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3.2. SELECT 
 For other situations, you must reverse-engineer several parts of the vulnerable web 
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3.2.9. Table and field name enumeration 
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The5 NOT IN VALUES 
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 You want to be able to manipulate the arguments in the VALUES clause to make them 
retrieve other data.  We can do this using subselects.  Let's say the code looks like this: 
 
SQLString = "INSERT INTO TableName VALUES ('" & strValueOne &
"', '" & strValueTwo & "', '" & strValueThree & "')"
 
 And we fill out the form like this: 
 
Name:  ' + (SELECT TOP 1 FieldName FROM TableName) + '
Email:  blah@blah.com
Phone:  333-333-3333 
 
 Making the SQL statement look like this: 
 
INSERT INTO TableName VALUES ('' + (SELECT TOP 1 FieldName FROM
TableName) + '', 'blah@blah.com', '333-333-3333')
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4. Solutions 

4.1. Data sanitization 
 All client-supplied data needs to be cleansed of any characters or strings that could 
possibly be used maliciously.  This should be done for all applications, not just those that use 
SQL queries. Stripping quotes or putting backslashes in front of them is nowhere near enough.  
The best way to filter your data is with a default-deny regular expression.  Make it so that you 
only include that type of characters that you want.  For instance, the following regexp will 
return only letters and numbers: 
 
s/^[0-9][a-z][A-Z]//g
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6. The Business Case for Application Security 
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