao 0:00:00

CMD.EXE 173 00 0:00:00

COnime, exe 1032] oo

ZP555M1.EXE 305 ao o:00:1z2

Z5RSS.EXE 172 ao

DREAM~1,TTY 1512

Direarnweaver, exe 1188 0z

EM_EXEC.EXE 1143 00

EXCEL.EXE 1044 ao

explorer. exe 916 01

fpdisp4.exe 1104 00

Icq.exe 1240 Jul]

internat. exe 1168 aa

lnadgm. exe 1116 00

L3453, ERE 23z 00

minilog. exe 244 00

MSinin, gxe 1192 ao

4] |

End Process |

Processes: 46 |CPLI Usage: 3% |Mem Usage: 241628k | 7A0576K v

Figure 19 Windows Process List

This suggests that Dreamweaver.tty is the real executable and Dreamweaver.exe is merely
itsloader, enforcing security check.

| first renamed dreamweaver.tty into tty.exe, and an icon appeared before its filename, the
same icon as the one in dreamweaver.exe. It isagood sign.

Then | run it, and got an exception error.

tty.exe - Application Error ﬂ
The exception Privileged instruction,
{0xc0000096) occurred in the application at location Ox004015d5,

Click on QF to kerminate the program
Click on CANCEL to debug the program

Cancel |

Figure 20 Execution Exception

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 55

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Disassembly the file, the contents seem to be good (not packed/encrypted) and the import
table (see Case Study 4) isintact. No sign shows that it is protected by a packer/encrypter.

This result suggests that Dreamweaver.exe also acts as a patcher!

8.7.2 Dreamweaver.exe as a patcher

Dreamweaver.tty should be the original exe of dreamweaver, but parts of its content are
scrambled (at least those at the front because we get an exception from the very
beginning). Whether Dreamweaver.exe patch it or not will depend on if we can pass the
security check.

Patching can be done on the disk image before loading into memory, or in memory
patching. Patching to disk image first before loading is silly because any abnormal
program termination would let the “fixed” copy of executable image retained in the disk.

Having the experience of process patching in previous section, | would guess the
dreamweaver.tty would be patched at runtime, after we have passed the security check. In
this way, we are FORCED to go through the security checking in the loader because only
it can patch the tty file.

8.7.3 Annihilating Dreamweaver

Creating a hew process in a process needs the APl “CreateProcessA” to be used. Type
“bpx CreateProcessA” in SoftICE. The detailed disassembly text after break is in the
Appendix B.

:00401AA6 52 push edx

:00401AA7 53 push ebx

* Reference To: KERNEL32.CreateProcessA, Ord:0044h
I

:00401A A8 FF15C0504300 Call dword ptr [004350C0]

:00401AAE 85C0 test eax, eax

:00401ABO0 751F jne 00401AD1

:00401AB2 53 push ebx

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 56

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

* Possible StringData Ref from Data Obj ->"Error"
:00401AB3 68CC914300 push 004391CC

* Possible StringData Ref from Data Obj ->"Error loading process'
:00401AB8 6884914300 push 004391B4
:00401ABD 53 push ebx

* Reference To: USER32.MessageBoxA, Ord:01BEh
:00401ABE FF1530534300 Call dword ptr [00435330]

If we put a breakpoint at 00401AA6 and dump edx’s content on break, it shows
“C:\PROGRA~1\MACROM~1\DREAMW~1\DREAMW~1.TTY”. This suggests that
we are guessing right.

The above disassembly code means: if the CreateProcess success, we go to 00401AD1,
otherwise, an error MessageBox was created.

Win32 Debug API

After 00401AD1, we got two new APIs, the WaitForDebugEvent and
ContinueDebugEvent. What are they? According to [31], Win32 has several APIs that
allow programmersto use some of the powers of adebugger. They are called Win32 Debug
APIs or primitives. With them, you can:

1. Load aprogram or attach to arunning program for debugging.

2. Obtain low-level information about the program you're debugging, such as process|D,
address of entry point, image base and so on.

3. Benotified of debugging-related events such as when a process/thread starts/exits,
DL Ls areloaded/unloaded etc.

4. Modify the process/thread being debugged (3 ProcessPatching!

Therefore, with the Win32 Debug API, everyone can code a Debugger!
WaitForDebugEvent and ContinueDebugEvent are two of these APIs.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 57

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

The Debugging Concept

These are the steps used in debugging a process, called the debuggee:

1. Create aprocessor attach your program to arunning process.

Wait for debugging events.

Do whatever your program want to do in response to the debug event.
L et the debuggee continues execution.

Continue this cycle in an infinite loop until the debuggee process exits.

g s D

The WaitFor DebugEvent function waits for a debugging event to occur in a process
being debugged. The ContinueDebugEvent function enables a debugger to continue a
thread that previously reported a debugging event. The DEBUG_EVENT structure
describes a debugging event. Please refer to Appendix A for details.

Of particular interest is the DebugEventCode. Below is its possible values and its

meaning. They are extracted from [31]. This is necessary for successfully reversing
Dreamweaver.

MEANINGS

VALUE J

0x3 Aprocess is created. This event will be sent

when the debuggee process is just created
(and not yet running) or when your program
CREATE_PROCESS_DEBUG_EVENT]|)))
just attaches itself to a running process with
DebugActiveProcess. This is the first event

your program will receive.

0x5 EXIT_PROCESS_DEBUG_EVENT A process exits.

0x2 A new thread is created in the debuggee
process or when your program first
attaches itself to a running process. Note
CREATE_THEAD_DEBUG_EVENT)) o
that you'll not receive this notification when
the primary thread of the debuggee is

created.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 58

Software Protection and itsAnnihilation— Alfred K M Lo

May 2002

0x4

EXIT_THREAD_DEBUG_EVENT

Athread in the debuggee process exits.
Your program will not receive this event for
the primary thread. In short, you can think
of the primary thread of the debuggee as
the equivalent of the debuggee process
itself. Thus, when your program sees
CREATE_PROCESS_DEBUG_EVENT, it's
actually the
CREATE_THREAD_DEBUG_EVENT for
the primary thread.

0x6

LOAD_DLL_DEBUG_EVENT

The debuggee loads a DLL. You'll receive
this event when the PE loader first resolves
the links to DLLs (you call CreateProcess to
load the debuggee) and when the
debuggee calls LoadLibrary.

0x7

UNLOAD_DLL DEBUG_EVENT

ADLL is unloaded from the debuggee

process.

0ox1

EXCEPTION_DEBUG_EVENT

An exception occurs in the debuggee
process. Important: This event will occur
once just before the debuggee starts
executing its firstinstruction. The exception
is actually a debug break (int 3h). When
you want to resume the debuggee, call
ContinueDebugEvent with
DBG_CONTINUE flag. Don't use
DBG_EXCEPTION_NOT_HANDLED flag
else the debuggee will refuse to run under
NT (on Win98, it works fine).

0x8

OUTPUT_DEBUG_STRING_EVENT

This event is generated when the
debuggee calls DebugOutputString
function to send a message string to your

program.

0x9

RIP_EVENT

System debugging error occurs

Figure 21 Debug Event Code

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 59

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

I mportant Constants

Because disassembling shows only the raw HEX values of constants, we may want to
know its meaning by referring to its symbol, this can be done by referencing the “include
files” in C++ compiler:

- INFINITE equ —1 (OXFFFFFFFF)
- DBG_CONTINUE equ 00010002h

- STATUS BREAKPOINT equ 80000003h

- STATUS SINGLE_STEP equ 80000004h

- STATUS INVALID_HANDLE equ 0C0O000008h

- DBG_EXCEPTION_NOT_HANDLED equ 80010001h
- EXCEPTION_BREAKPOINT equ STATUS BREAKPOINT
- EXCEPTION_SINGLE_STEP equ STATUS SINGLE_STEP

With these symbols, it will be easier for usto grasp the meaning in the disassembly code.

The Debugging Scenario

1. When the parent process creates the debuggee, the debuggee’s primary thread is
suspended until the parent calls “WaitForDebugEvent”.

2. The WaitForDebugEvent will cause the calling thread to be blocked until the debug
event occurs and sent by Windows. The calling thread can specify the time it want to
wait (during blocking) in the dwTimeout parameter.

3. The first event to be received is CREATE_PROCESS DEBUG_EVENT, which is
signaled when the debuggee process is just created.

4. Next the Windows Loader will help the debuggee to load the DLLs it need to use, as
specified in the import table. This causes LOAD_DLL_DEBUG _EVENT to be
signaled.

5. Before the debuggee starts its very first instruction, an exception will occur in the
debuggee. It is a breakpoint exception. This cause EXCEPTION_DEBUG_EVENT
to be signaled and the exception code should be EXCEPTION_BREAKPOINT.

6. Thedebuggee will then start its normal execution.

7. In either case, once a debug event is signaled, the debuggee is suspended until the
process debugging it calls further ContinueDebugEvent.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 60

Software Protection and itsAnnihilation— Alfred K M Lo

Reversing Dreamweaver

401AD1

* Referenced by a (U)nconditional or (C)onditiona Jump at Addresses:

:00401ABO(C), :00401AE5(C), :00401CBB(U)

I

:00401AD1 8D442430
:00401AD5 6AFF
:00401AD7 50
:00401AD8 BD02000100

lea eax, dword ptr [esp+30]
push FFFFFFFF

push eax

mov ebp, 00010002

* Reference To: KERNEL32.WaitForDebugEvent, Ord:02CBh

:00401ADD FF1540514300
:00401AE3 85C0
:00401AES 74EA
:00401AE7 8B542434
:00401AEB A1E8AF4500
:00401AF0 3BDO
:00401AF2 0F85B2010000
:00401AF8 8B4C2430
:00401AFC 8D41FF
:00401AFF 83F807
:00401B02 0F87A 2010000

401CAA

:00401CAA 8B542438
:00401CAE 8B442434
:00401CB2 55
:00401CB3 52
:00401CB4 50

|
Call dword ptr [00435140]

test eax, eax

je 00401AD1

mov edx, dword ptr [esp+34]
mov eax, dword ptr [0045A FES]
cmp edx, eax

jne 00401CAA

mov ecx, dword ptr [esp+30]
leaeax, dword ptr [ecx-01]

cmp eax, 00000007

ja 00401CAA

mov edx, dword ptr [esp+38]
mov eax, dword ptr [esp+34]
push ebp
push edx
push eax

* Reference To: KERNEL32.ContinueDebugEvent, Ord:0025h

:00401CB5 FF154C514300
:00401CBB E911FEFFFF

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

|
Call dword ptr [0043514C]
jmp 00401AD1

May 2002 Software Protection and itsAnnihilation— Alfred K M Lo May 2002

We have aWHILE loop. The starting of while loop calls

WaitForDebugEvent (Debug_Event, INFINITE) storing the Debug_Event to ESP+30.
401CAA will call the ContinueDebugEvent (Debuggee PID, Debuggee TID, EBP).

EBP is default to store DBG_CONTINUE, in rare cases, changed to
DBG_EXCEPTION_NOT_HANDLED.

Below is the reversed pseudo code of Dreamweaver’s while loop process in Appendix B.

WHILE TRUE
{
DebugEvent ptr ESP+30; ESP=DBG_CONTINUE;
RESULT=WaitForDebugEvent (DebugEvent,INFINITE);
IF RESULT==FALSE
CONTINUE
IF (PID_FROM_CREATEPROCESS!==D_PID) // D_PID=Debuggee Process |D
ContinueDebugEvent (D_PID,D_TID,DBG_CONTINUE); // D_TID==Debuggee Thread ID
ELSE
IFEVENTCODE>8
ContinueDebugEvent (D_PID,D_TID,DBG_CONTINUE);
ELSEIF EVENTCODE==CREATE_PROCESS DEBUG_EVENT
Copy CREATE_PROCESS DEBUG_EVENT STRUCTURE obtained to 0043BD40
mov ecx,handle of thread
mov [esp+18],handleof thread
ContinueDebugEvent (D_PID,D_TID,DBG_CONTINUE);
ELSEIF EVENTCODE==LOAD_DLL_DEBUG_EVENT
ContinueDebugEvent (D_PID,D_TID,DBG_CONTINUE);
ELSEIF EVENTCODE==EXCEPTION_DEBUG_EVENT
IF EXCEPTION_CODE==EXCEPTION_BREAKPOINT
{Process Patching}
ELSEIF EXCEPTION_CODE == EXCEPTION_SINGLE_STEP
ISTATUS INVALID_HANDLE
ContinueDebugEvent (D_PID,D_TID,DBG_CONTINUE);
ELSE
ContinueDebugEvent (D_PID,D_TID,DBG_EXCEPTION_NOT_HANDLED);

61 © Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 62

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

It can be seen that after the security envelope creates dreamweaver.tty as a debuggee
process, for al debug events it received EXCEPT ONE, it simply does nothing and
resumes the debuggee process by ContinueDebugEvent with DBG_CONTINUE.

The only exception is the debug event — EXCEPTION_DEBUG_EVENT, in particular,
with exception code— EXCEPTION_BREAK_POINT.

Recalled that after the debuggee process is created, its imported DLLs are loaded by the
loader, and just before its first instruction to be executed, a break point exception is
generated.

This is the time the security envelope acts. In the disassembly code, the security envelope
does many things, including spawning a new thread running in loop. In particular to our
interest, the envelope will gener ate the patch data in run timein its own memory space
and then will “inject” them into the dreamweaver.tty process (run-time patching).

Because the dreamweaver.tty process is patched by valid code before its first instruction
isto be executed, it can be started normally, without problems.

How do | know it? Just set a breakpoint on WriteProcessMemory after the breakpoint
exception isreceived. We will break at here;

:00401368 51 push ecx
:00401369 8BODEOAF4500 mov ecx, dword ptr [0045AFEQ]
:0040136F 52 push edx
:00401370 55 push ebp
:00401371 50 push eax
:00401372 51 push ecx

* Reference To: KERNEL32.WriteProcessM emory, Ord:02ESh

I
Call dword ptr [0043513C]

mov esi, eax

:00401373 FF153C514300
:00401379 8BFO

The WriteProcessM emory function writes memory in a specified process. The entire

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 63

Software Protection and itsAnnihilation — Alfred K M Lo May 2002

areato be written to must be accessible, or the operation fails.

Set a breakpoint at
:00401372 51 push ecx

Then we can see all the parameter contents to WriteProcessM emory:
ECX=84 (hProcess)

EAX=401000 (IpBaseAddress)

EBP=8EGE38 (IpBuffer)

EDX=001000 (nSize)

ECX=F4C7A0 (IpNumberOfBytesRead)

Therefore, the envelope will inject 0x1000 (4096) bytes into dreamweaver.tty process at
location 401000. The patch data is stored at SEGE38.

By comparing memory contents at 8E6E38 (“db 8E6E38” in SoftICE) just before this
WriteProcessMemory and before breakpoint exception handling concludes that this patch

datais generated runtime.

Dump out the 4096 bytes of patch data at 8E6E38 into hard disk. We can patch this data
directly and permanently into dreamweaver.tty file, thereby get rid of the protection.

Dumping the patch data

SoftICE doesn’t support memory dumping to disk file unless it is patched (added
functionality) by other reverse engineering add-ons.

Here my SoftICE in DriverStudio 2.5 final is patched by NTICEDUMPversion 1.13.

Make sure we have path expert mode off at SoftICE by toggling “PAGEIN D”.
To dump the patch code, type “PAGEIN D 8E6E38 1000 C:\DW.BIN” just before

WriteProcessMemory is to be executed. The patch data generated by the envelope is now
stored in C:\DW.BIN.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 64

http://icedump.tsx.org/

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Patching .tty file manually

The data should be patched into memory location 401000. Using the PE Editor inside
ProcDump, the Image Base is 400000.

Virtual Offset = Memory L ocation — Image Base = 401000 — 400000 = 1000.

Click “Sections” to open Section Editor, we see the Virtual Offset 1000 corresponds to
File Offset 1000.

Sections Editor

— Sections Informations

MHame I Wirtual Size I Wirtual Offzet I Fiaw Size | Faw Offset I Characteristics I
text O051FE34 0ooooon 00520000 [y] EO0D0020
idata Q00C27EE Q0521000 000C3000 00521000 40000040
.data QD0SFEED 00SE4000 00048000 00SE 4000 Coo00040
Jsrc Qooo2ens 00E44000 00003000 OoEzCoo0 40000040
Cancel |

Figure 22 Section information of dreamweaver.tty

Open a HEX Editor, replace the hex data in dreamweaver.tty at offset 0x1000 with the
data in dw.bin. The total patch size should be 4096 (0x1000) bytes. Rename the .tty file
to .exe.

Dreamweaver will now run with its protection removed.

8.8 Discussions

This ReleaseNow security software is named “SalesAgent” and the past versions of
SalesAgent’s protection is very stupid, e.g. it displays an ERROR dialog box after user
has input the wrong unlocking code [24,25,26,27,28,29].

ReleaseNow is a COMMERCIAL software protection company. SalesAgent is a

dedicated software protection envelope, wrapping up the client programs and gives
protections and e-commerce abilities.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 65

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

After reversing the protection method used by ReleaseNow and cracking it, it is
disappointed to see how commercia software is being protected by these so-called
commercial protection systems.

Moreover, defeating SalesAgent implies that all programs protected by it are
immediately threatened. According to [29], some software from other blue-chip
companies are a so protected by it:

1. Macromedia: Dreamweaver, Director, Fireworks, Flash

2. Adobe: ImageReady, ImageStyler

3. Symantec: Norton Utilities

ReleaseNow case is atypical example of achieving protection through obscurity because:
1. It obfuscatesthe codes.

2. Itstores secret filesin “secret” places.

3. Itrenamesvalid PE filesto .tty format so as to distract the attention from crackers.

ReleaseNow protection can somehow give reasonable protection against cracker
beginners — random walkers; those randomly search through the codes, disabling call or
inversing jump conditions with little reasoning. Its obfuscation poses difficulties in
reversing.

The golden adage - “the security is only as good as its weakest link” still gpplies here. No
matter how good the scrambling is, the protection is easily defeated through the use of
file/registry monitors. Using these tools, people without cracking knowledge can still

defeat the protection.

For a pricey and popular money making program such as Dreamweaver (US $299.00),
protection given by SalesAgent isdefinitely NOT STRONG enough.

“That’s why ReleaseNow disappeared in the market...”
8.9 Suggestions
1. To protect better, SalesAgent can employ anti-monitoring and anti-debugging

techniques. In case, it detects a running monitoring tool s/debugger, it refuses to run.
2. ReleaseNow should not put its logo onto the screen because this gives clues to

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 66

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

crackers of which external protections the software is using.

3. Instead of merely renaming the .exe to .tty, the .exe file can be encrypted/packed.
This makes it more difficult to discover the fileas avalid PE.

4. Advance packing technique with Import Table manipulations to the .tty file can be
used. Using this technique, merely dumping of the entire decrypted process will not
work without Import Table reconstruction. See case study 4.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 67

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

9. Case Sudy 4 — Smart Saver Pro

Version: 3.0, by Ulead
Price: US$59.95

Website:

Trial:

- 15days

- Filename: Ussp30to.exe
- Flesize:6.39 MB

9.1 Preliminary I nvestigation

First run the program. This dialog box is similar to Dreamweaver. Again, we see alogo
called ‘Vbox’ at the bottom |eft corner.

Ulead SmartSaver Pro

Ulead

Systems

Turbo Chfrg_

'
\

Ulead SmartSaver Pro
Wersion 3.0
2000 Ulead Systems, Inc.

Infarmation |
Cuit |

application for e,
e B0 = =] .__u_u the Lead iogo,

Figure 23 Running SmartSaver Pro

Clicking ‘Information’ pops up the next dialog box, saying that thistrial version has been
“Vboxed” by Preview Software

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 68

http://www.ulead.com/ssp/runme.htm

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

About Ulead SmartSaver Pro

Thank wou for pour interest in Ulead SmartS aver Pro 3.0 by Ulead Systems, ;I
Inc. This tral version haz been Ybored by Preview S oftware.

Figure 24 Vbox

9.2 Preview Systems

http://siliconvalley.inter net.com/news/article/0,2198 3531 768811,00.html states:
“Caving in to the stringent technological demands of crafting digital products, software
maker Preview Systems Inc. called it quits Friday and sold its electronic software
distribution (ESD) business to Chicago's Aladdin Knowledge Systems for $5 million in
cash.”

Same fate as ReleaseNow — it was acquired by Aladdin Knowledge Systems.

9.2.1 Understanding Vbox

The best way to understand how Vbox works isreferring to Preview System’s description
of Vbox. Since Preview System’s web site is removed, | can only obtain the information
below in Google’s web cache:

- Secure Virtua Packaging: Vbox Builder electronically packages a software product
securely for distribution via the web, DVD, CD-ROM, OEM hard disk or any other
digital medium, using export-approved RSA encryption.

- Build Trial-Enabled Applications Quickly and Easily.

- Additional Customization with Vbox SDK API.

- Commerce-Enabling Made Easy

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 69

Software Protection and itsAnnihilation — Alfred K M Lo May 2002

From the same document — “Preview Systems' Vbox Builder allows publishers such as
Adobe and Symantec to build robust, trial-enabled versions of their software applications
quickly and easily.”

Okay. Let’s try the minimalist’s approach. Fire up filemon and regmon. Both programs
are able to log down every filefregistry access used by Vbox. Therefore, by using just
only the monitors, we can defeat its trial protection. It is too trivia to be mentioned any
more.

For intered, in case it uses the same approach as Dreamweaver, | look at the processlistin
Windows and see if there will spawn two processes if | run SmartSaver Pro, i.e. one for
Vbox and one for SmartSaver.

NO. Only one.

9.2.2 Cracking Strategy

These are the information we currently know:

- Preview Systems’ Vbox protects SmartSaver Pro by a security envelope.

- The security envelope “trial-made” the software, e-commerce abilities are also
provided aswell.

- Itisvulnerable to system monitoring.

- Both Adobe and Symantec are Preview Systems’ clients.

- Vbox, decrypts the encrypted code at runtime (encrypted by RSA), in its own
memory space and then later transfer the control to SmartSaver.

- Usspro.exe is the program executable.

Since SmartSaver is protected by the so-called “export-approved RSA encryption”, and
encryption is the key-feature of Vbox, so | decided not to try to reverse the decrypted
routine nor try to decrypt the data by myself.

| try to use the technique “Manua Unpacking”. The primary idea here is that since
SmartSaver must be decrypted completely before its execution, if | can dump this piece of
memory content into the disk, | can get an unencrypted version of SmartSaver. By
changing the Program Entry Point from the start of Vbox routine to the “Original” Program
Entry Point of SmartSaver, the security protection can be stripped off.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 70

http://siliconvalley.internet.com/news/article/0

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

In words, it is that easy. But practically, there are many concerns and it requires a deep
knowledge of WindowsArchitecture as well as PE specification.

9.3 Manual Unpacking

References [32,33,34,35,37] provide some basic discussions on Manua Unpacking.
However, they are not comprehensive and they simply ignore the implications of
architecture differences between Win 95/98/ME and NT/2000. They are aready selected
quality paper from the cracking world.

In general, to have the manually unpacked program workable, the following procedures
should be followed:

L ocate the Origina Program Entry Point (not the entry point for packer’s routine)
Dumping the memory into disk

Fixing the Section Information

Regenerate missing information (e.g. Import Table)

Affix the regenerated information to the dump file

Update Entry Point and necessary PE header information

o g s wDdN P

9.3.1 Locate the Original Program Entry Point

All Windows OS since 95 uses a flat memory model, having a 32-bit linear address that
gives 4GB of virtual address space. The virtual addresses used by a process do not
represent the actual physical location of an object in memory. Instead, Windows will
translate those virtual addresses internally into corresponding physical addresses.

Most Windows programs have their base addresses starting at 0x400000 (4194304) bytes

because:

1. For Windows 95/98/ME, the first 4MB of virtual address space is reserved by the
system for use by 16-bit and MS-DOS software for compatibility.

2. However, NT/2000/XP are truly 32-bit OS and don’t have this restriction, therefore,
programs can in theory start at address 0x0.

3. But in order to let programs run on both Windows systems, and to maximize
compatibility, most programs start at 0x400000.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 71

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

This base address is specified as ‘Image Base’ field in the PE file. However, this Image
Base address is only the preferable address specified by the program, it is the Windows
loader’s decision to map the executeble to that preferred address. In case for some
reasons, the loader mapsit to a different base address then relocation is needed. Although
relocation is minimized through the use of relative addressing, there are some cases that
relocation cannot be done automatically by the loader (e.g. de-referencing a memory
pointer to a memory location). In this case, the executable needs to tell the loader
information about these fix-ups in the loaded image. This data is stored in the .reloc
section in the PE file.

Since the first module to be loaded (i.e.the program itself) normally will not be relocated
(must have no conflicts), it may assume that it must start at its preferred base address and
doesn’t have the .reloc section.

When the executable is being run, the loader will map the whole executeble file into the
memory space starting at Image Base. In view of the packer, since it needs to minimize
the intervention to the protected executables and to avoid problems, most packers don’t
modify the base address of these executables. Therefore, in case the packer’s routine and
the packed content are stored in the same executable, the protected program must be
unpacked to 0x400000. And since that program occupies size, this will force the packer’s
routine to be stored BELOW the image of the unpacked program (i.e. higher memory
address). The executable’s entry point needs to first point to the packer’s routine, so, will
have Entry Point VERY FAR (e.g. 0x701000) away from the Image Base. See Figure 5.

This property is drastically different from a normal unpacked program and therefore is a
tried-and-true way to identify packed executables.

The step of locating the EXACT original entry point isvery IMPORTANT because:

1. If we choose those instructions executed before the original entry point (i.e. in the
packer’s routine), we would get apartially decrypted/unpacked dumped program.

2. If we choose those instructions executed after the origina entry point, we can’t
execute the dumped program correctly because it hasn’t been initialized properly
(routines between the original entry point and the wrong one are not executed!)

Locating the correct entry point can be very difficult. However, agood signisfor aJUMP

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 72

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

or CALL at very high address to a very low address. Therefore if | see a JUMP/CALL
0x401000 instruction at 0x705500 in the debugger, | would guess that 0x401000 is the
origina entry point.

However, packer/encrypter aiming at protection will put many traps to trick crackers.
They will obfuscate the codes, so that the Origina Entry Point cannot be seen easily OR
they may explicitly put some callsg/jumps to very low address before jumping to the real
one.

Back to our SmartSaver, now we put a breakpoint in SoftICE to make it break before it
jumps to the original entry point. Here | choose GetProcAddress. Later you will see why
GetProcAddress is the more appropriate one.

Make sure you are in “Try-Information-Quit” screen, and “bpx GetProcAddress” in
SoftICE. If your SoftICE has other breakpoints on memory access/executions, you may
get awarning dialog box after clicking the “Try” button. Vbox does some anti-debugging.

box has detected potential tampering with:
C:\Program FilesiUlead SmartSaver Pro 3.0\Usspro.exe.
Flease reinstall this produck ko use it. IF vou

still get this message, yvour installer may have

problems and vou will need to get a new copy.

If wou are using a debugger, vou must restart this
machine without it enabled to run this application,

Figure 25 Vbox Tampering Warning

However, if you only have API breakpoints on DLL functions, such as GetProcAddress,
you can bypass this anti-debugging check. | just don’t know why Vbox doesn’t block
them as well.

Once SoftICE breaks, “bd *” and Press F12 to return from call. You will notice that we

are now in module VboxT410. Press F10 to step over the instructions. Notice any suspect
CALL to low address.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 73

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Here | use F10 to step over calls because | want to experiment with the first layer of
CALLsfirst. Obviously, Vbox can mask the ‘CALL to low address’ inside deeply nested
CALLsto hide the original entry point (e.g. CALL 0765550 & CALL 0675000&a ... &
CALL 401000).

Press F10 until you see:

PUSH FFFFFFFF
CALL EAX 13 Thisisthefirst call to EAX, and EAX=4CC1E2

Here we are at USSPRO!PREV |EW+00136020.

Itis not that difficult to spot not only because it isthefirst call to EAX, but it also follows
by lots of null instructions (shown below), indicating that we are at the end of the
unpacker routine:

0000 ADD [EAX], AL
0000 ADD [EAX], AL

Press F8 and trace into the call & we are now at the unpacked SmartSaver’s Original
Entry Point.

Sometimes, it may be too time consuming in tracing step-by-step manually. There exists
tools that allow you to specify the range at where when executions fall in (say 0x400000
to 0x500000) and you will be given a prompt:

- The*“tracex” command when SoftICE is patched by ICEDUMP

- TheTracer function in atool called “Revirgin”

9.3.2 Dumping the memory into disk

004CC1E2 55 push ebp 3 wearehere

004CC1E38B EC mov ebp,esp

004CC1E5 6A FF push OFFh

004CC1E7 68 B8 4D 4E 00 push 4E4DB8h

004CC1EC 6840 C3 4C 00 push 4CC340h

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 74

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Before dumping the unpacked program, use the ProcDump’s PE Structure Editor to get
the Image Base and the Size of Image from the header of Usspro.exe. This sets the range
that we should dump.

PE Structure Editor

Header Infos—————— 1~ Structures Editor

Entry Point IDD'ISCDDEI Sections Diirectaony

Size of image : IDD1ESDDD —Apply changes method - ———
¥ Only to PE header

Image Base: 00400000 || ¢ 7q PE fle Cancel

Figure 26 PE header of usspro.exe

Make sure we have path expert mode off at SoftICE by toggling “PAGEIN D”. Dump the
program by “PAGEIN D 400000 13C800 C:\ss.exe”.

9.3.3 Fixing the Section I nformation

Copy the ss.exe to the SmartSaver directory. Use whatever PE Editor (here PEditor v1.7)
to look at the section information.

Section Table Yiewer E |
Section Wirtual Size Wirtual Offset | Faw Size Faw Offzet | Characteristics |
PREVIEW 00134348 00001000 Qoooo0oa Qoooo0oa EO000020
" eijunLi 000860 2C 0071 3C000 000860 2C Q0001000 E2000060
NE 00004640 001 C3000 00004640 Q0082000 000040

Do aright mouze click on a sectionname for more options. ..

Figure 27 Dump Filewith wrong section information

Observe that the Vbox’s routine start at WeijunLi section. Unencrypted SmartSaver stores
at PREVIEW section and .rsrc stores resource information such asicons.

Also notice that ss.exe is a direct image dumped from memory. Because memory at
Image Base is dumped to file offset 0, therefore,

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 75

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

- Raw Size should be equal to Virtua Size
- Raw Offset should be equal to Virtual Offset

The current section information is INVALID and should be fixed. Modify the section
information to equalize them.

At this point, an icon should display correctly for ss.exe (the same as usspro.exe) because
Windows Explorer can locate the correct .rsrc data

9.3.4 Regenerate missing information

One may wonder now if the Entry Point in the header is now modified to 4CC1E2, will
ss.exe be run correctly? The answer is ‘DEPENDS’. Windows 95/98/ME have a MUCH
HIGHER chance for running correctly than NT/2000/XP. In fact, this is the point that
most crackers overlook.

The problem is mainly due to Import Table, rarely among others - a thing that is too
difficult to be explained in short. We first need to understand what happen during
compilation.

During Compilation

When you write a program in Windows, caling Win32 APIs, say “MessageBox”, the
assembly code generated would be like this:

Push param4
Push param3
Push param?2
Push paraml1
Call addr 1

As first discussed by PIETREK in [40], cited by [22,35], “the CALL instruction emitted
by the compiler doesn’t transfer control directly to the function in the DLL. Instead, the
cal instruction transfers control to a IMP DWORD PTR [XXXXXXXX] instruction
that's also in the .text section. The JMP instruction jumps to an address stored in a
DWORD in the .idata section. This .idata section DWORD contains the real address of

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 76

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

the operating system function entry point”. “In Visual C++ 2.0, the operating system
function prototypes in the system DLLs include a __declspec(dllimport) as part of their
definition. The __declspec(dilimport) turns out to have quite a useful effect when calling
imported functions. When you cal an imported function prototyped with
declspec(dllimport), the compiler doesn't generate a call to a JIMP DWORD PTR
[XXXXXXXX] instruction elsewhere in the module. Instead, the compiler generates the
function call as CALL DWORD PTR [XXXXXXXX]. The [XXXXXXXX] addressisin
the .idata section. It's the same address that would have been used had the old IMP
DWORD PTR [XXXXXXXX] form been used.”

In either case, there must be at least an indirect call and it is through the address XX XXX.
XXXXX storesa DWORD value referring to the actual address of the API function of the
DLL in the memory, in this case, the MessageBox. See Figure 28.

The region of memory storing a group of DWORD valueiscaled Import Address Table
(IAT). Each DWORD value stores the address of a particular function exported by one
DLL. Therefore, if aprogram uses5 DLLs, therewill be 5 different IATs, each storing the
addresses of exported functions needed only by the program.

CALL ----> JMP [XXXXX] ----> MessageBox CALL [XXXXX] ----> MessageBox

f f

XXXXX Meégggr]gl;ox XXXXX Meéggé;;ox
DWORD2 DWORD2
DWORD3 DWORD3
DWORD4 DWORD4

Import Address Table (IAT) Import Address Table (IAT)

Figure 28 CALL to IAT

In practice, these different IATs will stack together into one single chunk of memory, and
can be treated asone big IAT.

Thel AT

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 7

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

The reasons for having this indirect call/jump and IAT structure is best again described by
PIETREK [40], “After contemplating this for awhile, | came to understand why calls to
DLLs are implemented this way. By funneling all calls to agiven DLL function through
one location, there's no longer any need for the |oader to patch every instruction that calls
aDLL. All the PE loader hasto do is put the correct address of the target function into the
DWORD in the .idata section. No CALL instructions need to be patched.”

Therefore the 1AT is where Windows PE loader will fix during runtime, storing addresses
of the required DLL functions. So here comes another problem, how can the loader know
which functionsin which DLL s are required by the program?

The answer lies in the use of Import Directory Table and Import Lookup Table. Note
that the naming here differs in different sources. Import Lookup Table is called
“OriginaFirstThunk” and IAT is called “FirstThunk” in [17]. Here | will use the notation
and naming as specified in [23].

The Import Directory Table + Import Lookup Table + Import Address Table + others
minor fields together form the so-called “Import Table” or “.idata” section.

The Import Table (.idata)

According to [23], the import table has the structure like this:

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 78

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

ILT Entry 1 > Function Name 1
ILT Entry 2 > Function Name 2
ILT Entry 3 Function Name 3
NULL
Import Look Table RVA
Name RVA
Import Address Table RVA: \
. DLL_NAME
Directory Entry 2
Directory Entry 3
IAT Entry 1
IAT Entry 2
Directory Entry 4
IAT Entry 3
NULL Directory Entry

Figure 29 Structure of Import Teble

The import table begins with Import Directory Table, containing directory entries. Each
entry corresponds to a DLL required by the program. The executable specifies the name
of the DLL it requires in the Name RVA field of the directory entries. If the program
imports the function in that DLL through function name, the address of the function name
is stored in the Import Lookup Table entry. If it imports the function through index (called
ordina), the Import Lookup Teble entry will contain the ordinal number.

The function names required in the DLL is stacked up together to form a Name Table.
Usually, individual small name tables stack up together to form one SINGLE big name

table for the whole .idata section.

Before the program is executed, the structure and content of the IAT are identical to that
of the ILT, therefore, it is also pointing to the Name Table initially.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 79

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Binding

When the executable runs, the Windows loader will fetch the information stored inside
the IDT and ILT to see what DLLs and what functions inside the DLL the program needs,
then the loader will load those DL Ls into the address space of its process and then fix the
addresses of respective functionsin the AT entries - a process known as “binding”.

Therefore, after binding, the |AT will be fixed with the address of the DLL functions. As
aresult, the indirect jumps in the program code now become VALID.

The address of the whole Import Table structure is specified inside a particular field
inside the PE header. Usually, the Import Table occupies its own section (with name
commonly as .idata), but it can technically reside in other sections (e.g. code) as well.

Relations to Unpacking

If we look at the import table of usspro.exe (e.g. using disassembly program or PE
Editor), we can see that, sensibly, the import DLLs and their functions are too little for
SmartSaver Pro 3 (see Appendix C).

The implication of thisis that when the Windows loader loads the packed executable, the
loader only loads the DLLs required for the packer’s routine and fixes only its IAT.
Therefore, indirect jumps/calls belonging to the packer’s routine are able to cal into the
correct functions.

However, this is not true for the AT of the protected routine, as the I1AT, among with its
codes/data, are only treated as encrypted data belonging to the packer’s routine. Since the
Windows loader only acts according to the PE header, and the Import Table pointed to by
the PE header is the packer’s. Therefore, Windows loader cannot fix the IAT of the
protected routine anyway, and even if the protected routines is fully decrypted, the AT is
invalid and therefore, any indirect jumps/calls to these invalid addresses will generate an
excpetion.

To fix this and allow the unpacked program to run properly, the packer’sroutinewould
do thejob of fixing the | AT, asif it isthe OS loader . As aresullt, at the time the control

is transferred permanently to the protected program, everything is decrypted and al the

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 80

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

necessary things (most importantly the I1AT) will be fixed.

The packer can fix this IAT by caling two WIN32 APIs — LoadLibrary and
GetProcAddress. The LoadLibrary function maps the specified executable module (e.g.
DLL) into the address space of the calling process. The GetProcAddress function returns
the address of the specified exported DLL function. Using these two APIs, the packer’s
routine can emul ate the work done by the OS |oader.

Now we have the dump file “ss.exe” and has its section fixed. Let’s briefly summarize

what is containing in the file. The corresponding file is shown in Figure 30.

1. A PE file header from the usspro.exe. Of particular interest is the Import Table RVA
field pointing to the Import Table structure used by usspro.exe, containing DLLs and
functions used by the packer’s routine.

2. Unpacked program

3. AFixed IAT for use by the unpacked SmartSaver Pro

— Packer Routine PE Header

UNPACKED
SmartSaver
CODE

FIXED.IDATA

S Packer Routine .IDATA

Figure 30 Unpacked SmartSaver inside the old PE header

The Subtle Point
Before, it is said that the dumped image (unpacked program + fixed IAT) + correct entry

point won’t guarantee you can run the dump file without problems and cases are different
on NT/2000/XP, here referred to as “NT series” and 95/98/ME, here referred to as “95

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 81

Software Protection and itsAnnihilation— Alfred K M Lo May 2002
series”.

To begin our discussion, we first run the dump “ss.exe” file. We got an application error.
Then use Visual Debugger and try to debug ss.exe by “step into” it. | got another dialog
box error and no instruction (not even the first one) has been executed.

Because the first instruction at the entry point doesn’t have a chance to be executed, there
must be a problem in the PE loading process. As the PE loader works according to the PE

header, this suggests that there may have some problems in the PE header.

But we got our header from “usspro.exe”, why “usspro.exe” can run smoothly but
“ss.ex€”’ not? Thisis one of the tricks used by Vbox.

Use PEditor, open “usspro.exe” and look at its import table:

Import Table Yiewer : #|
I [ilIN ame I OriginalFirst T hurk. I TimeD ateStamp I FonwarderChain I ame I FirstThunk | -
wboxpd 10.dIl 00000000 0oooaooo Ooooadon 0013C330 0013C268
wboxbd10.dIl 00000000 0000a0o0 0o0oacoa 0013C340 0013C270 -
Uszdbout.dl 0o0o00aao 0oooaooo Ooooaooo 0013C350 0013C278
u32B ase.dll 00000000 0oooaooo Ooooadon 0013C370 0013c2en
u32Comm.dil 00000000 0oooaooo Ooooadon 0013C38C 0013c2es
L3ZFile.dll 00000000 0oooaooo Ooooadon 0013C34C 0013C230
USSGifea.dl 00000000 0000a0o0 0o0oacoa 0013C3CC 0013C233 LI
Lissimem il nANNNNNN NANNANNN NNNNANAN nm2raEe nn1ar 2an

Figure 31 Import Table of usspro.exe

As said earlier, the OriginalFirstThunk (Import Lookup Table) should contain pointers to
function names. Here it is 00000000. Therefore, it is not a fully Microsoft specification
complaint PE header.

However, this executable can till be able to run up smoothly. This is because the
Windows loader can use the information stored in the IAT entries. Recalled that the IAT
initially (before binding) should have the same content as the ILT, the loader of Windows,
instead of denying loading the malformed PE header, will treat thedatain AT asif itisin
ILT. Therefore, the program is alowed to start. This NULL ILT issue has been discussed
in [40] as abug in Borland C++ compiler.

The implication of thisis that after binding, the IAT is modified, and is no more pointing

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 82

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

to the function name. Since our “ss.exe” is dumped after AT is modified, therefore, our
import table is CORRUPTED - the ILT is NULL and the IAT is not pointing to a valid
function name array.

This explains why the loader fails and it is the trick used by Vbox to stop people from
dumping the process.

We can restore this IAT to point back to function names by:

- Using an editor to open usspro.exe, go to first FirstThunk entry in the file, the offset
should be 0x13c268-0x13c000+0x1000=0x1268 because RV O 0x13c000 corresponds
to 0x1000 in thefile.

- Copy the data from 0x1268 down to 0x1330. We stop at 0x1330 because the next byte
is the beginning of the string “vboxp410.di1”. The total datais 200 bytes long.

- Patchthisdatainto “ss.exe” starting at offset 0x13c268 because the file offset and the
VO are equal in thisfile.

Now we can run “ss.exe” without any seeming problem, and the Vbox protection has
been bypassed. But this is not a stable unpacked file. The unpacked executable may not
run on other computers. Why?

For NT Series OS, the first 2GB (0-2GB) address space is private for the process. The
upper 2GB (2-4GB) is reserved for the system.

For 95 Series OS, the 4AMB-2GB areais private for the process. In the 2GB-3GB ares, it
is a shared area, readable and writable by all processes. A number of system DLLs and
other data are loaded into this space. The 3GB-4GB area is system memory, readable or
writable by any process.

According to [39], under Windows 95/98, the operating system DLLs, such as
KERNEL32, USER32, and GDI32, reside in the shared address space. Therefore,
everyone own the same copy of these DLLs. Hence, it is possible for one application to
interfere with the working of another application. It is aso possible to load other dynamic
link librarysin the shared address space aswell. These DLL s again may get interfered if the
DLL isused by multiple applications in the system.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 83

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Windows NT, on the other hand, loads all the system DL L s, such asKERNEL 32, USER32,
and GDI32, in the private address space. Therefore, everyone’s view on these DLLsS is
different. As aresult, it is never possible for one application to interfere with the other
applications in the system without intending to do so. If one goplication accidentally
overwritesthese DLLs, it will affect only that application. Other applicationswill continue
to run without any problems.

Let’s take alook at our “ss.exe” in Figure 30. Here, our dump file implicitly assumes that
the packer routine’s .IDATA section will contain all the DLL information required by
SmartSaver and let the loader loads the DLL into the process. Although, the Vbox here
contains al the required DLLs information in its .IDATA section, the packer can specify
only those DL L sit needs (but not for the protected program). This is because the packer
can emulate the loader by using the previously discussed APIs and explicitly |oads those
required DL L s for the program during unpacking.

Therefore, our dump file will not work under Windows NT seriesif the packer’s .IDATA
section doesn’t include the DLLSs required by the protected program, as the loader would
not load the required DLLs into the private address space of the process.

However, our unpack file may work under Windows 95 series, because major DLLS
(KERNEL32, USER32 and GDI32), and aso possibly others are in the shared address
space. As long as one other process in Windows loads aDLL, the DLL will be in memory,
accessible by every other process. In this case, athough the loader won’t load the
required DLLs, these DLLs may be aready existed in memory.

This explains why these dump files (fixed IAT + unpack code) + original program entry
point may sometimes work in Windows 95 series but not Windows NT.

Another point that needs to be mentioned is that even if the dump file’s .IDATA section
contains all the DLL information the program needs, the program may still fail during
execution. Thisis because the pre-fixed | AT isvulnerable to address relocation. If the
loader loads a DLL and finds that the DLL needs to be relocated from an address that is
used at the time the file is dumped, all functions that are exported by this DLL need to be
relocated. But the loader is not able to pass this information to the pre-fixed IAT used by
the program. It can only fix the IAT used by the packer’s routine.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 84

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

If the program is executed on another computer using some DLLs of different versions,
the program may not be able to start up properly, as the address of the functions can be
different.

In any cases, our previous approach isNOT a good one, as the dump file generated by
that method can only be able to run on specific Windows at specific computer
occasionally.

To dea with the problem, a COMPLETE reconstruction of .IDATA section is needed,
containing al the DLLs and all the functions required by the program. Instead of relying
on apre-fixed IAT table, we should rely on an AT that will be fixed by the loader every
time the program runs.

.idata Reconstruction

To completely reconstruct the import table, we must be able to:

1. Reconstruct completely the IDT, containing entries for every DLLs required by the
program.

2. Reconstruct completely the ILT for each IDT entry, containing entries for every
required function for the particular DLL.

3. Modify the IAT RVA for each IDT entry to point to the IAT location that is actually
used by the program.

For 1 & 2, it can be difficult to be achieved because normally packer’s routine, would

manipulate (e.g. trash, encrypt or create fake data) the .idata section after using it, leaving

only afixed IAT required by the program. This makes us difficult to reconstruct the .idata
section. The program will not be affected by the trashed data because the program only

needs the correct IAT for execution.

For 3, it isnot difficult to locate the AT used by the program, as the CALL to API inside
the code is implemented as CALL [XXXX] or CALL & JUMP [XXXX]. XXXX is the
location of an IAT entry (see Figure 28).

In the past, doing 1 & 2 is a hard work and requires many humean interventions. E.g. the

cracker needs to set a breakpoint on LoadLibrayA or GetProcAddress and then dump out
the parameter to these APIs to get the name of the functions/DLLs. Or the cracker needs

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 85

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

to patch the unpacking routine so that those naming information will be written onto disk.

A piece of software may call many API functions in different DLLS, it is not uncommon
to have a program that uses over hundreds of functions. Manually reconstructing the
import table is too tedious and may pose technical challenges for crackers.

Therefore, Packing with Import Table Manipulation is provided as common featuresin
commercial software protection schemes.

In our target Vbox, the Import Table is being manipulated. This is verified by setting a
breakpoint at GetTextColor, SoftlCE breaks when you play around the software, however,
the ssexe doesn’t contain the plain text “GetTextColor’. If the program uses
GetTextColor, it should exist in the ILT in its .idata section.

Import Table Reconstruction is now made easy though the use of a program called
“Revirgin”:

- http://tsehp.cjb.net/

- Version1.31

Its principle is very simple. First it needs to locate the IAT location of the program. Then,
for every IAT entry, Revirgin compares them to ALL possible API’s export values. E.g.
GetTickCount are exported at Ox77E839AD. For Revirgin to work, the APl addresses
in thel AT should not haverelocated, i.e. at well-known standard exported addresses.

It also supports redirection — a technique used by packer to confuse crackers by making
the IAT to point to some more nested layer of callsinstead of the function address.

Let’s rebuild our Import Table:

1. Execute the protected usspro.exe, click ‘Trial’ to run the program.

2. Fireup Revirgin.

3. Select usspro.exe as the process to be attached.

4. Revirgin will then examine the PE header and prompt you a dialog box, saying
import is corrupted.

5. Enter 4CC1E2 as the OEP and click <Fetch IAT>.

6. TheRVA of the AT is detected at D000, with length FF4.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 86

http://tsehp.cjb.net/

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

7. Make sure <Show IAT referers> is checked, Click <IAT Resolver> to resolve the
IAT entries.

8. Click <Resolve again> to resolve unresolved redirected entries.

9. At this moment, Revirgin should resolve most IAT entries, unless for those under
encryption (not in our case).

10. Notice any unresolved entries. Note their reference counts. If those unresolved are
not referenced by others. We don’t need to fix it.

L Revirgin by +Tsehp 1.3 private version =10l =|
Iussprn.er:e 000001FC 001 Ca000 00400000 j Refrazh |
ISeIect Module ta Attach j
hodule Ordinal I ame Address |4 TRwa Ref ﬂ
ADVAPIZZ.dI | 00000191 |RegDeletekewd 7¥DESZ23F | 00009000 1}
ADVAPISZ. Il | 00000184 |RegClosekey |[77DB213D |000DS004 46
ADVAPIZZ.dI | 0000MAC | RegBuentyslug 7YDE3BA4 | 00009008 04
ADVAPISZ. Il |000001BY |RegSetvalued |77DEBASS |000DA010 0
ADVAPIZ2.dIl |0000018E | RegCreatekepl 7¥DE4104 | 00009014 oc
ADVAPIZZ Il | 000001AD | Regluenalug 77DB2457 | 00009018 26
ADVAPISZ. Il | 00000193 |RegDeletelalu 77DE4FEC | 000DS01C i}
ADVAPIZZ.dI |000001ES |RegSetvalueEy 7¥DE431F | 00009020 oD
COMCTL3Z dIl | 00000029 |Imagelist_Addh 71708EE2 | 00003028 02
COMCTL3Z. dIl | 00000032 |ImageList_Drav 716F37F0D | 000D30ZC 02
COMCTLAZ.dIl | 00000030 |ImageList_Getl) 71723861 | 00003030 03
GDI32.dIl 000000AE | FillRgn 77F48854 | 000DA038 03
GDI32.dIl 00000050 | DPtalP F7F4VIEY | 000DS03C oc
GDI32.dIl 0000003F | CreateHatchBr 77FS0EFS | 00003040 0
GDI32.dIl 00000049 | CreatePolygonk 77F484B5 | 00003044 03
GDI32.dI 00000093 |Equalfign FPFRaATC | 000D9048 m
GDI32.dIl Q00001AE | Polygon FIFATC27 | 000D A04C 0
GDI32.dIl 000001BS |RectinBegion | 77FEAODZE | 000DS050 02 ;l
[Stop I
|AT Critical Walues IAT Resolver IT Yalues + generato
DEP |4EC1E2 —I
Resalve againl AVA I
RYA IDDDDSDDEI Fetch AT | generatel |
Length [O0000FFE. Loadresolved] | | oy [o0000208
Save resolvedl
¥ Show IAT referers IDDDDM?E Vi | Ishgw Al j
[V Autofix sections + 1T paste
I~ Mangled Scheme igh limit [10000000
About I
|usspro.exe [Resolved imports View [tmpart Edit disabled v

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 87

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Figure 32 Revirginin operation

11. Finally, we need to generate a new Import Table based on these results, and paste it
into the end of “ss.exe”. Check <AutoFix Sections + IT paste>, we want to let
Revirgin to fix the IT automatically.

12. Since Revirgin has a bug on working at the boundary of the file, we first need to add
an empty section at the end of ss.exe, using PEditor (e.g. name=.temp, V S=0000,
V0O=1C8000, RS=0000, RO=1C8000). Note that the size of the image of “ss.exe” as
seen from the PE header is 1C8000.

13. In IT generator, put the value “1C8000” in the RVA field. Click <generate> and
choose to patch “ss.exe”. It will save the generated IT for you as a separate file as
well.

14. A diaog box will prompt up saying that some entries have not been resolved, we can
ignore it because those unresolved has zero reference count.

15. Revirgin will then append the generated IT to the end of the file as a new section,
fixing the PE header (size of the Image, the Import Table RVA, its size and the new
section characteristics) for you automatically.

16. Finally, delete the added “.temp” section.

Now if you examine the new .idata section of “ss.exe”, you will find that al the
information about DLLs and functions used by SmartSaver Pro have been added.
Therefore, the IAT of the new ss.exe is no more a static fixed one, but the one that is
generated dynamically by the OS loader. This implies that we can run the ss.exe on
95/NT series OS and on different computers without problems.

Other possible missing information

Apart from the import table, in very rare cases, we need to fix other things as well, as the
packer may deliberately manipulate them. However, there are not many things that packer
can manipulate WITHOUT affecting normal program executions and the restrictions
imposed by the OS.

It is possible for the packer to manipulate (e.g. trash) the relocation information (.reloc

section) in the executable, without affecting its execution, because in most cases, the
executable is mapped to its preferred starting point and doesn’t need to use the .reloc

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 88

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

section.

As a result, our dump file will lose the .reloc section, therefore vulnerable to address
relocation.

Note that in this case, the packer’s routine needs to handle relocation by itself as well,
working everything the loader should do. This will complicate the packer (making it
virtually aloader). This method is rarely used.

Import Table manipulation, remains the most dominant technique to avoid unpacking.

9.3.5Final fix ups

The last step is to ensure everything isall right:
- Affix theregenerated information to the dump file.
- Update Entry Point and necessary PE header information.

Done! We now have aworkable ss.exe with the Vbox security envel ope removed.

9.4 Discussions

Ulead designed and coded SmartSaver Pro. Then it added electronic distribution,
protection stuffs to its executable by using Vbox from Preview Systems. Vbox, works
like Sales Agent by wrapping up the protected executables, acting as a security envelope.
However, unlike Sales Agent, the protection routine and the executable, are stored in the
samefile.

Vbox provides some levels of anti-debugging, it also encrypts the executable by RSA,
thereby protecting SmartSaver from cracking and more importantly reverse engineering.
In this way, it is more sophisticated than SalesAgent. But, it is still vulnerable to
file/registry monitoring.

For crackers, they can avoid working out the decryptions by unpacking. However,
unpacking is not an easy stuff (esp. for most lame crackers), as we need to deal with lots
of fix-ups. Vbox further protects the software from dumping by using Import Table
manipulation. Two approaches have been discussed to fix the dump file (one bad one and

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 89

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

one good one).

Both ReleaseNow and Preview Systems are acquired by Aladdin. We also saw that some
big software firms (e.g. Adobe, Symantec, Macromedia) are using their products. It
should be stressed that once these security envelopes are defeated; all those products
using them are immediately threatened.

9.5 Suggestions

Vbox can do these measures to protect better:

1. Employ anti-monitoring and stricter anti-debugger measures.

2. The AT can be further protected as well (thus avoiding the use of automatic tools
like Revirgin). IAT entries, instead of storing direct addresses to the DLL functions,
can be redirected into nested calls or decryption routines to decrypt the DLL
function addresses at runtime and call into it.

3. Itisgood to use severa kinds of |AT manipulations at the same time, e.g. some IAT
entry contains direct entry to DLL function, some uses 1-level redirection, some use
two. This non-uniformity will make tracing more difficult.

4. Also, the packer should not include all the required DLL information in its .idata
section, therefore cracker can use our first method to crack it (easier approach).

5. Instead, the packer should only include the DLL information required by the packer
routine only, and it should fully emulate a loader, use LoadLibrary in its runtime
unpacking routine to explicitly load the required DLL into the process memory.
Then it should use GetProcAddress to fix the IAT. (In Vbox, it relies on the OS to
load the DLLs and use only the GetProcAddressto fix the I1AT).

6. Since locating the program entry point is the first and the most crucia step in
successful unpacking. Therefore, this address should be masked in a more
sophisticated way. The OEP, hereis stored in a CALL EAX, is so easy to be spotted
becauseit isthe first appeared call that CALL into aregister and it contains very low
memory address (at 4xxxxx). This CALL is at the outermost program layer as well.
Instead, this CALL to OEP can be put into a location under nested calls/jumps (not
at least the first outermost one). Before calling into OEP, there should be some fake
calls into low memory address. The first call to low memory address is the first
address that will be tried by the cracker! Also, it is better to try using a
non-uniformity of patterns of CALLs, comprising different call methods. E.g. CALL
EAX, CALL EBX, CALL 4xxxxx, CALL [7xxxxx].

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. Q0

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

10. Futur e of software protections

10.1 Code Partitioning

In underground community, crackers believe that “whenever the program run on their
computers, the program can be cracked”. Thisis very true. From the case studies, we can
see that encryption can be defeated by unpacking or process patching at the time after the
program is fully unpacked. Dynamic decryption of code can also be defeat as well. Code
obfuscation just renders the program more difficult to be cracked, but not impossible.

The final solution may be to relegate the part of the program that needs to be protected to
athird location.

10.1.2 Relegating through networks

If it is athird location over the network, it can be the software vendor itself or a trusted
third party. The implication of this is that whenever the user needs to use the program, it
sends the requests and gets the results back through the network. The protected code is
never exposed.

However, code partitioning through the network can pose the following issues:

1. We need to assume the underlying network is secure, which is not true over the
public Internet.

2. The performance of the program is now also a function of network performance. So
itis critical to determine how much codes should be relegated on the remote server.
If it is too small, the crackers can guess and emulate the server code by patching
around the program. If it is too much, the program performance will be fluctuating,
depending on network traffic.

3. There is mobility issue as well. The host running the program needs to maintain a
constant network access, which is not possible for notebook, modem, or PDA users.
Also, even if the wireless Internet access becomes more and more popular (e.g.
through 3G), an ongoing connection will be broken under the current Internet
Protocol (IPv4) when the host is changing access (e.g. from LAN to Wireless). The
program needs to implement fault tolerance mechanisms in order to avoid service
interruption. This problem cannot be solved unless Mobile IP is adopted. The

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 91

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

mobility issueisdiscussed in my previous work [41].

4. People may concern about their privacy. Not only they worry about their private data
sent over the network for computation, they may also worry about their usage
patterns such as time and frequency being tracked by the server.

Because of these redtrictions, current implementations of code partitioning over the
network are mostly restricted to remote authentication. However, crackers can easily
disable this remote authentication by patching.

10.1.3 Relegating to a co-processor

The previous remote partitioning scheme is controversial. Another possible solution is
local partitioning scheme. Under this scheme, the protected code is stored on a trusted
local device, executing on a trusted co-processor. It is similar to hardware “dongles” but
with the added instruction execution capability on a separate co-processor.

This can be made possible with the use of smart-card technology because some smart
cards are come with programmable co-processors. More importantly, they are
tamper-resistant. Sensors are contained to destroy the chip or the memory content in case
anintrusion is detected.

The use of smart cards greatly increases the hardware asset costs required by the cracker
for a successful break-in. This would be in most cases much greater than the advantage
gained from it. Of course with the advance in technology, the smart-card hardware needs
to be updated for some years.

This scheme will not be widely used until smart card reader becomes a common
computer accessory. It will cause problems if more than one program requires smart card
access. So this protection may only be used to protect very important software, such as
OS.

10.2 Watermarking
Acting as an anti-piracy technique, a watermark may be added into the software before

distributing to individual customers. This watermark is used to identify individual
customers and therefore, make it possible to trace from the pirated copy back to the

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 92

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

origina customer.

According to [02], software watermarking should be stealthy and resilient. It should be
stealth so that it is difficult for the intruder to find it. It should be resilient so that the
program will be damaged if the watermark is removed.

There are two kinds of watermarking techniques: static and dynamic [02]. Static
watermarks are stored in the application executable itself, while the dynamic one is
generated at runtime as dynamic states of the program.

Watermarking as anti-piracy measures, however, may not work in some countries where
piracy is rampant and the intellectua property law is not mature or loose. Pirates can
aways find some ‘innocents’ (e.g. children) as the one to buy the first copy of the
software and then mass-produce it.

10.3 Secure Software Engineering

Companies tend to think their programs can be better protected through commercial
protection packages. In fact, thisis not true. The case studies of ReleaseNow and Preview
Systems clearly show the problem.

Because of the “publicity” of these commercial protection packages, they are also the aim
of crackers. Because many programs are protected by these packages, the advantages
yielded from defeating them are tremendous. Therefore, they are famous target for
crackers. By cracking these packages, al the products protected by them are immediately
threatened.

The solution is to do secure software engineering. Instead of adding security at the fina
stage of the product development, security should aways be in mind in every stage of
the product’s lifecycle. In this way, security engineering will be fully integrated into
software engineering.

This can be done by establishing security policy in the software design process,

emphasizing security as the ‘non-functional requirement” of the program, together with
performance, reliance, resiliency, etc.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 93

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

10.4 Adver sary Economics

It is unintuitive to protect alow-priced program with very secure but expensive protection
techniques or an expensive program is protected by lame schemes. Since at today’s
state-of-art technology, there is no “uncrackable” scheme, the point is how to choose a
cost-effective protection scheme that matches the target to be protected. Ideally, a good
scheme should protect your program without being cracked BEFORE your program stop
making money.

Devanbu and Stubblebine [03] have suggested an economic model that relates the cost of
buying the program (Cy), the first hack of the protection mechanism (Cp), making n
copies (each C), the risk of being caught (Pi1) and the cost after caught (Ci). For an
effective software protection:

Ch+n* Cc+ P11 (n) * Cu1 (n) >>n* Cp
Currently, the parameters here are mostly subjective. Research into how to calculate the

Ch of the different protection schemes should be of paramount importance. With this, we
can compare the effectiveness of schemes and apply them suitebly on the target.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 94

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

11. Conclusions

In this report, | have discussed various software protection techniques and their
vulnerabilities. | tried to look at the problem from the worldviews of crackers, software
industry, and researchers. | first started with the simple threat model, the cracking tools
and then protection schemes.

Many programs apply the simple protection model, with its guard module unprotected. It
is shown that 1-byte modification can be sufficient to crack these programs. To better
secure our programs, encryption, packing and obfuscation should also be used.

However, obfuscation cannot make our programs uncrackable. For encryption and
packing, no matter how strong they are, crackers can get around it by unpacking at the
time when the program is decrypted.

Thefina way to overcome crackers can be code partitioning, in particular through the use
of local co-processor such as smart cards. There are still a lot of issues that need to be
addressed, and currently it is not widely accepted by end-users.

The mean-time solution, therefore, remains through the use of heavy obfuscation, good
encryption, and backup by anti-debugging routines. Although they are not very foolproof,
a combination of them already highly raises the difficulty to the crackers.

Beside technical means, we should also adopt secure software engineering practices,
treating security as the non-functional requirement throughout the life cycle of the
product. The study of adversary economics gives the measures to choose the most
cost-effective schemes to protect our systems. Making quality software pricing at the
right range with satisfactory customer support continues to be the basic formula to
combat piracy.

Software security benefits nothing if it is just only the topic in academic papers. In order
to avoid becoming ‘too academic’ and fills the void between research and practicality,
three commercia applications in the market are selected to investigate in depth. This
resulted in four different case studies. From the case studies, | have analyzed the
principles behind the attacks, the investigating psychology, how the exploits are
constructed, and what can be done to prevent the problems.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 95

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

The three programs that have been selected are TextPad, SmartSaver Pro and
Dreamweaver. They represent different market segments in the industry: TextPad (US
$27:.chegp), SmartSaver Pro (US $59.95:medium) and Dreamweaver (US
$299:expensive).

The case study results ring the alarms in the software industry. It is surprising to see that
our daily-used commercial software that is protected by commercial security packages is
too easily to be defeated. The protection to Dreamweaver is given by ReleaseNow’s
SalesAgent and to SmartSaver Pro is given by Preview System’sV box.

Comparing the protection provided by SalesAgent and Vbox, it can be concluded that
Vbox provides better protection over SalesAgent as it provides encryption to avoid
reverse engineering. SalesAgent just modifies 4096 bytes of the Dreamweaver executable
file, leaving most content intact. Cracking Vbox requires more sophisticated OS
knowledge, including loading process, PE execution format, etc. SalesAgent can be easily
defeated by spotting it is a loader for the dreamweaver.tty process. It is immediately
overcome if someone can extract the 4096 bytes of patch codes and the injection offset.

The result aso shows that because of the lack of use of adversary economics, protection
schemes mismatch with the protected programs. It is ridiculous that a much more
expensive (US $299) software is protected by a weaker scheme than the much cheaper
one (US $59.95).

May be all those practical security implementation weaknesses are rooted from the fact
that the way of cracking, the tricks and traps are in long-term being underground stuffs.
Therefore, proper programmers receiving proper trainings writing proper programs
cannot be aware of these improper attacks. This report tries to be an awareness paper to
the software industry and universities.

Finaly, the protection schemes are presented in such a way that follows historical
evolution, from old-days manual lookups to today’s widely adopted techniques such as
packing. The future of protections is also conjectured and investigated. Throughout the
evolution, we can see how technological developments and innovations contributed and
will continue to contribute to protection methods and attackers.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 96

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Last but not least, the combat between attackers and defenders will never ends. Cracking,
athough at most of the time being undervalued by others, will nevertheless continue to
exist and leads to better-protected software.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 97

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

References

[01] R.Bjones, S.Hoeben. Vulnerabilities in pure software security systems, Utimaco SoftwareAG, 2000
[02] C.S.Collberg, C.Thomborson. Watermarking, Tamper-Proofing, and Obfuscation

[03] PT.Devanbu, S.Stubblebine. Software Engineering for Security: a Roadmap, ICSE 2000

[04] R.Mester. All About Copy Protection

[05] Compuware. http://www.compuware.com/products/driver sudio/dgsofticehtm

[06] Sysinterna Filemon. http://www.sysinternals.com/ntw2k /sour ce/filemon.shtml

[07] SysinterndsRegmon. http://www.sysinter nals.com/ntw2k/sour ce/regmon .shtml

[08] Crashtest’s tutorial #1, 2™ version, 1998

[09] Bullet.Very Easy Cracking Tutorial, 1999

[10] Basdog22. The Ultimate Begginer Cracker’s Book v1.0 —v1.5

[11] B.Brey. 8086/8088, 80286, 80386 and 80486 Assembly Language Programming, Merril, 1994
[12] Intd. IA-32 Intel Architecture Software Developer’s Manud Volume 1-3, 2001

[13] A.K.M. Lo. Buffer Overflow Attack — Design and I mplementation for Microsoft WindowsMedia

Player, Thesis Report, The University of Hong Kong, 2001

[14] Compuware. SoftlCE Command Reference Release 2.5, 2001

[15] Microsoft Win32 Programmer's Reference, 1996

[16] Iczelion’sWin32 Assembly Tutorid (Set 1-22,24)

[17] Iczelion’s PE Tutorial (Set 1-7)

[18] Iceman. Tweaking with memory in Window95— An APl approach

[19] Stone. In memory patching: three approaches (how to introduce breakpoints in an automated debugger
and other marvels), 1997

[20] ShADé. Patching in a Patcher, 2000

[21] UPX (The Ultimate Packer for eXecutables) Software Manua

[22] Luevelsmeyer. The PE File Format v1.9, 1999

[23] Microsoft Portable Executable and Common Object File Format Specification Revision 6.0, Microsoft
Corporation, 1999

[24] Commercial Protection Systems: SalesAgent, CRACKER’snOTES

[25] Freddy K. Dreamweaver 3 Trial/Rsagent v3.12, 2000

[26] Pincopal. SdesAgent defeating, 2002

[27] Capac. How to completely remove a SalesAgent protection. Bye Bye SalesAgent, 2000
[28] EtErNaL_L Oser. Sales Agent Generic Cracking, 2001

[29] Chrigtal. An addition on a“Ready Made Protection”: SalesAgent

[30] Viktor Toth. Visual C++ 4 Unleashed, Chapter 16 — The Registry

[31] Icezlion’s Win32 Assembly (Set 28-30: Win32 Debug API)

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 98

http://www.compuware.com/products/driverstudio/ds/softice.htm
http://www.sysinternals.com/ntw2k/source/filemon.shtml
http://www.sysinternals.com/ntw2k/source/regmon.shtml

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

[32] Tsehp, Manually unpacking Asprotect version 1.0 — The encrypted import table, 2000
[33] Tsehp, Manually unpacking Asprotect version 1.05 — Building a fake import table, 2000
[34] Predator, Unpacking: ageneric gpproach, including IT rebuilding, 2001

[35] Sandman, Manua Unpacking Project, 1999

[36] BlackB, Unpacking asprotected programs— PicView v1.32, 2000

[37] BlackB, Cracking Irisv2.0, 2001

[38] Tsehp, Revirgin 1.2 readme, 2001

[39] PDabak; M .Borate; S.Phadke, Undocumented Windows NT, M& T Books, 1999

[40] M. Pietrek, Windows 95 System Programming Secrets, IDG 1995

[41] A.K.M.Lo. Future Mobile Internet — Mobile IP support in Third Generation Mobile Systems, Technical
Report, The University of Birmingham, 2002

[42] 1.Raz. Anti Debugging Tricks Release Number 5

[43] D.Vekhter, J.Peng. Software Piracy.

http://cse.stanford.edu/class/cs201/proj ects-99-00/software-piracy/mainframe.html

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 99

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

Appendix A — Selected Win32 API

WaitFor DebugEvent

The WaitFor DebugEvent function waits for adebugging event to occur in aprocess being debugged.
BOOL WaitForDebugEvent(

LPDEBUG_EVENT IpDebugEvent, // debug event information

DWORD dwMilliseconds
)i

Parameters

// time-out vdue

IpDebugEvent

[out] Pointer to aDEBUG _EVENT structure that receives information about the debugging event.
dwMilliseconds

[in] Specifies the number of milliseconds to wait for a debugging event. If this parameter is zero, the
function tests for a debugging event and returns immediately. If the parameter is INFINITE, the function
does not return until adebugging event has occurred.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return vaue is zero. To get extended error information, call GetLastError.

Remarks

Only thethread that created the process being debugged can call WaitFor DebugEvent.

When a CREATE_PROCESS DEBUG_EVENT occurs, the debugger gpplication receives a handle to the
image file of the process being debugged, a handle to the process being debugged, and a handle to the
initia thread of the process being debugged in the DEBUG EVENT structure. The DEBUG_EVENT
members these handles are returned in are u.CreateProcessinfo.hFile, u.CreateProcessinfo.hProcess,
and u.CreateProcessl nfo.hThread respectively. The system will close these handles. The debugger should
not close these handles.

Similarly, when a CREATE_THREAD_DEBUG_EVENT occurs, the debugger application receives a
handle to the thread whose creation caused the debugging event in the u.CreateThread.hThread member
of the DEBUG_EVENT structure. This handle should also not be closed by the debugger applicetion, as it
will be closed by the system.

Also, when a LOAD_DLL_DEBUG EVENT occurs, the debugger application receives a handle to the
loaded DLL in the u.LoadDIl.hFile member of the DEBUG_EVENT structure. This handle should be
closed by the debugger gpplication by calling the CloseHandle function when the corresponding
UNLOAD_DLL_DEBUG_EVENT oceurs.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 100

http://cse.stanford.edu/class/cs201/projects-99-00/software-piracy/mainframe.html

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

ContinueDebugEvent

The ContinueDebugEvent function enables a debugger to continue a thread that previously reported a

debugging event.

BOOL ContinueDebugEvent(
DWORD dwProcesdd,
DWORD dwThreadld,
DWORD dwContinueStatus // continuation status

)i

Parameters

dwProcessld

/I process to continue

/I thread to continue

[in] Handle to the processto continue.

dwThreadld

[in] Handle to the thread to continue. The combination of process identifier and thread identifier must
identify a thread that has previously reported a debugging event.

dwContinueStatus

[in] Specifies how to continue the thread that reported the debugging event.

If the DBG_CONTINUE flag is specified for this parameter and the thread specified by the dwThreadld
parameter previoudy reported an EXCEPTION_DEBUG_EVENT debugging event, the function stops all
exception processing and continues the thread. For any other debugging event, this flag Smply continues
thethread.

If the DBG_EXCEPTION_NOT_HANDLED flag is specified for this parameter and the thread specified
by dwThreadld previously reported an EXCEPTION_DEBUG_EVENT debugging event, the function
continues exception processing. If this is afirst-chance exception event, the search and dispatch logic of the
structured exception handler is used; otherwise, the process is terminated. For any other debugging event,
this flag simply continues the thread.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return vaue is zero. To get extended error information, call GetLastError.

Remarks

Only thethread that created dwProcessld with the CreateProcess function can call ContinueDebugEvent.
After the ContinueDebugEvent function succeeds, the specified thread continues. Depending on the
debugging event previously reported by the thread, different actions occur. If the continued thread
previoudy reported an EXIT_THREAD_DEBUG_EVENT debugging event, ContinueDebugEvent closes
the handle the debugger has to the thread. If the continued thread previoudy reported an
EXIT_PROCESS DEBUG_EVENT debugging event, ContinueDebugEvent closes the handles the

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 101

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

debugger hasto the process and to the thread.

DEBUG_EVENT

The DEBUG_EVENT structure describes a debugging event.
typedef struct DEBUG_EVENT {
DWORD dwDebugEventCode;
DWORD dwProcessld;
DWORD dwThreadld;
union {
EXCEPTION_DEBUG_INFO Exception;
CREATE_THREAD_DEBUG_INFO CreateThread:;
CREATE_PROCESS DEBUG_INFO CreaeProcessinfo;
EXIT_THREAD_DEBUG_INFO ExitThread;
EXIT_PROCESS DEBUG_INFO ExitProcess;
LOAD_DLL_DEBUG_INFO LoadDIl;
UNLOAD_DLL_DEBUG_INFO UnloadDIl;
OUTPUT _DEBUG_STRING_INFO DebugString;
RIP_INFO Riplnfo;
Ty
} DEBUG_EVENT, *LPDEBUG_EVENT;
Members
dwDebugEventCode
Specifies a debugging event code that identifies the type of debugging event. This parameter can be one of

the following values.
Value Meaning

EXCEPTION_DEBUG_EVENT Reports an exception debugging event. The value of
u.Exception specifiesan EXCEPTION DEBUG INFO

structure.

CREATE_THREAD_DEBUG_EVENT Reports acreate-thread debugging event. The value of
u.CreateThread specifiesa
CREATE THREAD DEBUG INFO structure.

CREATE_PROCESS DEBUG_EVENT Reports a create-process debugging event. The vaue of
u.CreateProcessinfo specifiesa

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 102

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

CREATE PROCESS DEBUG INFO structure.

EXIT_THREAD_DEBUG_EVENT Reports an exit-thread debugging event. Thevaue of
u.ExitThread specifies an
EXIT THREAD DEBUG INFO structure.

EXIT_PROCESS DEBUG_EVENT Reports an exit-process debugging event. The value of
u.ExitProcess specifies an
EXIT_PROCESS DEBUG INFO structure.

LOAD_DLL_DEBUG _EVENT Reports aload-dynamic-link-library (DLL) debugging
event. Thevaue of u.LoadDI| specifiesa

LOAD DLL_DEBUG_ INFO structure.

UNLOAD_DLL_DEBUG_EVENT Reports an unload-DLL debugging event. The value of
u.UnloadDlIl specifies an

UNLOAD DLL DEBUG INFO structure.

OUTPUT_DEBUG_STRING_EVENT Reports an output-debugging-string debugging event.
Thevdue of u.DebugString specifiesan
OUTPUT DEBUG STRING INFO structure.

RIP_EVENT Reports a RIP-debugging event (system debugging
error). Thevalue of u.RipInfo specifiesa RIP_INFO
structure.

dwProcessld

Specifiesthe identifier of the process in which the debugging event occurred. A debugger uses this value to
locate the debugger's per-process structure. These values are not necessarily small integers that can be used
astable indices.

dwThreadld

Specifies the identifier of the thread in which the debugging event occurred. A debugger uses this value to
locate the debugger's per-thread structure. These values are not necessarily small integers that can be used
astable indices.

u

Specifies additional information relating to the debugging event. This union takes on the type and value
appropriate to the type of debugging event, asdescribed in the dwDebugEventCode member.

Remarks

If the WaitForDebugEvent function succeeds, it fills in the membersof aDEBUG_EVENT structure.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 103

Software Protection and itsAnnihilation — Alfred K M Lo May 2002

CREATE_PROCESS DEBUG_INFO

The CREATE_PROCESS DEBUG_INFO structure contains process creaion information that can be
used by a debugger.
typedef struct CREATE_PROCESS DEBUG_INFO {

HANDLE hFile;

HANDLE hProcess;

HANDLE hThread,;

LPVOID IpBaseOfIimage;

DWORD dwDebuglnfoFileOffset;

DWORD nDebuginfoSize;

LPVOID IpThreadLocalBase;

LPTHREAD_START_ROUTINE IpStartAddress;

LPVOID IplmageName;

WORD fUnicode;
} CREATE_PROCESS DEBUG_INFO, *LPCREATE_PROCESS DEBUG_INFO;
Members
hFile
Handle to the process's image file. If this member is NULL, the handle is not valid. Otherwise, the
debugger can use the member to read from and write to the image file.
hProcess
Handle to the process. If thismember isNULL, the handle is not valid. Otherwise, the debugger can use the
member to read from and write to the process's memory.
hThread
Handle to the initial thread of the process identified by the hProcess member. If hThread is NULL, the
handleis not vaid. Otherwise, the debugger has THREAD_GET_CONTEXT, THREAD_SET_CONTEXT,
and THREAD_SUSPEND_RESUME access to the thread, allowing the debugger to read from and write to
theregisters of the thread and to control execution of the thread.
IpBaseOflmage
Pointer to the base address of the executable image that the processis running.
dwDebugl nfoFileOffset
Specifies the offset to the debugging information in the file identified by the hFile member. The system
expects the debugging information to be in Microsoft® CodeView® version 4.0 format. This format is
currently a derivative of COFF (Common Object File Format).
nDebuglnfoSize

Specifies the size, in bytes, of the debugging information in the file. If this value is zero, there is no

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 104

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

debugginginformation.

IpThreadL ocalBase

Pointer to a block of data At offss O0x2C into this block is another pointer, called

ThreadLocal StoragePointer, that points to an array of per-module thread loca storage blocks. This gives a
debugger access to per-thread datain the threads of the process being debugged using the same agorithms

that acompiler would use.

IpStartAddress

Pointer to the starting address of the thread. This value may only be an gpproximation of the thread's
starting address, because any application with appropriate access to the thread can change the thread's
context by using the SetT hreadContext function.

Ipl mageName

Pointer to the filename associated with the hFile parameter. This parameter may be NULL, or it may

contain the address of astring pointer in the address space of the process being debugged. That address may,
in turn, either be NULL or point to the actual filename. If fUnicode is a nonzero value, the name string is
Unicode; otherwise, itiSANSI.

This member is strictly optional. Debuggers must be prepared to handle the case where IpimageName is
NULL or *Ipl mageName (in the address space of the process being debugged) is NULL. Specifically, the
system does not provide an image name for a create process event, and will not likely pass an image name

for the first DLL event. The system also does not provide this information in the case of debug events that

originate from a call to the DebugA ctiveProcess function.

fUnicode

Indicates whether a file name specified by the Ipl mageName member is Unicode or ANSI. A nonzero
value indicates Unicode; zero indicatesANSI.

EXCEPTION_DEBUG_INFO

The EXCEPTION_DEBUG_INFO sructure contains exception information that can be used by a
debugger.
typedef struct EXCEPTION_DEBUG_INFO {
EXCEPTION_RECORD ExceptionRecord;
DWORD dwFirstChance;
} EXCEPTION_DEBUG_INFO, *LPEXCEPTION_DEBUG_INFO;
Members
ExceptionRecord
Containsan EXCEPTION_RECORD structure with information specific to the exception. Thisincludesthe

exception code, flags, address, apointer to arelaed exception, extraparameters, and so on.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 105

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

dwFirstChance

Indicates whether the debugger has previousy encountered the exception specified by the
ExceptionRecord member. If the dwFirstChance member is nonzero, this is the first time the debugger
has encountered the exception. Debuggers typicaly handle breakpoint and single-step exceptions when
they are first encountered. If this member is zero, the debugger has previoudy encountered the exception.
This occurs only if, during the search for structured exception handlers, either no handler was found or the

exception was continued.

EXCEPTION_RECORD

The EXCEPTION_RECORD structure describes an exception.
typedef struct EXCEPTION_RECORD {
DWORD ExceptionCode;
DWORD ExceptionFlags;
struct_ EXCEPTION_RECORD * ExceptionRecord;
PVOID ExceptionAddress,
DWORD NumberParameters;,
ULONG_PTR Exceptioninformation] EXCEPTION_MAXIMUM_PARAMETERS];
} EXCEPTION_RECORD, * PEXCEPTION_RECORD;
Members
ExceptionCode
Specifies the reason the exception occurred. This is the code generated by a hardware exception, or the
code specified in the RaiseException function for a software-generated exception. The following tables

describes the exception codes that are likely to occur due to common programming errors.
Value Meaning

EXCEPTION_ACCESS VIOLATION Thethread tried to read from or write to a
virtual address for which it does not have

the appropriate access.

EXCEPTION_ARRAY_BOUNDS EXCEEDED Thethread tried to access an array element
that is out of boundsand the underlying

hardware supports bounds checking.
EXCEPTION_BREAKPOINT A breakpoint was encountered.

EXCEPTION_DATATYPE_MISALIGNMENT Thethread tried to read or writedatathat is

misaligned on hardware that does not

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 106

Software Protection and itsAnnihilation— Alfred K M Lo

EXCEPTION_FLT_DENORMAL_OPERAND

EXCEPTION_FLT_DIVIDE BY_ZERO

EXCEPTION_FLT_INEXACT _RESULT

EXCEPTION_FLT_INVALID_OPERATION

EXCEPTION_FLT_OVERFLOW

EXCEPTION_FLT_STACK_CHECK

EXCEPTION_FLT_UNDERFLOW

EXCEPTION_ILLEGAL_INSTRUCTION

EXCEPTION_IN_PAGE_ERROR

EXCEPTION_INT_DIVIDE BY_ZERO

EXCEPTION_INT_OVERFLOW

May 2002

provide alignment. For example, 16-bit
values must be digned on 2-byte
boundaries; 32-bit values on 4-byte

boundaries, and so on.

One of the operands in a floating-point
operation isdenorma. A denormal valueis
onethat istoo small to represent asa

standard floating-point value.

Thethread tried to divide a floating-point

value by afloating-point divisor of zero.

Theresult of afloating-point operation
cannot be represented exactly asadecima
fraction.

This exception represents any floating-point
exception not included in thislist.

The exponent of afloating-point operation
is greater than the magnitude allowed by the
corresponding type.

The stack overflowed or underflowed as the

result of afloating-point operation.

The exponent of a floating-point operation
is less than the magnitude allowed by the
corresponding type.

Thethread tried to execute an invalid

instruction.

Thethread tried to access apage that was
not present, and the system was unable to
load the page. For example, thisexception
might occur if anetwork connection islost

whilerunning a program over the network.

Thethread tried to divide an integer value

by an integer divisor of zero.

Theresult of an integer operation caused a

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 107

Software Protection and itsAnnihilation — Alfred K M Lo May 2002

carry out of the most significant bit of the

result.

EXCEPTION_INVALID_DISPOSITION An exception handler returned an invalid
disposition to the exception dispatcher.
Programmers using ahigh-level language
such as C should never encounter this

exception.

EXCEPTION_NONCONTINUABLE_EXCEPTION Thethread tried to continue execution after

anoncontinuable exception occurred.

EXCEPTION_PRIV_INSTRUCTION Thethread tried to execute an instruction
whose operation is not allowed in the

current machinemode.

EXCEPTION_SINGLE_STEP A trace trap or other single-ingtruction
mechanism signaled that one instruction has

been executed.

EXCEPTION_STACK_OVERFLOW Thethread used up its stack.

Another exception code is likely to occur when debugging console processes. It does not arise because of a
programming error. The DBG_CONTROL_C exception code occurs when CTRL+C is input to a console
process that handles CTRL+C signals and is being debugged. This exception code is not meant to be
handled by gpplications. It israised only for the benefit of thedebugger, and israised only when a debugger
isattached to the console process.

ExceptionFlags

Specifies the exception flags. This member can be either zero, indicating a continuable exception, or
EXCEPTION_NONCONTINUABLE indicating a noncontinuable exception. Any attempt to continue
execution after anoncontinuable exception causes the EXCEPTION_NONCONTINUABLE_EXCEPTION
exception.

ExceptionRecord

Pointer to an associated EXCEPTION_RECORD structure. Exception records can be chained together to
provide additiona information when nested exceptions occur.

ExceptionAddress

Specifies the address where the exception occurred.

NumberParameters

Specifies the number of parameters associated with the exception. Thisis the number of defined eements

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 108

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

inthe Exceptionl nformation array.

Exceptionl nformation

Specifies an array of additional arguments that describe the exception. The RaiseException function can
specify this array of arguments. For most exception codes, the array elements are undefined. The following

table describes the exception codes whose array elements are defined.

Exception code Array contents

EXCEPTION_ACCESS VIOLATION Thefirst element of the array contains a read-write flag
that indicates the type of operation that caused the access
violation. If this valueis zero, the thread attempted to read
the inaccessible data. If thisvalueis 1, the thread
attempted to write to an inaccessible address.

The second array element specifies the virtual address of

the inaccessibledata.

WriteProcessM emory

The WriteProcessMemory function writes data to an area of memory in a specified process. The entire

area to bewritten to must be accessible, or the operation fails.

BOOL WriteProcessM emory(
HANDLE hProcess,
LPVOID IpBaseAddress,
LPCVOID IpBuffer,
SIZE_T nSize,

SIZE_T * IpNumber OfBytesWkitten // count of bytes written

)i

Parameters

// handle to process
[/ base of memory area
/I databuffer

/I count of bytesto write

hProcess

[in] Handle to the process whose memory is to be modified. The hande must have
PROCESS VM_WRITE and PROCESS_VM_OPERATION access to the process.

IpBaseAddress

[in] Pointer to the base address in the specified process to which data will be written. Before any data
transfer occurs, the system verifies that al data in the base address and memory of the specified size is
accessible for write access. If thisisthe case, the function proceeds; otherwise, the function fails.

|pBuffer

[in] Pointer to the buffer that contains data to bewritten into the address space of the specified process.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 109

Software Protection and itsAnnihilation— Alfred K M Lo May 2002

nSize

[in] Specifies the requested number of bytesto write into the specified process.

IpNumber OfBytes\Written

[out] Pointer to a variable that receives the number of bytes transferred into the specified process. This
parameter isoptional. If [pNumberOfBytesWritten is NULL, the parameter is ignored.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, cal GetLastError. The
function will fail if the requested write operation crosses into an area of the process that is inaccessible.
Remarks

WriteProcessM emory copies the data from the specified buffer in the current process to the address range
of the specified process. Any process that has a handle with PROCESS VM_WRITE and
PROCESS VM_OPERATION access to the process to be written to can call the function. The process
whose address space is being written to is typically, but not necessarily, being debugged.

The entire areato be written to must be accessible. If itisnot, the function fails as noted previously.

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document. 110

Software Protection and itsAnnihilation— Alfred K M Lo

Appendix B — Partial Dreamweaver Disassembly

:00401A8B 8D8C2490000000
:00401A92 68EOAF4500
:00401A97 51

:00401A98 53

:00401A99 53

:00401A9A 6A02

:00401A9C 53

:00401A9D 53

:00401A9E 8D9424F0000000
:00401AA5 53

:00401AA6 52

:00401AA7 53

leaecx, dword ptr [esp+00000090]
push 0045AFEQ

push ecx

push ebx

push ebx

push 00000002

push ebx

push ebx

leaedx, dword ptr [esp+000000F0]
push ebx

push edx

push ebx

* Reference To: KERNEL32.CreateProcessA, Ord:0044h

:00401AA8 FF15C0504300
:00401AAE 85C0
:00401ABO0 751F
:00401AB2 53

Cdl dword ptr [004350C0]
test eax, eax

jne 00401AD1

push ebx

* Possible StringDaa Ref from Data Obj ->"Error"

:00401AB3 68CC914300

push 004391CC

* Possible StringData Ref from Data Obj ->"Error loading process'

:00401AB8 6884914300
:00401ABD 53

push 004391B4
push ebx

* Reference To: USER32.MessageBoxA, Ord:01BEh

:00401ABE FF1530534300
:00401AC4 33C0
:00401AC6 5F

:00401AC7 5E

:00401AC8 5D

:00401AC9 5B

:00401ACA 81C49C260000

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

Cdl dword ptr [00435330]
XOr eax, eax

pop edi

pop es

pop ebp

pop ebx

add esp, 0000269C

May 2002

m

Software Protection and itsAnnihilation — Alfred K M Lo

:00401ADO0 C3

ret

* Referenced by a (U)nconditional or (C)onditiona Jump at Addresses:
|:00401ABO(C), :00401AE5(C), :00401CBB(V)

:00401AD1 8D442430
:00401AD5 6AFF
:00401AD7 50
:00401AD8 BD02000100

leaeax, dword ptr [esp+30]
push FFFFFFFF

push eax

mov ebp, 00010002

* Reference To: KERNEL32.WaitForDebugEvent, Ord:02CBh

:00401ADD FF1540514300
:00401AE3 85C0
:00401AES 74EA
:00401AE7 8B542434
:00401AEB A1E8AF4500
:00401AF0 3BDO
:00401AF2 OF85B2010000
:00401AF8 8B4C2430
:00401AFC 8D41FF
:00401AFF 83F807
:00401B02 0F87A2010000
:00401B08 FF2485E41C4000
:00401BOF 8B44243C
:00401B13 3D03000080
:00401B18 OF85C7000000
:00401B1E 395C2420
:00401B22 7470
:00401B24 895C2420
:00401B28 ESE3FAFFFF
:00401B2D 89442414
:00401B31 A15CE94400
:00401B36 3BC3
:00401B38 0F849C000000
:00401B3E A1EOAF4500
:00401B43 8D542410
:00401B47 52

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

Call dword ptr [00435140]

test eax, eax

je00401AD1

mov edx, dword ptr [esp+34]
mov eax, dword ptr [0045AFES]
cmp edx, eax

jne 00401CAA

mov ecx, dword ptr [esp+30]
leaeax, dword ptr [ecx-01]

cmp eax, 00000007
ja00401CAA

jmp dword ptr [4* eax+00401CE4]
mov eax, dword ptr [esp+3C]
cmp eax, 80000003

jne 00401BES

cmp dword ptr [esp+20], ebx
je00401B94

mov dword ptr [egp+20], ebx
call 00401010

mov dword ptr [esp+14], eax
mov eax, dword ptr [0044E95C]
cmp eax, ebx

je 00401BDA

mov eax, dword ptr [0045AFEQ]
leaedx, dword ptr [esp+10]
push edx

May 2002

112

Software Protection and itsAnnihilation— Alfred K M Lo

:00401B48 53
:00401B49 50
:00401B4A 68101D4000
:00401B4F 53
:00401B50 53
:00401B51 895C2428

push ebx

push eax

push 00401D10

push ebx

push ebx

mov dword ptr [esp+28], ebx

* Reference To: KERNEL32.CreateThread, Ord:004Ah

:00401B55 FF1544514300
:00401B5B 50

Cadl dword ptr [00435144]
push eax

* Reference To: KERNEL32.CloseHandle, Ord:001Bh

:00401B5C FF1530514300
:00401B62 8D4C2424
:00401B66 8D542414
:00401B6A 51

:00401B6B 8B4C2438
:00401B6F 8D8424E4030000
:00401B76 52

:00401B77 8B542420
:00401B7B 50

:00401B7C 51

:00401B7D 52

:00401B7E C744243001000000
:00401B86 E895FIFFFF
:00401B8B 83C414
:00401B8E 89442410
:00401B92 EB46

Cadl dword ptr [00435130]
leaecx, dword ptr [esp+24]
leaedx, dword ptr [esp+14]
push ecx

mov ecx, dword ptr [esp+38]
leaeax, dword ptr [esp+000003E4]
push edx

mov edx, dword ptr [esp+20]
push eax

push ecx

push edx

mov [esp+30], 00000001
call 00401520

add esp, 00000014

mov dword ptr [esp+10], eax
jmp 00401BDA

* Referenced by a (U)nconditiona or (C)onditiona Jump at Address:

:00401B22(C)
:00401B94 395C241C
:00401B98 7469
:00401B9A 8B442424
:00401B9E 8B4C2410
:00401BA2 50

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

cmp dword ptr [esp+1C], ebx
je00401C03

mov eax, dword ptr [esp+24]
mov ecx, dword ptr [esp+10]
push eax

May 2002

113

Software Protection and itsAnnihilation — Alfred K M Lo

:00401BA3 8B442418
:00401BA7 51

:00401BA8 50

:00401BA9 81ECCC020000
:00401BAF B9B3000000
:00401BB4 8DB424B8060000
:00401BBB 8BFC
:00401BBD F3

:00401BBE A5

:00401BBF 8B8C24F0020000
:00401BC6 52

:00401BC7 51

:00401BC8 899C24FC020000
:00401BCF E8BCF8FFFF
:00401BD4 81C4E0020000

mov eax, dword ptr [esp+18]

push ecx

push eax

sub esp, 000002CC

mov ecx, 000000B3

leaesi, dword ptr [esp+000006B8]
mov edi, esp

repz

movsd

mov ecx, dword ptr [esp+000002F0]
push edx

push ecx

mov dword ptr [esp+000002FC], ebx
call 00401490

add esp, 000002E0

* Referenced by a (U)nconditional or (C)onditiona Jump at Addresses:

:00401B38(C), :00401B92(U)
:00401BDA 8B44243C
:00401BDE 3D03000080
:00401BE3 741E

mov eax, dword ptr [esp+3C]
cmp eax, 80000003

je00401C03

* Referenced by a (U)nconditional or (C)onditiona Jump at Address:

:00401B18(C)
:00401BE5 3D04000080
:00401BEA 740C
:00401BEC 3D080000CO
:00401BF1 7405
:00401BF3 BD01000180

cmp eax, 80000004

je 00401BF8

cmp eax, CO000008

je 00401BF8

mov ebp, 80010001

* Referenced by a (U)nconditional or (C)onditiona Jump at Addresses:

:00401BEA(C), :00401BF1(C)

:00401BF8 3D03000080
:00401BFD OF85A 7000000

cmp eax, 80000003

jne 00401CAA

* Referenced by a (U)nconditional or (C)onditiona Jump at Addresses:

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

May 2002

114

Software Protection and itsAnnihilation— Alfred K M Lo

:00401B98(C), :00401BE3(C)
:00401C03 399C248C000000
:00401COA OF859A000000

cmp dword ptr [esp+0000008C], ebx
jne 00401CAA

:00401C10 8B442448 mov eax, dword ptr [egp+48]
:00401C14 8B4C2428 mov ecx, dword ptr [esp+28]
:00401C18 3BC8 cmp ecx, eax

:00401C1A 752F jne 00401C4B

:00401C1C 50 push eax

:00401C1D 8D9424B0060000 leaedx, dword ptr [esp+000006B0]

* Possible StringData Ref from Data Obj ->"Application error occurred at "
->"address 0x%x, fromwhichitis"
->"unableto recover.”

:00401C24 6864914300 push 00439164

:00401C29 52 push edx

* Reference To: USER32.wsprintfA, Ord:02ACh
:00401C2A FF1538534300 Call dword ptr [00435338]

:00401C30 83C40C add esp, 0000000C
:00401C33 8D8424AC060000 leaeax, dword ptr [esp+000006AC]
:00401C3A 6A10 push 00000010

* Possible StringData Ref from Data Obj ->"Application Terminating."

:00401C3C 6848914300 push 00439148
:00401C41 50 push eax
:00401C42 53 push ebx

* Reference To: USER32.MessageBoxA, Ord:01BEh
:00401C43 FF1530534300 Cadl dword ptr [00435330]
:00401C49 EB5F jmp 00401CAA

* Referenced by a(U)nconditional or (C)onditional Jump at Address:
|:00401C1A(C)
:00401C4B 89442428
:00401C4F BD02000100
:00401C54 EB54

mov dword ptr [esp+28], eax
mov ebp, 00010002
jmp 00401CAA

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

May 2002

115

Software Protection and itsAnnihilation — Alfred K M Lo

:00401C56 B9OA0O00000

mov ecx, 0000000A

:00401C5B 8D74243C leaesi, dword ptr [esp+3C]
:00401C5F BF40BD4300 mov edi, 0043BD40

:00401C64 F3 repz

:00401C65 A5 movsd

:00401C66 8B4C2444 mov ecx, dword ptr [esp+44]
:00401C6A 894C2418 mov dword ptr [esp+18], ecx
:00401C6E EB3A jmp 00401CAA

:00401C70 8B442442 mov eax, dword ptr [esp+42]
:00401C74 8D54242C leaedx, dword ptr [esp+2C]
:00401C78 25FFFF0000 and eax, 0000FFFF

:00401C7D 52 push edx

:00401C7E 8B542440 mov edx, dword ptr [esp+40]
:00401C82 8D8C24B0160000 leaecx, dword ptr [esp+000016B0]
:00401C89 50 push eax

:00401C8A A1EOAF4500 mov eax, dword ptr [0045AFEQ]
:00401C8F 51 push ecx

:00401C90 52 push edx

:00401C91 50 push eax

* Reference To: KERNEL32.ReadProcessMemory, Ord:021Ch

:00401C92 FF1534514300

Cdl dword ptr [00435134]

:00401C98 85C0 test eax, eax

:00401C9A 740E je 00401CAA

:00401C9C 8D8C24AC160000 leaecx, dword ptr [esp+000016AC]
:00401CA3 51 push ecx

* Reference To: KERNEL32.OutputDebugStringA, Ord:01F5h
:00401CA4 FF1548514300 Cadl dword ptr [00435148]

* Referenced by a (U)nconditional or (C)onditiona Jump at Addresses:
:00401AF2(C), :00401B02(C), :00401BFD(C), :00401COA(C), :00401C49(U)
:00401C54(U), :00401C6E(U), :00401C9A(C)

:00401CAA 8B542438
:00401CAE 8B442434 mov eax, dword ptr [esp+34]
:00401CB2 55 push ebp

mov edx, dword ptr [esp+38]

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

May 2002

116

Software Protection and itsAnnihilation— Alfred K M Lo

:00401CB3 52
:00401CB4 50

push edx
push eax

* Reference To: KERNEL32.ContinueDebugEvent, Ord:0025h

:00401CB5 FF154C514300
:00401CBB E911FEFFFF
:00401CC0 8BOD64F04300
:00401CC6 53

:00401CC7 53

:00401CC8 6A10
:00401CCA 51

Cadl dword ptr [0043514C]
jmp 00401AD1

mov ecx, dword ptr [0043F064]

push ebx
push ebx
push 00000010
push ecx

* Reference To: USER32.PostMessageA, Ord:01DEh

:00401CCB FF1580524300
:00401CD1 5F

:00401CD2 5E

:00401CD3 5D

:00401CD4 B801000000
:00401CD9 5B

:00401CDA 81C49C260000
:00401CEOQ C3

:00401CE1 8D4900

:00401CE4 0OF1B4000
:00401CE8 AA1C4000
:00401CEC 561C4000
:00401CFO AA1C4000
:00401CF4 C01C4000
:00401CF8 AA1C4000
:00401CFC AA1C4000
:00401D00 701C4000
:00401D04 90
:00401D05 90
:00401D06 90
:00401D07 90

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

Cal dword ptr [00435280]
pop edi

pop esi

pop ebp

mov eax, 00000001

pop ebx

add esp, 0000269C

ret

leaecx, dword ptr [ecx+00]

DWORD 00401BOF

DWORD 00401CAA
DWORD 00401C56

DWORD 00401CAA
DWORD 00401CCO
DWORD 00401CAA
DWORD 00401CAA
DWORD 00401C70
nop

nop

nop

nop

Software Protection and itsAnnihilation — Alfred K M Lo

Appendix C — USSPRO.EXE Import Details

ettt IMPORT MODULE DETAILS +++++++++++++++

Import Module 001: vboxp410.dil

Addr:80000001 hint(0001) Name:
Import Module 002: vboxb410.dll

Addr:80000001 hint(0001) Name:
Import Module 003: UssAbout.dll

Addr:0013C360 hint(0004) Name: IsFullVersion
Import Module 004: u32Base.dl|

Addr:0013C37C hint(0020) Name: buf32MergeBuf
Import Module 005: u32Comm.dll

Addr:0013C398 hint(002C) Name: ufdSplitPathname
Import Module 006: u32Filedll

Addr:0013C3B8 hint(0018) Name: ufFileGetFileData
Import Module 007: USSGifsadll

Addr:0013C3DC hint(0000) Name: AniGifAction
Import Module 008: ussjpgen.dil

Addr:0013C3FC hint(0005) Name: _JpegSave@12
Import Module 009: MPR.dII

Addr:0013C414 hint(000A) Name: WNetAddConnectionA
Import Module 010: WINMM.dl|

Addr:0013C438 hint(007C) Name: mmioCreateChunk
Import Module 011: UssCvt.dll

Addr:0013C458 hint(000C) Name: cvt32DIBToBuf
Import Module 012: UssUtil.dll

Addr:0013C474 hint(0000) Name: UssContextM enuState
Import Module 013: u32Sd.dll

Addr:0013C498 hint(0011) Name: sel32M agicWandM akeM ask
Import Module 014: Pngfio.dll

Addr:0013C4CO0 hint(0003) Name: Png_Write
Import Module 015: u32sn.dll

Addr:0013C4D8 hint(0001) Name: snGetPushURL
Import Module 016: u32Cfg.dll

Addr:80000002 hint(0002) Name: snGetPushURL

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

May 2002

118

Software Protection and itsAnnihilation— Alfred K M Lo

Import Module 017: MFC42.DLL
Addr:80001491 hint(1491) Name: snGetPushURL
Import Module 018: MSV CRT.dll
Addr:0013C50C hint(0298) Name: memmove
Import Module 019: KERNEL32.dll
Addr:0013C528 hint(011C) Name: GetLocalelnfoA
Import Module 020: USER32.dlI
Addr:0013C548 hint(00E4) Name: GetCapture
Import Module 021: GDI32.dll
Addr:0013C564 hint(00A8) Name: FillRgn
Import Module 022: ADVAPI32.dIl
Addr:0013C580 hint(0162) Name: RegDeleteKeyA
Import Module 023: SHELL 32.dll

Addr:0013C59C hint(0050) Name: SHGetPathFromIDListA

Import Module 024: COMCTL32.dll

Addr:0013C5C4 hint(001E) Name: ImageList AddMasked

© Alfred K M Lo, 2002. All rights reserved. People may freely distribute this document.

May 2002

119

