

http://www.extropia.com/tutorials/sql/toc.html

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

 Page 7

3.2. SELECT
 For other situations, you must reverse-engineer several parts of the vulnerable web

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

 Page 14

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

 Page 20

3.2.9. Table and field name enumeration

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

 Page 25

The5 NOT IN VALUES

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

 Page 26

 You want to be able to manipulate the arguments in the VALUES clause to make them
retrieve other data. We can do this using subselects. Let's say the code looks like this:

SQLString = "INSERT INTO TableName VALUES ('" & strValueOne &
"', '" & strValueTwo & "', '" & strValueThree & "')"

 And we fill out the form like this:

Name: ' + (SELECT TOP 1 FieldName FROM TableName) + '
Email: blah@blah.com
Phone: 333-333-3333

 Making the SQL statement look like this:

INSERT INTO TableName VALUES ('' + (SELECT TOP 1 FieldName FROM
TableName) + '', 'blah@blah.com', '333-333-3333')

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

 Page 28

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

 Page 30

4. Solutions

4.1. Data sanitization
 All client-supplied data needs to be cleansed of any characters or strings that could
possibly be used maliciously. This should be done for all applications, not just those that use
SQL queries. Stripping quotes or putting backslashes in front of them is nowhere near enough.
The best way to filter your data is with a default-deny regular expression. Make it so that you
only include that type of characters that you want. For instance, the following regexp will
return only letters and numbers:

s/^[0-9][a-z][A-Z]//g

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

 Page 32

6. The Business Case for Application Security

mailto:sales@spidymanics.com

	1.	OVERVIEW AND INTRODUCTION TO WEB APPLICATIONS AND SQL INJECTION	3
	1.1.	Overview
	1.2.	Background
	1.3.	Character encoding

	2.	Testing for vulnerability
	2.1.	Comprehensive testing
	2.2.	Testing procedure
	2.3.	Evaluating results

	3.	Attacks
	3.1.	Authorization bypass
	3.2.	SELECT
	3.2.1.	Direct vs. Quoted
	3.2.2.	Basic UNION
	3.2.3.	Query enumeration with syntax errors
	3.2.4.	Parenthesis
	3.2.5.	LIKE queries
	3.2.6.	Dead Ends
	3.2.7.	Column number mismatch
	3.2.8.	Additional WHERE columns
	Table and field name enumeration
	3.2.10.	Single record cycling

	3.3.	INSERT
	3.3.1.	Insert basics
	3.3.2.	Injecting subselects

	3.4.	SQL Server Stored Procedures
	3.4.1.	Stored procedure basics
	3.4.2.	xp_cmdshell
	sp_makewebtask

	4.	Solutions
	4.1.	Data sanitization
	4.2.	Secure SQL web application coding

	5.	Database server system tables
	5.1.	MS SQL Server
	5.2.	MS Access Server
	5.3.	Oracle

	6.	The Business Case for Application Security

